1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The preshortening Cretaceous Pyrenean Rift is an outstanding geological laboratory to investigate the effects of a pre‐rift salt layer at the sedimentary base on lithospheric rifting. The occurrence of a pre‐rift km‐scale layer of evaporites and shales promoted the activation of syn‐rift salt tectonics from the onset of rifting. The pre‐ and syn‐rift sediments are locally affected by high‐temperature metamorphism related to mantle ascent up to shallow depths during rifting. The thermo‐mechanical interaction between décollement along the pre‐existing salt layer and mantle ascent makes the Cretaceous Pyrenean Rifting drastically different from the type of rifting that shaped most Atlantic‐type passive margins where salt deposition is syn‐rift and gravity‐driven salt tectonics has been postrift. To unravel the dynamic evolution of the Cretaceous Pyrenean Rift, we carried out a set of numerical models of lithosphere‐scale extension, calibrated using the available geological constraints. Models are used to investigate the effects of a km‐scale pre‐rift salt layer, located at the sedimentary cover base, on the dynamics of rifting. Our results highlight the key role of the décollement layer at cover base that can alone explain both salt tectonics deformation style and high‐temperature metamorphism of the pre‐rift and syn‐rift sedimentary cover. On the other hand, in the absence of décollement, our model predicts symmetric necking of the lithosphere devoid of any structure and related thermal regime geologically relevant to the Pyrenean case.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12389
2019-08-07
2024-04-25
Loading full text...

Full text loading...

References

  1. Asti, R., Lagabrielle, Y., Fourcade, S., Corre, B., & Monié, P. (2019). How do continents deform during mantle exhumation? Insights from the northern Iberia inverted paleo‐passive margin, western Pyrenees (France). Tectonics, 38, 1666–1693. https://doi.org/10.1029/2018TC005428
    [Google Scholar]
  2. Benes, V., & Davy, P. (1996). Modes of continental lithospheric extension: Experimental verification of strain localization processes. Tectonophysics, 254, 69–87. https://doi.org/10.1016/0040-1951(95)00076-3
    [Google Scholar]
  3. Bialas, R. W., & Buck, W. R. (2009). How sediment promotes narrow rifting: Application to the Gulf of California. Tectonics, 28, TC4014. https://doi.org/10.1029/2008TC002394
    [Google Scholar]
  4. Bialas, R. W., Buck, W. R., & Qin, R. (2010). How much magma is required to rift a continent?Earth and Planetary Science Letters, 292, 68–78. https://doi.org/10.1016/j.epsl.2010.01.021
    [Google Scholar]
  5. Biteau, J.‐J., Marrec, A. L., Vot, M. L., & Masset, J.‐M. (2006). The aquitaine basin. Petroleum Geoscience, 12, 247–273. https://doi.org/10.1144/1354-079305-674
    [Google Scholar]
  6. Bouhallier, H., Choukroune, P., & Ballèvre, M. (1991). Evolution structurale de la croute profonde hercynienne; exemple du massif de l'Agly (Pyrénées orientales, France). Comptes Rendus de l'Académie des Sciences de Paris - Series II, 312, 647–654.
    [Google Scholar]
  7. Braun, J. (1992). Postextensional mantle healing and episodic extension in the Canning Basin. Journal of Geophysical Research Solid Earth, 97, 8927–8936. https://doi.org/10.1029/92JB00584
    [Google Scholar]
  8. Brun, J.‐P. (1999). Narrow rifts versus wide rifts: Inferences for the mechanics of rifting from laboratory experiments. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357, 695–710. https://doi.org/10.1098/rsta.1999.0349
    [Google Scholar]
  9. Brun, J.‐P., & Beslier, M.‐O. (1996). Mantle exhumation at passive margins. Earth and Planetary Science Letters, 142, 161–173. https://doi.org/10.1016/0012-821X(96)00080-5
    [Google Scholar]
  10. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28, 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  11. Brune, S., Williams, S. E., Butterworth, N. P., & Müller, R. D. (2016). Abrupt plate accelerations shape rifted continental margins. Nature, 536, 201–204.
    [Google Scholar]
  12. Buck, W. R. (1991). Modes of continental lithospheric extension. J. Geophys. Res., 96, 20161–20178. https://doi.org/10.1029/91JB01485
    [Google Scholar]
  13. Burov, E., & Poliakov, A. (2001). Erosion and rheology controls on synrift and postrift evolution: Verifying old and new ideas using a fully coupled numerical model. Journal of Geophysical Research: Solid Earth, 106, 16461–16481. https://doi.org/10.1029/2001JB000433
    [Google Scholar]
  14. CanérotJ. (1988). Manifestations de l'halocinèse dans les Chaînons Béarnais (Zone Nord‐Pyrénéenne) au Crétacé inférieur. Comptes Rendus De L'académie Des Sciences Paris, 306, 1099–1102.
    [Google Scholar]
  15. Canérot, J. (1991). Comparative study of the Eastern Iberides (spain) and the Western Pyrenees (France) Mesozoic basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 1–28. https://doi.org/10.1016/0031-0182(91)90128-E
    [Google Scholar]
  16. Canérot, J., & Delavaux, F. (1986). Tectonics and sedimentation on the north‐ Iberian margin, ‘chainons bearnais’ south‐Pyrenean zone (Pyrenees basco‐bearnaises). New data about the significance of the lherzolites in the Saraille area. Comptes Rendus de l'Académie des Sciences de Paris - Series II, 302, 951–956.
    [Google Scholar]
  17. Canérot, J., Peybernes, B., & Ciszak, R. (1978). Presence d'une marge meridionale a l'emplacement de la zone des chainons bearnais (Pyrenees basco‐bearnaises). Bulletin De La Societe Geologique De France, S7‐XX, 673–676. https://doi.org/10.2113/gssgfbull.S7-XX.5.673
    [Google Scholar]
  18. Carter, N. L., Horseman, S. T., Russell, J. E., & Handin, J. (1993). Rheology of rocksalt. Journal of Structural Geology, 15, 1257–1271. https://doi.org/10.1016/0191-8141(93)90168-A
    [Google Scholar]
  19. Choukroune, P., & Mattauer, M. (1978). Tectonique des plaques et Pyrénées: Sur le fonctionnement de la faille transformante nord‐pyrénéenne; comparaison avec des modèles actuels. Bulletin De La Societe Geologique De France, S7‐XX, 689–700.
    [Google Scholar]
  20. Clerc, C., & Lagabrielle, Y. (2014). Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins. Tectonics, 33, 1340–1359. https://doi.org/10.1002/2013TC003471
    [Google Scholar]
  21. Clerc, C., Lagabrielle, Y., Labaume, P., Ringenbach, J.‐C., Vauchez, A., Nalpas, T., … Fourcade, S. (2016). Basement – Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog. Tectonophysics, 686, 82–97. https://doi.org/10.1016/j.tecto.2016.07.022
    [Google Scholar]
  22. Clerc, C., Lahfid, A., Monié, P., Lagabrielle, Y., Chopin, C., Poujol, M., … de St Blanquat, M. (2015). High‐temperature metamorphism during extreme thinning of the continental crust: A reappraisal of the North Pyrenean passive paleomargin. Solid Earth, 6, 643–668. https://doi.org/10.5194/se-6-643-2015
    [Google Scholar]
  23. Corre, B., Lagabrielle, Y., Labaume, P., Fourcade, S., Clerc, C., & Ballèvre, M. (2016). Deformation associated with mantle exhumation in a distal, hot passive margin environment: New constraints from the Saraillé Massif (Chaînons Béarnais, North‐Pyrenean Zone). Comptes Rendus Geoscience, 348, 279–289. https://doi.org/10.1016/j.crte.2015.11.007
    [Google Scholar]
  24. Corti, G., Wijk, J. V., Bonini, M., Sokoutis, D., Cloetingh, S., Innocenti, F., & Manetti, P. (2003). Transition from continental break‐up to punctiform seafloor spreading: How fast, symmetric and magmatic. Geophysical Research Letters, 30, https://doi.org/10.1029/2003GL017374
    [Google Scholar]
  25. Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development Discussions, 11, 2541–2562. https://doi.org/10.5194/gmd-11-2541-2018
    [Google Scholar]
  26. Davis, J. K., & Lavier, L. L. (2017). Influences on the development of volcanic and magma‐poor morphologies during passive continenta rifting. Geosphere, 13, 1524–1540. https://doi.org/10.1130/GES01538.1
    [Google Scholar]
  27. de Saint Blanquat, M., Bajolet, F., Grand'Homme, A., Proietti, A., Zanti, M., Boutin, A., … Labaume, P. (2016). Cretaceous mantle exhumation in the central Pyrenees: New constraints from the peridotites in eastern Ariège (North Pyrenean zone, France). Comptes Rendus Geoscience, 348, 268–278. https://doi.org/10.1016/j.crte.2015.12.003
    [Google Scholar]
  28. Debroas, E. J. (1990). Le flysch noir albo‐cenomanien temoin de la structuration albienne a senonienne de la Zone nord‐pyreneenne en Bigorre (Hautes‐Pyrenees, France). Bulletin De La Societe Geologique De France, VI, 273–285, https://doi.org/10.2113/gssgfbull.VI.2.273
    [Google Scholar]
  29. Dunbar, J. A., & Sawyer, D. S. (1989). How preexisting weaknesses control the style of continental breakup. Journal of Geophysical Research: Solid Earth, 94(B6), 7278–7292. https://doi.org/10.1029/JB094iB06p07278
    [Google Scholar]
  30. Duretz, T., May, D. A., & Yamato, P. (2016). A free surface capturing discretization for the staggered grid finite difference scheme. Geophysical Journal International, 204, 1518–1530. https://doi.org/10.1093/gji/ggv526
    [Google Scholar]
  31. Duretz, T., Petri, B., Mohn, G., Schmalholz, S. M., Schenker, F. L., & Müntener, O. (2016). The importance of structural softening for the evolution and architecture of passive margins. Scientific Reports, 6, 38704. https://doi.org/10.1038/srep38704
    [Google Scholar]
  32. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 389–404.
    [Google Scholar]
  33. Espurt, N., Angrand, P., Teixell, A., Lapaume, P., Ford, M., de Saint Blanquat, M., Chevrot, S. (2019). Crustal‐scale balanced cross‐section and restorations of the Central Pyrenean belt (Nestes‐Cinca transect): Highlighting the structural control of Variscan belt and Permian‐Mesozoic rift systems on mountain building. Tectonophysics, 764, 25–45. https://doi.org/10.1016/j.tecto.2019.04.026
    [Google Scholar]
  34. Fort, X., Brun, J.‐P., & Chauvel, F. (2004). Salt tectonics on the Angolan margin, synsedimentary deformation processes. American Association of Petroleum Geologists Bulletin, 88, 1523–1544.
    [Google Scholar]
  35. Golberg, J. M., & Leyreloup, A. F. (1990). High temperature‐low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology, 104, 194–207. https://doi.org/10.1007/BF00306443
    [Google Scholar]
  36. Gong, Z., Dekkers, M. J., Dinarès‐Turell, J., Mullender, T. A. T. (2008). Remagnetization mechanism of Lower Cretaceous rocks from the Organyà Basin (Pyrenees, Spain). Studia Geophysica et Geodaetica, 52, 187–210. https://doi.org/10.1007/s11200-008-0013-3
    [Google Scholar]
  37. Gueydan, F., Morency, C., & Brun, J.‐P. (2008). Continental rifting as a function of lithosphere mantle strength. Tectonophysics, 460, 83–93. https://doi.org/10.1016/j.tecto.2008.08.012
    [Google Scholar]
  38. Hansen, F. D., Carter, N. L. (1983). Semibrittle creep of dry and wet westerly granite at 1000 MPa. In ARMA‐83‐0429. Presented at the The 24th U.S. Symposium on Rock Mechanics (USRMS) (p. 20). College Station, Texas: American Rock Mechanics Association, ARMA.
    [Google Scholar]
  39. Hart, N. R., Stockli, D. F., Lavier, L. L., & Hayman, N. W. (2017). Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics, 36, 1103–1128. https://doi.org/10.1002/2016TC004365
    [Google Scholar]
  40. Huet, B., Pourhiet, L. L., Labrousse, L., Burov, E., & Jolivet, L. (2011). Post‐orogenic extension and metamorphic core complexes in a heterogeneous crust: The role of crustal layering inherited from collision. Application to the Cyclades (Aegean domain). Geophysical Journal International, 184, 611–625. https://doi.org/10.1111/j.1365-246X.2010.04849.x
    [Google Scholar]
  41. Huismans, R. S., & Beaumont, C. (2003). Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening. Journal of Geophysical Research: Solid Earth, 108, 2496. https://doi.org/10.1029/2002JB002026
    [Google Scholar]
  42. Huismans, R. S., & Beaumont, C. (2007). Roles of lithospheric strain softening and heterogeneity in determining the geometry of rifts and continental margins. Geological Society, London, Special Publications, 282, 111–138. https://doi.org/10.1144/SP282.6
    [Google Scholar]
  43. James, V., & Canérot, J. (1999). Diapirisme et structuration post‐triasique des Pyrénées occidentale et de l'Aquitaine méridionale (France). Eclogae Geologicae Helvetiae, 92, 63–72.
    [Google Scholar]
  44. Jammes, S., & Lavier, L. L. (2016). The effect of bimineralic composition on extensional processes at lithospheric scale. Geochemistry, Geophysics, Geosystems, 17, 3375–3392. https://doi.org/10.1002/2016GC006399
    [Google Scholar]
  45. Jammes, S., Lavier, L., & Manatschal, G. (2010). Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling. Geochemistry, Geophysics, Geosystems, 11, https://doi.org/10.1029/2010GC003218
    [Google Scholar]
  46. Jammes, S., Manatschal, G., & Lavier, L. (2010). Interaction between prerift salt and detachment faulting in hyperextended rift systems: The example of the Parentis and Mauléon basins (Bay of Biscay and western Pyrenees). AAPG Bull., 94, 957–975. https://doi.org/10.1306/12090909116
    [Google Scholar]
  47. Jammes, S., Manatschal, G., Lavier, L., & Masini, E. (2009). Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics, 28, TC4012. https://doi.org/10.1029/2008TC002406
    [Google Scholar]
  48. Kirby, S. H. (1983). Rheology of the lithosphere. Reviews of Geophysics, 21, 1458–1487. https://doi.org/10.1029/RG021i006p01458
    [Google Scholar]
  49. Kirby, S. H., & Kronenberg, A. K. (1987). Rheology of the lithosphere: Selected topics. Reviews of Geophysics, 25, 1219–1244. https://doi.org/10.1029/RG025i006p01219
    [Google Scholar]
  50. Lagabrielle, Y., & Bodinier, J.‐L. (2008). Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees. Terra Nova, 20, 11–21. https://doi.org/10.1111/j.1365-3121.2007.00781.x
    [Google Scholar]
  51. Lagabrielle, Y., Clerc, C., Vauchez, A., Lahfid, A., Labaume, P., Azambre, B., … Dautria, J.‐M. (2016). Very high geothermal gradient during mantle exhumation recorded in mylonitic marbles and carbonate breccias from a Mesozoic Pyrenean palaeomargin (Lherz area, North Pyrenean Zone, France). Comptes Rendus Geoscience, 348, 290–300. https://doi.org/10.1016/j.crte.2015.11.004
    [Google Scholar]
  52. Lagabrielle, Y., Labaume, P., de Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29, TC4012. https://doi.org/10.1029/2009TC002588
    [Google Scholar]
  53. Le Roux, V., Bodinier, J.‐L., Tommasi, A., Alard, O., Dautria, J.‐M., Vauchez, A., & Riches, A. J. V. (2007). The Lherz spinel lherzolite: Refertilized rather than pristine mantle. Earth and Planetary Science Letters, 259, 599–612. https://doi.org/10.1016/j.epsl.2007.05.026
    [Google Scholar]
  54. Liao, J., & Gerya, T. (2014). Influence of lithospheric mantle stratification on craton extension: Insight from two‐dimensional thermo‐mechanical modeling. Tectonophysics, 631, 50–64. https://doi.org/10.1016/j.tecto.2014.01.020
    [Google Scholar]
  55. Masini, E., Manatschal, G., Tugend, J., Mohn, G., & Flament, J.‐M. (2014). The tectono‐sedimentary evolution of a hyper‐extended rift basin: The example of the Arzacq‐Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 103, 1569–1596. https://doi.org/10.1007/s00531-014-1023-8
    [Google Scholar]
  56. Mauduit, T., Gaullier, V., Brun, J. P., & Guerin, G. (1997). On the asymmetry of turtle‐back growth anticlines. Marine and Petroleum Geology, 14, 763–771. https://doi.org/10.1016/S0264-8172(97)00053-6
    [Google Scholar]
  57. Mauduit, T., Guerin, G., Brun, J. P., & Lecanu, H. (1997). Raft tectonics: The effects of basal slope value and sedimentation rate on progressive extension. Journal of Structural Geology, 19, 1219–1230.
    [Google Scholar]
  58. McClay, K., Muñoz, J.‐A., & García‐Senz, J. (2004). Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees. Geology, 32, 737–740. https://doi.org/10.1130/G20565.1
    [Google Scholar]
  59. McClay, K. R., & White, M. J. (1995). Analogue modelling of orthogonal and oblique rifting. Marine and Petroleum Geology, 12, 137–151. https://doi.org/10.1016/0264-8172(95)92835-K
    [Google Scholar]
  60. Mohriak, W. U., & Szatmari, P. (2001). Salt tectonics and sedimentation along Atlantic margins: Insights from seismic interpretation and physical models. Geological Society of America Memoir, 193, 131–151.
    [Google Scholar]
  61. Mouthereau, F., Filleaudeau, P.‐Y., Vacherat, A., Pik, R., Lacombe, O., Fellin, M. G., … Masini, E. (2014). Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics, 33, 2283–2314. https://doi.org/10.1002/2014TC003663
    [Google Scholar]
  62. Nagel, T. J., & Buck, W. R. (2004). Symmetric alternative to asymmetric rifting models. Geology, 32, 937–940. https://doi.org/10.1130/G20785.1
    [Google Scholar]
  63. Naliboff, J., & Buiter, S. J. H. (2015). Rift reactivation and migration during multiphase extension. Earth and Planetary Science Letters, 421, 58–67. https://doi.org/10.1016/j.epsl.2015.03.050
    [Google Scholar]
  64. Naliboff, J. B., Buiter, S. J. H., Péron‐Pinvidic, G., Osmundsen, P. T., & Tetreault, J. (2017). Complex fault interaction controls continental rifting. Nature Communications, 8, 1179. https://doi.org/10.1038/s41467-017-00904-x
    [Google Scholar]
  65. Nalpas, T., & Brun, J.‐P. (1993). Salt flow and diapirism related to extension at crustal scale. Tectonophysics, 228, 349–362. https://doi.org/10.1016/0040-1951(93)90348-N
    [Google Scholar]
  66. Nestola, Y., Storti, F., & Cavozzi, C. (2015). Strain rate‐dependent lithosphere rifting and necking architectures in analog experiments. Journal of Geophysical Research: Solid Earth, 120, 584–594. https://doi.org/10.1002/2014JB011623
    [Google Scholar]
  67. Olivet, J.‐L. (1996). La cinématique de la plaque Ibérie. Bulletin des Centres de Recherches Exploration - Production Elf-Aquitaine, 20, 131–195.
    [Google Scholar]
  68. Ortí, F., Pérez‐López, A., & Salvany, J. M. (2017). Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic‐Earliest Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 157–180. https://doi.org/10.1016/j.palaeo.2017.01.025
    [Google Scholar]
  69. Petri, B., Duretz, T., Mohn, G., Schmalholz, S. M., Karner, G. D., & Müntener, O. (2019). Thinning mechanisms of heterogeneous continental lithosphere. Earth and Planetary Science Letters, 512, 147–162.
    [Google Scholar]
  70. Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., & Johnson, C. (2016). Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos, 266, 233–263. https://doi.org/10.1016/j.lithos.2016.08.029
    [Google Scholar]
  71. Rey, P. F., Teyssier, C., & Whitney, D. L. (2009). Extension rates, crustal melting, and core complex dynamics. Geology, 37, 391–394. https://doi.org/10.1130/G25460A.1
    [Google Scholar]
  72. Roca, E., Muñoz, J. A., Ferrer, O., & Ellouz, N. (2011). The role of the bay of biscay mesozoic extensional structure in the configuration of the Pyrenean orogen: Constraints from the MARCONI deep seismic reflection survey. Tectonics, 30, TC2001. https://doi.org/10.1029/2010TC002735
    [Google Scholar]
  73. Saint Blanquat, M. (1993). La faille normale ductile du massif du Saint Barthélémy: Evolution hercynienne des massifs nord‐pyrénéens catazonaux considérée du point de vue de leur histoire thermique. Geodinamica Acta, 6(1), 59–77. https://doi.org/10.1080/09853111.1993.11105239
    [Google Scholar]
  74. Saspiturry, N., Cochelin, B., Razin, P., Leleu, S., Lemirre, B., Issautier, B., … Baudin, T. (2019). Tectono‐sedimentary evolution of a rift‐system controlled by Permian post orogenic extension and MCC formation (Bidarray Basin and Ursuya dome, Western Pyrenees), accepted.
  75. Saura, E., Ardèvol i Oró, L., Teixell, A., & Vergés, J. (2016). Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics, 35, 638–662. https://doi.org/10.1002/2015TC004001
    [Google Scholar]
  76. Schmeling, H., & Wallner, H. (2012). Magmatic lithospheric heating and weakening during continental rifting: A simple scaling law, a 2‐D thermomechanical rifting model and the East African Rift System. Geochemistry, Geophysics, Geosystems, 13, Q08001. https://doi.org/10.1029/2012GC004178
    [Google Scholar]
  77. Sibuet, J.‐C., Srivastava, S. P., & Spakman, W. (2004). Pyrenean orogeny and plate kinematics. Journal of Geophysical Research: Solid Earth, 109, https://doi.org/10.1029/2003JB002514
    [Google Scholar]
  78. Souche, A., Dabrowski, M., & Andersen, T. B. (2014). Modeling thermal convection in supradetachment basins: Example from western Norway. Geofluids, 14, 58–74. https://doi.org/10.1111/gfl.12042
    [Google Scholar]
  79. Souquet, P. (1985). The Black Flysch (Albian‐early Cenomanian) from the Pyrenees. Bulletin des Centres de Recherches Exploration - Production Elf-Aquitaine, 9, 183–252.
    [Google Scholar]
  80. Stewart, S. A., & Coward, M. P. (1995). Synthesis of salt tectonics in the Southern North Sea, UK. Marine and Petroleum Geology, 12, 457–475. https://doi.org/10.1016/0264-8172(95)91502-G
    [Google Scholar]
  81. Teixell, A., Labaume, P., & Lagabrielle, Y. (2016). The crustal evolution of the west‐central Pyrenees revisited: Inferences from a new kinematic scenario. Comptes Rendus Geoscience, 348, 257–267. https://doi.org/10.1016/j.crte.2015.10.010
    [Google Scholar]
  82. Tetreault, J. L., & Buiter, S. J. H. (2018). The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break‐up. Tectonophysics, 746, 155–172. https://doi.org/10.1016/j.tecto.2017.08.029
    [Google Scholar]
  83. Tirel, C., Brun, J. P., Burov, E., & Sokoutis, D. (2004). Numerical and analogue modelling of metamorphic core complex development. Bollettino Di Geofisica Teorica E Applicata, 45, 156–160.
    [Google Scholar]
  84. Tirel, C., Brun, J.-P., & Burov, E. (2008). Dynamics and structural development of metamorphic core complexes. J. Geophys. Res., 113, B04403. https://doi.org/10.1029/2005JB003694
    [Google Scholar]
  85. Tron, V., & Brun, J.‐P. (1991). Experiments on oblique rifting in brittle‐ductile systems. Tectonophysics, 188, 71–84. https://doi.org/10.1016/0040-1951(91)90315-J
    [Google Scholar]
  86. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, I. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33, 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  87. Vacherat, A., Mouthereau, F., Pik, R., Bellahsen, N., Gautheron, C., Bernet, M., … Radal, J. (2016). Rift‐to‐collision transition recorded by tectono‐thermal evolution of the northern Pyrenees. Tectonics, 35, 907–933. https://doi.org/10.1002/2015TC004016
    [Google Scholar]
  88. Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini, E., … Lahfid, A. (2014). Thermal imprint of rift‐related processes in orogens as recorded in the Pyrenees. Earth and Planetary Science Letters, 408, 296–306. https://doi.org/10.1016/j.epsl.2014.10.014
    [Google Scholar]
  89. Vauchez, A., Clerc, C., Bestani, L., Lagabrielle, Y., Chauvet, A., Lahfid, A., & Mainprice, D. (2013). Preorogenic exhumation of the North Pyrenean Agly massif (Eastern Pyrenees‐France). Tectonics, 32, 95–106. https://doi.org/10.1002/tect.20015
    [Google Scholar]
  90. Vissers, R. L. M. (1992). Variscan extension in the Pyrenees. Tectonics, 11(6), 1369–1384. https://doi.org/10.1029/92TC00823
    [Google Scholar]
  91. Weijermars, R., Jackson, M. P. A., & Vendeville, B. (1993). Rheological and tectonic modeling of salt provinces. Tectonophysics, 217(1–2), 143–174. https://doi.org/10.1016/0040-1951(93)90208-2
    [Google Scholar]
  92. Zwaan, F., Schreurs, G., Naliboff, J., & Buiter, S. J. H. (2016). Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics, 693, 239–260. https://doi.org/10.1016/j.tecto.2016.02.036
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12389
Loading
/content/journals/10.1111/bre.12389
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error