1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

We conduct the seismic signal analysis on vintage and recently collected multichannel seismic reflection profiles from the Ionian Basin to characterize the deep basin Messinian evaporites. These evaporites were deposited in deep and marginal Mediterranean sedimentary basins as a consequence of the “salinity crisis” between 5.97 and 5.33 Ma, a basin‐wide oceanographic and ecological crisis whose origin remains poorly understood. The seismic markers of the Messinian evaporites in the deep Mediterranean basins can be divided in two end‐members, one of which is the typical “trilogy” of gypsum and clastics (Lower Unit – LU), halite (Mobile Unit – MU) and upper anhydrite and marl layers (Upper Unit – UU) traced in the Western Mediterranean Basins. The other end‐member is a single MU unit subdivided in seven sub‐units by clastic interlayers located in the Levant Basin. The causes of these different seismic expressions of the Messinian salinity crisis (MSC) appear to be related to a morphological separation between the two basins by the structural regional sill of the Sicily Channel. With the aid of velocity analyses and seismic imaging via prestack migration in time and depth domains, we define for the first time the seismic signature of the Messinian evaporites in the deep Ionian Basin, which differs from the known end‐members. In addition, we identify different evaporitic depositional settings suggesting a laterally discontinuous deposition. With the information gathered we quantify the volume of evaporitic deposits in the deep Ionian Basin as 500,000 km3 ± 10%. This figure allows us to speculate that the total volume of salts in the Mediterranean basin is larger than commonly assumed. Different depositional units in the Ionian Basin suggest that during the MSC it was separated from the Western Mediterranean by physical thresholds, from the Po Plain/Northern Adriatic Basin, and the Levant Basin, likely reflecting different hydrological and climatic conditions. Finally, the evidence of erosional surfaces and V‐shaped valleys at the top of the MSC unit, together with sharp evaporites pinch out on evaporite‐free pre‐Messinian structural highs, suggest an extreme Messinian Stage 3 base level draw down in the Ionian Basin. Such evidence should be carefully evaluated in the light of Messinian and post‐Messinian vertical crustal movements in the area. The results of this study demonstrates the importance of extracting from seismic data the Messinian paleotopography, the paleomorphology and the detailed stratal architecture in the in order to advance in the understanding of the deep basins Messinian depositional environments.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12392
2019-08-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/4/bre12392.html?itemId=/content/journals/10.1111/bre.12392&mimeType=html&fmt=ahah

References

  1. Amadori, C., Garcia‐Castellanos, D., Toscani, G., Sternai, P., Fantoni, R., Ghielmi, M., & Di Giulio, A. (2018). Restored topography of the Po Plain‐Northern Adriatic region during the Messinian base‐level drop—Implications for the physiography and compartmentalization of the palaeo‐Mediterranean basin. Basin Research, 30(6), 1247–1263.
    [Google Scholar]
  2. Arsenikos, S., Frizon deLamotte, D., Chamatte‐Rooke, N., Mohn, G., Bonneau, M. C., & Blanpied, C. (2013). Mechanism and timing of tectonic inversion in Cyrenaica (Libya): Integration in the geodynamics of the East Mediterranean. Tectonophysics, 608, 319–329. https://doi.org/10.1016/j.tecto.2013.09.025
    [Google Scholar]
  3. Bache, F., Popescu, S.‐M., Rabineau, M., Gorini, C., Suc, J.‐P., Clauzon, G., … Çakır, Z. (2012). A two‐step process for the reflooding of the Mediterranean after the Messinian salinity crisis. Basin Research, 24, 125–153. https://doi.org/10.1111/j.1365-2117.2011.00521.x
    [Google Scholar]
  4. Ben‐Avraham, Z., Woodside, J., Lodolo, E., Gardosh, M., Grasso, M., Camerlenghi, A., & Vai, G. B. (2006). Eastern Mediterranean basin systems. Geological Society, London, Memoirs, 32(1), 263–276.
    [Google Scholar]
  5. Bertoni, C., & Cartwright, J. (2006). Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sedimentary Geology, 188–189, 93–114.
    [Google Scholar]
  6. Biju‐Duval, B., Letouzey, J., & Montadert, L. (1978). Structure and evolution of the Mediterranean basins. Initial Reports of the Deep Sea Drilling Project, 42, 951–984.
    [Google Scholar]
  7. Blanc, P.‐L. (2006). Improved modelling of the Messinian salinity crisis and conceptual implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 349–372, https://doi.org/10.1016/j.palaeo.2006.03.033
    [Google Scholar]
  8. Bowman, S. A. (2012). A comprehensive review of the MSC facies and their origins in the offshore Sirt Basin. Libya. Petroleum Geoscience, 18(4), 457–469.
    [Google Scholar]
  9. Brun, J.‐P., Faccenna, C., Gueydan, F., Sokoutis, D., Philippon, M., Kydonakis, K., & Gorini, C. (2016). The two‐Stage Aegean extension, from localized to distributed, a result of slab rollback acceleration. Canadian Journal of Earth Sciences, 53(11), 1142–1157.
    [Google Scholar]
  10. Butler, R. W. H., Maniscalco, R., Sturiale, G., & Grasso, M. (2015). Stratigraphic variations control deformation patterns in evaporite basins: Messinian examples, onshore and offshore Sicily (Italy). Journal of the Geological Society, 172, 113–124.
    [Google Scholar]
  11. Camerlenghi, A., & Pini, G. A. (2009). Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology, 56, 319–365.
    [Google Scholar]
  12. Carminati, E., & Doglioni, C. (2005). Mediterranean tectonics. Encyclopedia of Geology, 2, 135–146.
    [Google Scholar]
  13. Carminati, E., Lustrino, M., & Doglioni, C. (2012). Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 579, 173–192. https://doi.org/10.1016/j.tecto.2012.01.026
    [Google Scholar]
  14. Cipollari, P., Cosentino, D., Radeff, G., Schildgen, T. F., Faranda, C., Grossi, F., … Echtler, H. (2013). Easternmost mediterranean evidence of the zanclean flooding event and subsequent surface uplift: Adana basin, southern turkey. Geological Society Special Publication, 372(1), 473–493. https://doi.org/10.1144/SP372.5
    [Google Scholar]
  15. Costa, E., Camerlenghi, A., Polonia, A., Cooper, C., Fabretti, P., Mosconi, A., … Wardell, N. (2004). Modeling deformation and salt tectonics in the eastern Mediterranean Ridge accretionary wedge. Geological Society of America Bulletin, 116(7–8), 880–894.
    [Google Scholar]
  16. Dal Cin, M., Del Ben, A., Mocnik, A., Accaino, F., Geletti, R., Wardell, N., … Camerlenghi, A. (2016). Seismic imaging of Late Miocene (Messinian) evaporites from Western Mediterranean back‐arc basins. Petroleum Geoscience, 22, 297–308. https://doi.org/10.1144/petgeo2015-096
    [Google Scholar]
  17. Dannowski, A., Kopp, H., Klingelhoefer, F., Klaeschen, D., Gutscher, M. A., Krabbenhoeft, A., … Klaucke, I. (2019). Ionian Abyssal Plain: A window into the Tethys oceanic lithosphere. Solid Earth, 10, 447–462. https://doi.org/10.5194/se-10-447-2019
    [Google Scholar]
  18. Del Ben, A., Barnaba, C., & Taboga, A. (2008). Strike‐slip systems as the main tectonic features in the Plio‐Quaternary kinematics of the Calabrian Arc. Marine Geophysical Researches, 29, 1–12. https://doi.org/10.1007/s11001-007-9041-6
    [Google Scholar]
  19. Del Ben, A., Geletti, R., & Mocnik, A. (2010). Relation between recent tectonics and inherited Mesozoic structures of the central‐southern Adria plate. Bollettino di Geofisica Teorica e Applicata, 51(2/3), 99–115.
    [Google Scholar]
  20. Del Ben, A., Mocnik, A., Volpi, V., & Karvelis, P. (2015). Old domains in the South Adria plate and their relationship with the West Hellenic front. Journal of Geodynamics, 89, 15–28. https://doi.org/10.1016/j.jog.2015.06-003
    [Google Scholar]
  21. Dellong, D., Klingelhoefer, F., Kopp, H., Graindorge, D., Margheriti, L., Moretti, M., … Gutscher, M. A. (2018). Crustal structure of the Ionian basin and eastern Sicily margin: Results from a wide‐angle seismic survey. Journal of Geophysical Research: Solid Earth, 123, 2090–2114. https://doi.org/10.1002/2017JB015312
    [Google Scholar]
  22. Do Couto, D., Popescu, S.‐M., Suc, J.‐P., Melinte‐Dobrinescu, M. C., Barhoun, N., Gorini, C., … Auxietre, J.‐L. (2014). Lago Mare and the Messinian salinity crisis: Evidence from the Alboran Sea (S. Spain). Marine and Petroleum Geology, 52, 57–76. https://doi.org/10.1016/j.marpetgeo.2014.01.018.
    [Google Scholar]
  23. Doglioni, C., Gueguen, E., Sàbat, F., & Fernández, M. (1997). The Western Mediterranean extensional basins and the Alpine Orogen. Terra Nova, 9, 109–112.
    [Google Scholar]
  24. Estrada, F., Ercilla, G., Gorini, C., Alonso, B., Vázquez, J. T., García‐Castellanos, D., … Elabbassi, M. (2011). Impact of pulsed Atlantic water inflow into the Alboran Basin at the time of the Zanclean flooding. Geo‐Marine Letters, 31, 361–376. https://doi.org/10.1007/s00367-011-0249-8
    [Google Scholar]
  25. Feng, Y. E., Yankelzon, A., Steinberg, J., & Reshef, M. (2016). Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118–131. https://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  26. Finetti, I., & Del Ben, A. (1986). Geophysical study of the Tyrrhenian opening. Bollettino di Geofisica Teorica ed Applicata, 28(110), 75–155.
    [Google Scholar]
  27. Finetti, I., & Del Ben, A. (2005). Crustal Tectono‐stratigraphy of the Ionian Sea from New Integrated CROP Seismic Data. In I.Finetti (Ed.), CROP project: Deep seismic exploration of the central Mediterranean and Italy. Atlases in Geoscience 1 (pp. 519–547). Amsterdam, the Netherlands: Elsevier Science.
    [Google Scholar]
  28. Finetti, I., & Morelli, C. (1973). Geophysical exploration of the Mediterranean Sea. Bollettino di Geofisica Teorica ed Applicata, 15, 263–341.
    [Google Scholar]
  29. Finetti, I. R.
    (Ed.). (2005). CROP project: Deep seismic exploration of the central Mediterranean and Italy. Atlases in Geoscience 1. Amsterdam, the Netherlands: Elsevier Science. 779 p, 72 plates.
    [Google Scholar]
  30. Gallais, F., Gutscher, M.‐A., Graindorge, D., Chamot‐Rooke, N., & Klaeschen, D. (2011). A Miocene tectonic inversion in the Ionian Sea (Central Mediterranean): evidence from multichannel seismic data. Journal of Geophysical Research, 116B, 12108. https://doi.org/10.1029/2011JB008505
    [Google Scholar]
  31. Gallais, F., Graindorge, D., Gutscher, M.‐A., & Klaeschen, D. (2013). Propagation of a lithospheric tear fault (STEP) through the western boundary of the Calabrian accretionary wedge offshore eastern Sicily (Southern Italy). Tectonophysics, 602, 141–152. https://doi.org/10.1016/j.tecto.2012.12.026
    [Google Scholar]
  32. Garcia‐Castellanos, D., Estrada, F., Jiménez‐Munt, I., Gorini, C., Fernàndez, M., Vergés, J., & De Vicente, R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–781. https://doi.org/10.1038/nature08555
    [Google Scholar]
  33. Garcia‐Castellanos, D., & Villaseñor, A. (2011). Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature, 480, 359–363. https://doi.org/10.1038/nature10651
    [Google Scholar]
  34. Geletti, R., Zgur, F., Del Ben, A., Buriola, F., Fais, S., Fedi, M., … Pipan, M. (2014). The Messinian salinity crisis: New seismic evidence in the West‐Sardinian Margin and Eastern Sardo‐Provençal basin (West Mediterranean Sea). Marine Geology, 351, 76–90.
    [Google Scholar]
  35. Geletti, R., Del Ben, A., Mocnik, A., & Camerlenghi, A. (2018). ‐18.A&B‐ Cyprus Arc. In J.Lofi (Ed.), Seismic atlas of the Messinian salinity crisis markers in the Mediterranean sea. Volume 2. ‐ Mémoires de la Société géologique de France, n.s., 2018, t. 181, and Commission for the Geological Map of the World, pp. 63–64.
    [Google Scholar]
  36. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2013). Late Miocene‐Middle Pleistocene sequences in the Po Plain e Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology, 42, 50–81.
    [Google Scholar]
  37. Govers, R., Meijer, P., & Krijgsman, W. (2009). Regional isostatic response to Messinian salinity crisis events. Tectonophysics, 463(1–4), 109–129.
    [Google Scholar]
  38. Govers, R., & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236, 505–523.
    [Google Scholar]
  39. Granado, P., Urgeles, R., Sàbat, F., Albert‐Villanueva, E., Roca, E., Muñoz, J. A., … Gambini, R. (2016). Geodynamical framework and hydrocarbon plays of a salt giant: The NW Mediterranean Basin. Petroleum Geology, 22, 309–321. https://doi.org/10.1144/petgeo2015-084
    [Google Scholar]
  40. Gutscher, M. A., Kopp, H., Krastel, S., Bohrmann, G., Garlan, T., Zaragosi, S., … Sallares, V. (2017). Active tectonics of the Calabrian subduction revealed by new multi‐beam bathymetric data and high‐resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth and Planetary Science Letters, 461, 61–72.
    [Google Scholar]
  41. Gvirtzman, Z., Manzi, V., Calvo, R., Gavrieli, I., Gennari, R., Lugli, S., … Roveri, M. (2017). Intra‐Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology, 45, 915–918. https://doi.org/10.1130/G39113.1
    [Google Scholar]
  42. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., & Ben‐Avraham, Z. (2013). Intense salt deformation in the Levant Basin in the middle of the Messinian salinity crisis. Earth and Planetary Science Letters, 379, 108–119. https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  43. Hieke, W., & Dehghani, G. A. (1999). The Victor Hensen structure in the central Ionian Sea and its relation to the Medina Ridge (Eastern Mediterranean). Zeitschrift der Deutschen Geologischen Gesellschaft, 149, 487–505.
    [Google Scholar]
  44. Hieke, W., Hirschleber, H. B., & Dehghani, G. A. (2003). The Ionian Abyssal Plain (central Mediterranean Sea): Morphology, subbottom structures and geodynamic history—An inventory. Marine Geophysical Researches, 24(3–4), 279–310.
    [Google Scholar]
  45. Hsü, K. J., Montadert, L., Bernoulli, D., Bizon, G., Cita, M., Erickson, A., … Wright, R. C. (1978). Site 374: Messina abyssal plain. In Initial reports of the Deep Sea Drilling Project (Vol. 42, Part 1). Washington, DC: U.S. Government Printing Office.
    [Google Scholar]
  46. Huguen, C., Mascle, J., Woodside, J., Zitter, T., & Foucher, J. P. (2005). Mud volcanoes and mud domes of the Central Mediterranean Ridge: Near‐bottom and in situ observations. Deep‐Sea Research Part I, 52, 1911–1931.
    [Google Scholar]
  47. Hübscher, C., Ahlrichs, N., Blum, M., Forlin, E., Frahm, L., Grob, H., … Raeke, A. (2018). Understanding dolomite formation, IODP pre‐site survey—DOLOMITE, Cruise No. M144/2, 23 January ‐ 10 February 2018, Catania (Italy) ‐ Mindelo (Cape Verde). Gutachterpanel Forschungsschiffe. Bonn, ISSN 2195–8475. https://doi.org/10.2312/cr_m144_2
    [Google Scholar]
  48. Kastens, K. A., Breen, N. A., & Cita, M. B. (1992). Progressive deformation of an evaporite‐bearing accretionary complex. Sea‐Marc1, seabeam and piston core observations from the Mediterranean Ridge. Marine Geophysical Researches, 14, 249–298.
    [Google Scholar]
  49. Kokinou, E., Kamberis, E., Vafidis, A., Monopolis, D., Ananiadis, G., & Zelilidis, A. (2005). Deep seismic reflection data from offshore western Greece: A new crustal model for the Ionian Sea. Journal of Petroleum Geology, 28(2), 185–202.
    [Google Scholar]
  50. Krijgsman, W., Stoica, M., Vasiliev, I., & Popov, V. V. (2010). Rise and fall of the Paratethys Sea during the Messinian salinity crisis. Earth and Planetary Science Letters, 290, 183–191.
    [Google Scholar]
  51. Krijgsman, W. (2002). The Mediterranean: Mare nostrum of earth sciences. Earth and Planetary Science Letters, 205(1), 1–12.
    [Google Scholar]
  52. Lofi, J.
    (Ed.). (2011). Seismic atlas of the Messinian salinity crisis markers in the Mediterranean and Black seas. Volume 1. ‐ Mémoires de la Société géologique de France, n.s., 2011, t. 179, and Commission for the Geological Map of the World.
    [Google Scholar]
  53. Lofi, J. (2018). Seismic Atlas of the Messinian salinity crisis markers in the Mediterranean sea. Vollume 2 ‐ Mémoires de la Société géologique de France, n.s., 2018, t. 181, and Commission for the Geological Map of the World, 72 p. + DVD. https://doi.org/10.10682/2018MESSINV2
    [Google Scholar]
  54. Lofi, J., Sage, F., Déverchère, J., Loncke, L., Maillard, A., Gaullier, V., … Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi‐site seismic analysis. Bulletin de la Société géologique de France, 182(2), 163–180.
    [Google Scholar]
  55. Lofi, J., Gorini, C., Berné, S., Clauzon, G., Tadeu Dos Reis, A., Ryan, W. B. F., & Steckler, M. S. (2005). Erosional processes and paleo‐environmental changes in the Western Gulf of Lions (SW France) during the Messinian Salinity Crisis. Marine Geology, 217, 1–30.
    [Google Scholar]
  56. Loncke, L., Sellier, N., & Mascle, J. (2011). – 12.A, B&C‐ Florence Ridge and south Antalia basin. In J.Lofi (Ed.), Seismic atlas of the Messinian salinity crisis markers in the Mediterranean and Black seas. Volume 1. ‐ Mémoires de la Société géologique de France, n.s., 2011, t. 179, and Commission for the Geological Map of the World.
    [Google Scholar]
  57. Madof, A. S., Bertoni, C., & Lofi, J. (2019). Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology, 47(2), 171–174. https://doi.org/10.1130/G45873.1
    [Google Scholar]
  58. Madof, A. S., & Connell, S. D. (2018). ‐17A, B, C‐ Northern Levant Basin. In J.Lofi (Ed.), Seismic Atlas of the Messinian salinity crisis markers in the Mediterranean sea. Volume 2. ‐ Mémoires de la Société géologique de France, n.s., 2018, t. 181, and Commission for the Geological Map of the World, pp. 60–62.
    [Google Scholar]
  59. Maesano, F. E., Tiberti, M. M., & Basili, R. (2017). The Calabrian Arc: Three‐dimensional modelling of the subduction interface. Scientific Reports, 7(1), 8887. https://doi.org/10.1038/s41598-017-09074-8
    [Google Scholar]
  60. Mantovani, E., Viti, M., Babbucci, D., & Albarello, D. (2007). Nubia‐Eurasia kinematics: An alternative interpretation from Mediterranean and North Atlantic evidence. Annals of Geophysics, 50, 311–336.
    [Google Scholar]
  61. Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., … Makovsky, Y. (2019). Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity. Earth-Science Rev., 194, 374–398. doi:10.1016/j.earscirev.2019.05.011.
    [Google Scholar]
  62. Micallef, A., Camerlenghi, A., Garcia‐Castellanos, D., Otero, D. C., Gutscher, M.‐A., Barreca, G., … Urlaub, M. (2018). Evidence of the Zanclean megaflood in the eastern Mediterranean Basin. Scientific Reports, 8, 1078. https://doi.org/10.1038/s41598-018-19446-3
    [Google Scholar]
  63. Micallef, A., Camerlenghi, A., Georgiopoulou, A., Garcia‐Castellanos, D., Gutscher, M.‐A., Lo Iacono, C., … Accettella, D. (2019). Geomorphic evolution of the Malta Escarpment and implications for the Messinian evaporative drawdown in the eastern Mediterranean Sea. Geomorphology, 327, 264–283. https://doi.org/10.1016/j.geomorph.2018.11.012
    [Google Scholar]
  64. Mocnik, A., Del Ben, A., Camerlenghi, A., Geletti, R., & Saule, M. (2018). ‐ 12.B&E‐ Ionian Basin. In J.Lofi (Ed.), Seismic Atlas of the Messinian salinity crisis markers in the Mediterranean sea. Volume 2. ‐ Mémoires de la Société géologique de France, n.s., 2018, t. 181, and Commission for the Geological Map of the World, p. 41 & 44.
    [Google Scholar]
  65. Netzeband, G. L., Hübscher, C. P., & Gajewski, D. (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230(3–4), 249–273. https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  66. Polonia, A., Camerlenghi, A., Davey, F., & Storti, F. (2002). Accretion, structural style and syn‐contractional sedimentation in the Eastern Mediterranean Sea. Marine Geology, 186(1), 127–144.
    [Google Scholar]
  67. Polonia, A., Torelli, L., Artoni, A., Carlini, M., Faccenna, C., Ferranti, L., … Wortel, R. (2016). The Ionian and Alfeo‐Etna fault zones: New segments of an evolving plate boundary in the central Mediterranean Sea?Tectonophysics, 675, 69–90. https://doi.org/10.1016/j.tecto.2016.03.016
    [Google Scholar]
  68. Polonia, A., Torelli, L., Gasperini, L., Cocchi, L., Muccini, F., Bonatti, E., … Carlini, M. (2017). Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nature Communications, 8(1), 2172.
    [Google Scholar]
  69. Reiche, S., Hübscher, C., & Beitz, M. (2014). Fault‐controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Marine Geology, 354, 53–68.
    [Google Scholar]
  70. Reston, T. J., Fruehn, J., von Huene, R., & IMERSE Working Group . (2002). The structure and evolution of the western Mediterranean Ridge. Marine Geology, 186(1), 83–110.
    [Google Scholar]
  71. Reston, T. J., von Huene, R., Dickmann, T., Klaeschen, D., & Kopp, H. (2002). Frontal accretion along the western Mediterranean Ridge: the effect of Messinian evaporites on wedge mechanics and structural style. Marine Geology, 186(1), 59–82.
    [Google Scholar]
  72. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Stoica, M. (2014). The Messinian salinity crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  73. Roveri, M., Lugli, S., Manzi, V., Gennari, R., & Schreiber, B. C. (2014). High‐resolution strontium isotope stratigraphy of the Messinian deep Mediterranean basins: Implications for marginal to central basins correlation. Marine Geology, 349, 113–125.
    [Google Scholar]
  74. Ryan, W. B. F. (2008). Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis. Stratigraphy, 5, 227–243.
    [Google Scholar]
  75. Ryan, W. B. F. (2009). Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136. https://doi.org/10.1111/j.1365-3091.2008.01031.x
    [Google Scholar]
  76. Sàbat, F., Roca, E., Muñoz, J. A., Vergés, J., Santanach, P., & Sans, M. (1997). Role of extension and compression in the evolution of the eastern margin of Iberia: the ESCI‐Valencia trough seismic profile. Revista Sociedad Geológica de España, 8, 431–448.
    [Google Scholar]
  77. Scrocca, D.
    , Doglioni, C., Innocenti, F., Manetti, P., Mazzotti, A., Bertelli, L., … D'Offizi, S. (Eds.). (2003). CROP Atlas—Seismic reflection profiles of the Italian crust. Memorie Descrittive della Carta Geologica d'Italia, 62, 194.
    [Google Scholar]
  78. Simon, D., & Meijer, P. T. (2017). Salinity stratification of the Mediterranean Sea during the Messinian crisis: A first model analysis. Earth and Planetary Science Letters, 479, 366–376. https://doi.org/10.1016/j.epsl.2017.09.045.
    [Google Scholar]
  79. Speranza, F., Minelli, L., Pignatelli, A., & Chiappini, M. (2012). The Ionian Sea: The oldest in situ ocean fragment of the world?Journal of Geophysical Research B: Solid Earth, 117(12), B12101.
    [Google Scholar]
  80. Stampfli, G. M. (2005). Plate tectonics of the Apulia‐Adria microplate. In I. R.Finetti (Ed.), CROP Project: Deep seismic exploration of the Central Mediterranean and Italy, Atlases in Geoscience 1 (pp. 747–766). Amsterdam, the Netherlands: Elsevier Science.
    [Google Scholar]
  81. Urgeles, R., Camerlenghi, A., García‐Castellanos, D., De Mol, B., Garcés, M., Verges, J., … Hardman, M. (2010). New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 23(2), 123–145. https://doi.org/10.1111/j.1365-2117.2010.00477.x
    [Google Scholar]
  82. Valenti, V. (2011). New insights from recently migrated CROP multichannel seismic data at the outermost Calabrian arc accretionary wedge (Ionian sea). Italian Journal of Geosciences, 130(3), 330–342.
    [Google Scholar]
  83. Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P., & Boschi, E. (2004). An atlas of Mediterranean seismicity. Annals of Geophysics47(1), 247–306.
    [Google Scholar]
  84. ViDEPI
    ViDEPI . (2016). Retrieved from http://unmig.sviluppoeconomico.gov.it/videpi/pozzi/pozzi.asp)
  85. Wescott, W. A., & Boucher, P. J. (2000). Imaging submarine channels in the western Nile Delta and interpreting their paleohydraulic characteristics from 3‐D seismic. The Leading Edge, 19, 580–591. https://doi.org/10.1190/1.1438662.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12392
Loading
/content/journals/10.1111/bre.12392
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): evaporites; Ionian Basin; Mediterranean; Messinian salinity crisis; salt giant

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error