1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Minibasins are fundamental components of many salt‐bearing sedimentary basins, where they may host large volumes of hydrocarbons. Although we understand the basic mechanics governing their subsidence, we know surprisingly little of how minibasins subside in three‐dimensions over geological timescales, or what controls such variability. Such knowledge would improve our ability to constrain initial salt volumes in sedimentary basins, the timing of salt welding and the distribution and likely charging histories of suprasalt hydrocarbon reservoirs. We use 3D seismic reflection data from the Precaspian Basin, onshore Kazakhstan to reveal the subsidence histories of 16, Upper Permian‐to‐Triassic, suprasalt minibasins. These minibasins subsided into a Lower‐to‐Middle Permian salt layer that contained numerous relatively strong, clastic‐dominated minibasins encased during an earlier, latest Permian phase of diapirism; because of this, the salt varied in thickness. Suprasalt minibasins contain a stratigraphic record of symmetric (bowl‐shaped units) and then asymmetric (wedge‐shaped units) subsidence, with this change in style seemingly occurring at different times in different minibasins, and most likely prior to welding. We complement our observations from natural minibasins in the Precaspian Basin with results arising from new physical sandbox models; this allows us to explore the potential controls on minibasin subsidence patterns, before assessing which of these might be applicable to our natural example. We conclude that due to uncertainties in the original spatial relationships between encased and suprasalt minibasins, and the timing of changes in style of subsidence between individual minibasins, it is unclear why such complex temporal and spatial variations in subsidence occur in the Precaspian Basin. Regardless of what controls the observed variability, we argue that vertical changes in minibasin stratigraphic architecture may not record the initial (depositional) thickness of underlying salt or the timing of salt welding; this latter point is critical when attempting to constrain the timing of potential hydraulic communication between sub‐salt source rocks and suprasalt reservoirs. Furthermore, temporal changes in minibasin subsidence style will likely control suprasalt reservoir distribution and trapping style.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12393
2019-08-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Banham, S. G., & Mountney, N. P. (2014). Climatic versus halokinetic control on sedimentation in a dryland fluvial succession. Sedimentology, 61, 570–608. https://doi.org/10.1111/sed.12064
    [Google Scholar]
  2. Barde, J. P., Chamberlain, P., Galavazi, M., Gralla, P., Harwijanto, J., Marsky, J., & van den Belt, F. (2002b). Sedimentation during halokinesis: Permo‐Triassic reservoirs of the Saigak field, Precaspian basin, Kazakhstan. Petroleum Geoscience, 8, 177–187. https://doi.org/10.1144/petgeo.8.2.177
    [Google Scholar]
  3. Barde, J. P., Gralla, P., Harwijanto, J., & Marsky, J. (2002a). Exploration at the eastern edge of the Precaspian basin: Impact of data integration on Upper Permian and Triassic prospectivity. AAPG Bulletin, 86, 399–415. https://doi.org/10.1306/61EEDAEE-173E-11D7-8645000102C1865D
    [Google Scholar]
  4. Brunet, M.‐F., Volozh, Y. A., Antipov, M. P., & Lobkovsky, L. I. (1999). The geodynamic evolution of the Precaspian Basin (Kazakhstan) along a north‐south section. Tectonophysics, 313, 85–106. https://doi.org/10.1016/S0040-1951(99)00191-2
    [Google Scholar]
  5. Callot, J. P., Salel, J. F., Letouzey, J., Daniel, J. M., & Ringenbach, J. C. (2016). Three‐dimensional evolution of salt‐controlled minibasins: Interactions, folding, and megaflap development. AAPG Bulletin, 100, 1419–1442. https://doi.org/10.1306/03101614087
    [Google Scholar]
  6. Clark, J. A., Stewart, S. A., & Cartwright, J. A. (1998). Evolution of the NW margin of the North Permian Basin, UK North Sea. Journal of the Geological Society, 155, 663–676. https://doi.org/10.1144/gsjgs.155.4.0663
    [Google Scholar]
  7. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society, London, Special Publications, 363, 159–174. https://doi.org/10.1144/SP363.8
    [Google Scholar]
  8. Dooley, T. D., Duffy, O. B., Hudec, M. R., & Fernandez, N. (2019). Translation, tilting and rotation of minibasins in isolated minibasin systems. AAPG Search and Discovery Article, 11229. Retrieved from http://www.searchanddiscovery.com/pdfz/documents/2019/11229dooley/ndx_dooley.pdf.html
  9. Dooley, T. P., Hudec, M. R., Carruthers, D., Jackson, M. P., & Luo, G. (2017). The effects of base-salt relief on salt flow and suprasalt deformation patterns—Part 1: Flow across simple steps in the base of salt. Interpretation, 5(1), SD1–SD23.
    [Google Scholar]
  10. Duffy, O. B., Dooley, T. P., Hudec, M. R., Jackson, M. P., Fernandez, N., Jackson, C.‐A.‐L., & Soto, J. I. (2018). Structural evolution of salt‐influenced fold‐and‐thrust belts: A synthesis and new insights from basins containing isolated salt diapirs. Journal of Structural Geology, 114, 206–221. https://doi.org/10.1016/j.jsg.2018.06.024
    [Google Scholar]
  11. Duffy, O. B., Fernandez, N., Hudec, M. R., Jackson, M. P. A., Burg, G., Dooley, T. P., & Jackson, C. A. L. (2017). Lateral mobility of minibasins during shortening: Insights from the SE Precaspian Basin, Kazakhstan. Journal of Structural Geology, 97, 257–276. https://doi.org/10.1016/j.jsg.2017.02.002
    [Google Scholar]
  12. Duffy, O. B., Fernandez, N., Peel, F. J., Hudec, M. R., Dooley, T. P., & Jackson, C. A. L. (2019). Obstructed minibasins on a salt-detached slope: An example from above the Sigsbee Canopy, Northern Gulf of Mexico. Basin Research. https://doi.org/10.1111/bre.12380
    [Google Scholar]
  13. Fernandez, N., Duffy, O. B., Hudec, M. R., Jackson, M. P. A., Burg, G., Jackson, C. A. L., & Dooley, T. P. (2017). The origin of salt‐encased sediment packages: Observations from the SE Precaspian Basin (Kazakhstan). Journal of Structural Geology, 97, 237–256. https://doi.org/10.1016/j.jsg.2017.01.008
    [Google Scholar]
  14. Fernandez, N., Hudec, M. R., Jackson, C. A. L., Dooley, T. P., & Duffy, O. B. (2019). The competition for salt and kinematic interactions between minibasins during density‐driven subsidence: observations from numerical models. Petroleum Geoscience. EarthArXiv preprint. Retrieved from https://eartharxiv.org/jak5u/
    [Google Scholar]
  15. Ge, H., Jackson, M. P. A., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81, 398–423.
    [Google Scholar]
  16. González‐Muñoz, J. M., Martín Bañón, J. J., & Carballo‐García, J. A. (2001). Salt tectonics and synsedimentary analysis in the southeastern border of the Pre‐Caspian basin (Kazakhstan). Exploratory evaluation of potential traps in Permo‐Triassic materials. Boletín De Informaciones Petroleras, 68, 84–96.
    [Google Scholar]
  17. Gralla, P., & Marsky, J. (2000). Seismic reveals new eastern Precaspian target. Oil & Gas Journal, 98, 4.
    [Google Scholar]
  18. Hodgson, N. A., Farnsworth, J., & Fraser, A. J. (1992). Salt‐related tectonics, sedimentation and hydrocarbon plays in the Central Graben, North Sea, UKCS. Geological Society, London, Special Publications, 67, 31–63. https://doi.org/10.1144/GSL.SP.1992.067.01.03
    [Google Scholar]
  19. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirm: Understanding salt tectonics. Earth‐Science Reviews, 82, 1–28.
    [Google Scholar]
  20. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121, 201–221.
    [Google Scholar]
  21. Ismail‐Zadeh, A., Wilhelm, H., & Volozh, Y. (2008). Geothermal evolution of the Astrakhan arch region of the Pricaspian basin. International Journal of Earth Sciences, 97, 1029–1043. https://doi.org/10.1007/s00531-007-0258-z
    [Google Scholar]
  22. Jackson, C. A. L., Jackson, M. P. A., & Hudec, M. R. (2015). Understanding the kinematics of salt‐bearing passive margins: A critical test of competing hypotheses for the origin of the Albian Gap, Santos Basin, offshore Brazil. Geological Society of America Bulletin, 127, 1730–1751. https://doi.org/10.1130/B31290.1
    [Google Scholar]
  23. Jackson, M. P. A., & Cramez, C. (1989). Seismic recognition of salt welds in salt tectonic regimes. Proceedings of the GCSSEPM Foundation 10th Annual Bob F. Perkins Research Conference (pp. 66–71). Houston, TX.
    [Google Scholar]
  24. Jackson, M. P., & Hudec, M. R. (2017). Salt Tectonics: Principles and Practice. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  25. Jackson, C. A.-L., Rodriguez, C. R., Rotevatn, A., & Bell, R. E. (2014). Geological and geophysical expression of a primary salt weld: An example from the Santos Basin, Brazil. Interpretation, 2, SM77-SM89.
    [Google Scholar]
  26. Jackson, C. A.-L., Zhang, Y., Herron, D., & Fitch, P. J. R. (2018). Subsurface expression of a salt weld, Gulf of Mexico. Petroleum Geoscience, 25, 102–111.
    [Google Scholar]
  27. Jackson, M. P. A., & Talbot, C. J. (1991). A glossary of salt tectonics. University of Texas at Austin, Bureau of. Economic Geology Geologic Circular, 91, 44 p.
    [Google Scholar]
  28. Kane, I. A., McGee, D. T., & Jobe, Z. R. (2012). Halokinetic effects on submarine channel equilibrium profiles and implications for facies architecture: Conceptual model illustrated with a case study from Magnolia Field, Gulf of Mexico. Geological Society, London, Special Publications, 363, 289–302. https://doi.org/10.1144/SP363.13
    [Google Scholar]
  29. Kergaravat, C., Ribes, C., Callot, J. P., & Ringenbach, J. C. (2017). Tectono‐stratigraphic evolution of salt‐controlled minibasins in a fold and thrust belt, the Oligo‐Miocene central Sivas Basin. Journal of Structural Geology, 102, 75–97. https://doi.org/10.1016/j.jsg.2017.07.007
    [Google Scholar]
  30. Lundin, E. R. (1992). Thin‐skinned extensional tectonics on a salt detachment, northern Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 405–411.
    [Google Scholar]
  31. Mannie, A. S., Jackson, C.‐A.‐L., & Hampson, G. J. (2014). Shallow‐marine reservoir development in extensional diapir‐collapse minibasins: An integrated subsurface case study from the Upper Jurassic of the Cod terrace, Norwegian North Sea. AAPG Bulletin, 98, 2019–2055.
    [Google Scholar]
  32. Matthews, W. J., Hampson, G. J., Trudgill, B. D., & Underhill, J. R. (2007). Controls on fluviolacustrine reservoir distribution and architecture in passive salt‐diapir provinces: Insights from outcrop analogs. AAPG Bulletin, 91, 1367–1403. https://doi.org/10.1306/05310706123
    [Google Scholar]
  33. Mauduit, T., & Brun, J. P. (1998). Growth fault/rollover systems: Birth, growth, and decay. Journal of Geophysical Research: Solid Earth, 103, 18119–18136.
    [Google Scholar]
  34. Natal'in, B. A., & Şengör, A. C. (2005). Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre‐history of the Palaeo‐Tethyan closure. Tectonophysics, 404, 175–202. https://doi.org/10.1016/j.tecto.2005.04.011
    [Google Scholar]
  35. Pilcher, R. S., Kilsdonk, B., & Trude, J. (2011). Primary basins and their boundaries in the deep‐water northern Gulf of Mexico: Origin, trap types, and petroleum system implications. AAPG Bulletin, 95, 219–240. https://doi.org/10.1306/06301010004
    [Google Scholar]
  36. Prather, B. E. (2000). Calibration and visualization of depositional process models for above‐grade slopes: A case study from the Gulf of Mexico. Marine and Petroleum Geology, 17, 619–638. https://doi.org/10.1016/S0264-8172(00)00015-5
    [Google Scholar]
  37. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  38. Quirk, D. G., & Pilcher, R. S. (2012). Flip‐flop salt tectonics. Geological Society, London, Special Publications, 363, 245–264.
    [Google Scholar]
  39. Rowan, M. G. (2004). Do salt welds seal?Proceedings of the GCSSEPM Foundation 24th Annual Bob F. Perkins Research Conference (Salt‐Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century), pp. 390–403. Houston, TX.
    [Google Scholar]
  40. Rowan, M. G. (2019). Conundrums in loading‐driven salt movement. Journal of Structural Geology, 125, 256–261. https://doi.org/10.1016/j.jsg.2018.04.010
    [Google Scholar]
  41. Rowan, M. G., & Vendeville, B. C. (2006). Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia. Marine and Petroleum Geology, 23, 871–891.
    [Google Scholar]
  42. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82, 1055–1082.
    [Google Scholar]
  43. Sokolova, E. I., Lipatova, V. V., Starozhilova, N. N., & Schleifer, A. G. (1973). Upper Permian and Triassic deposits of the Caspian (Prikaspiyskaya) depression. Permian Triassic Systems and their Mutual Boundary, 2, 158–167.
    [Google Scholar]
  44. Teixell, A., Barnolas, A., Rosales, I., & Arboleya, M. L. (2017). Structural and facies architecture of a diapir‐related carbonate minibasin (lower and middle Jurassic, High Atlas, Morocco). Marine and Petroleum Geology, 81, 334–360. https://doi.org/10.1016/j.marpetgeo.2017.01.003
    [Google Scholar]
  45. Trusheim, F. (1960). Mechanism of salt migration in northern Germany. AAPG Bulletin, 44, 1519–1540.
    [Google Scholar]
  46. Volozh, Y. A., Antipov, M., Brunet, M.‐F., Garagash, I., Lobkovskii, L., & Cadet, J. P. (2003b). Pre‐Mesozoic geodynamics of the Precaspian basin (Kazakhstan). Sedimentary Geology, 156, 35–58. https://doi.org/10.1016/S0037-0738(02)00281-6
    [Google Scholar]
  47. Volozh, Y., Talbot, C., & Ismail‐Zadeh, A. (2003a). Salt structures and hydrocarbons in the Pricaspian basin. AAPG Bulletin, 87, 313–334. https://doi.org/10.1306/09060200896
    [Google Scholar]
  48. Wagner, B. H.III, & Jackson, M. P. (2011). Viscous flow during salt welding. Tectonophysics, 510(3–4), 309–326.
    [Google Scholar]
  49. Worrall, D. M., & Snelson, S. (1989). Evolution of the northern Gulf of Mexico, with emphasis on Cenozoic growth faulting and the role of salt. In A. W.Bally, & A. R.Palmer (Eds.), The Geology of North America—An overview (pp. 97–138). Boulder, CO: Geological Society of America.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12393
Loading
/content/journals/10.1111/bre.12393
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error