1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[Abstract

Seismic‐reflection data show that most deepwater (>200 m water depth) basins are filled by sand and mud dispersed across clinoformal geometries characterized by gently dipping topsets, steeper foresets and gently dipping bottomsets. However, the entire geometry of these ubiquitous clinoforms is not always recognized in outcrops. Sometimes the infill is erroneously interpreted as “layer cake” or “ramp” stratigraphy because the topset‐foreset‐bottomset clinoforms are not well exposed. Regional 2‐D seismic lines show clinoforms in the Lower to Middle Jurassic Challaco, Lajas, and Los Molles formations in S. Neuquén Basin in Argentina. Time equivalent shelf, slope and basin‐floor segments of clinoforms are exposed, and can be walked out in hundreds of metres thick and kilometres‐wide outcrops. The studied margin‐scale clinoforms are not representing a continental‐margin but a deepwater shelf margin that built out in a back‐arc basin. Lajas‐Los Molles clinoforms have been outcrop‐mapped by tracing mudstones interpreted as flooding surfaces on the shelf and abandonment surfaces (low sedimentation rate) in the deepwater basin. The downslope and lateral facies variability in the outcrops is also consistent with a clinoform interpretation. The Lajas topset (shelf) is dominated by fluvial and tidal deposits. The shelf‐edge rollover zone is occasionally occupied by a 40–50‐m‐thick coarse‐grained shelf‐edge delta, sometimes incising into the underlying slope mudstones, producing oblique clinoforms expressing toplap erosion on seismic. A muddy transgressive phase capping the shelf‐edge deltas contains tidal sandbodies. Shelf‐edge deltas transition downslope into turbidite‐ and debris flow‐filled channels that penetrate down the mud‐prone Los Molles slope. At the base‐of‐slope, some 300m below the shelf edge, there are basin‐floor fan deposits (>200 m thick) composed of sandy submarine‐fan lobes separated by muddy abandonment intervals. The large‐scale outcrop correlation between topset–foreset–bottomset allows facies and depositional interpretation and sets outcrop criteria recognition for each clinoform segment.

,

Shelf edge and base of slope facies variability in Lajas‐Los Molles outcrops in Neuquen Basin. (a) Vertical logs with possible facies changes across the shelf edge (three types) and the base of slope (two types). (b) Cross section with possible facies changes encountered along the clinothem components in the Lajas ‐ Los Molles. (c) Clinoform height changes under different accretion rates of the basin floor or shelf.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12395
2019-09-03
2024-04-18
Loading full text...

Full text loading...

References

  1. Anell, I., & Midtkandal, I. (2015). The quantifiable clinothem – types, shapes and geometric relationships in the Plio‐Pleistocene Giant Foresets Formation, Taranaki Basin, New Zealand. Basin Research, 29, 277–297. https://doi.org/10.1111/bre.12149
    [Google Scholar]
  2. Beelen, D., Jackson, C. A. L., Patruno, S., Hodgson, D. M., & Trabucho Alexandre, J. P. (2018). Rising not falling? Differential compaction of shelf‐edge trajectories and clinothem geo‐metries. EarthArXiv.
    [Google Scholar]
  3. Brinkworth, W., Vocaturo, G., Loss, M. L., Giunta, D., Mortaloni, E., & Massaferro, J. L. (2017). Integración regional de subsuelo orientado a la exploración y desarrollo de Grupo Cuyo, Cuenca Neuquina. Tucumán: Congreso Geológico Argentino.
    [Google Scholar]
  4. Brown, L. F. Jr, & Fisher, W. L. (1977). Seismic stratigraphic interpretation of depositional systems: examples from the Brazilian rift and pull‐apart basins. In C. E.Payton (Ed.), Seismic Stratigraphy‐Applications to Hydrocarbon Exploration. Am. Assoc. Petrol. Geol. Mem, 26, 213–248.
    [Google Scholar]
  5. Burgess, P. M., Flint, S., & Johnson, S. (2000). Sequence stratigraphic interpretation of turbiditic strata: An example from Jurassic strata of the Neuquén Basin, Argentina. GSA Bulletin, 112, 1650–1666. https://doi.org/10.1130/0016-7606(2000)112<1650:SSIOTS>2.0.CO;2
    [Google Scholar]
  6. Carvajal, C. R., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  7. Carvajal, C. R., & Steel, R. J. (2012). Source‐to‐sink sediment volumes within a tectono‐stratigraphic model for a laramide shelf‐to‐deep‐water basin: Methods and results. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins (pp. 131–151). Oxford, England: Blackwell Publishing Ltd.
    [Google Scholar]
  8. De AlmeidaJr., N. R., Steel, R. J., Olariu, C., Gan, Y., Jung, E., Giacomone, G., & Paim, P. S. G. (in press). River‐dominated and tide‐influenced shelf‐edge delta systems: an unusual example of coarse‐grained deltas straddling Jurassic shelf‐slope breaks; Lajas‐Los Molles formations, Neuquén Basin, Argentina. Sedimentology.
    [Google Scholar]
  9. Fongngern, R., Olariu, C., Steel, R. J., & Krézsek, C. (2016). Clinoform growth in a Miocene, Para‐tethyan deep lake basin: Thin topsets, irregular foresets and thick bottomsets. Basin Research, 28, 770–795. https://doi.org/10.1111/bre.12132
    [Google Scholar]
  10. Fongngern, R., Olariu, C., Steel, R., Mohrig, D., Krezsek, C., & Hess, T. (2018). Subsurface and outcrop characteristics of fluvia‐dominated deep‐lacustrine clinoforms. Sedimentology, 65, 1447–1481.
    [Google Scholar]
  11. Gan, Y., Steel, R. J., Olariu, C., & de Almeida, F.Jr. (this volume). Facies variability of sediment density flow deposits in sub‐seismic slope‐channel fills in prograding clinoforms, Mid‐Jurassic Neuquén Basin, Argentina. Basin Research.
    [Google Scholar]
  12. Giacomone, G., Steel, R. J., & Olariu, C. (in press). Enhancing the model of coarse‐grained basin floor fans; characteristic trends within lobes and lobe complexes of the Jurassic Los Molles Fm., Neuquén Basin, Argentina. Sedimentology.
    [Google Scholar]
  13. Gugliotta, M., Flint, S. A., Hodgson, D. M., & Veiga, G. D. (2015). Stratigraphic record of river‐dominated crevasse subdeltas with tidal influence (Lajas Formation, Argentina). Journal of Sedimentary Research, 85, 265–284. https://doi.org/10.2110/jsr.2015.19
    [Google Scholar]
  14. Gulisano, C. A., Gutierrez Pleimling, A. R., & Digregorio, R. E. (1984). Esquema estratigráfico de la secuencia jurásica del oeste de la provincia del Neuquén. Congreso Geológico Argentino, 9, 236–259.
    [Google Scholar]
  15. Helland‐Hansen, W., Steel, R. J., & Somme, T. (2012). Shelf genesis revisited. Sedimentology, 82, 1–16.
    [Google Scholar]
  16. Horton, B. K. (2018). Sedimentary record of Andean mountain building. Earth‐Science Reviews, 178, 279–309. https://doi.org/10.1016/j.earscirev.2017.11.025
    [Google Scholar]
  17. Houseknecht, D. W., Bird, K. J., & Schenk, C. J. (2009). Seismic analysis of clinoform depositional sequences and shelf‐margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope. Basin Research, 21, 644–654. https://doi.org/10.1111/j.1365-2117.2008.00392.x
    [Google Scholar]
  18. Howell, J. A., Schwarz, E., Spalletti, L. A., & Veiga, G. D. (2005). The Neuquén Basin: An overview. Geological Society, London, Special Publications, 252, 1–14.
    [Google Scholar]
  19. Kern, H. P., Lavina, E. L. C., Paim, P. S. G., & Leanza, H. A. (2019). Stratigraphic evolution of the nearshore to fluvial plain of the Upper Cuyo Group, Neuquén, Argentina. Sedimentology. https://doi.org/10.1111/sed.12608
    [Google Scholar]
  20. Klausen, T. G., & Helland‐Hansen, W. (2018). Methods for restoring and describing ancient clinoform surfaces. Journal of Sedimentary Research, 88, 241–259. https://doi.org/10.2110/jsr.2018.8
    [Google Scholar]
  21. Koo, W. M., Olariu, C., Steel, R. J., Olariu, M. I., Carvajal, C. R., & Kim, W. (2016). Coupling between shelf‐edge architecture and submarine‐fan growth style in a supply‐dominated margin. Journal of Sedimentary Research, 86, 613–628. https://doi.org/10.2110/jsr.2016.42
    [Google Scholar]
  22. Martinez, M. A., Pramparo, M. B., Quattrocchio, M. E., & Zavala, C. (2008). Depositional environments and hydrocarbon potential of the Middle Jurassic Los Molles Formation, Neuquén Basin, Argentina: Palynofacies and organic geochemical data. Revista Geologica de Chile, 2, 279–305.
    [Google Scholar]
  23. McIlroy, D., Flint, S. S., Howell, J. A., & Timms, N. E. (2006). Sedimentology of the tide dominated Lajas Formation, Jurassic, Neuquén Basin, Argentina. In G. D.Veiga, L. A.Spalletti, J. A.Howell, & E.Schwarz (Eds), The Neuquén Basin: A case study in sequence stratigraphy and basin dynamics (252, pp. 83–107). London, UK: Geological Society.
    [Google Scholar]
  24. Mitchum, P. (1977). Seismic Stratigraphy and Global Changes of Sea Level: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. In C.E.Payton (Ed.), Seismic Stratigraphy: Applications to Hydrocarbon Exploration, AAPG Memoir (Vol. 26, pp. 205–212). Tulsa, Ok: The American Association of Petroleum Geologists.
    [Google Scholar]
  25. Mitchum, R. M., Vail, P. R., & Thompson, S. (1977). Seismic stratigraphy and global changes in sea level, part 2: The depositional sequence as the basic unit for stratigraphic analysis. In C. E.Payton (Ed.), Seismic stratigraphy: Applications to hydrocarbon exploration (Vol. 26, pp. 53–62). AAPG Memoir.
    [Google Scholar]
  26. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment‐supply on modern shelf‐slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21, 484–501. https://doi.org/10.1111/j.1365-2117.2009.00420.x
    [Google Scholar]
  27. Olariu, M. I., Carvajal, C. R., Olariu, C., & Steel, R. J. (2012). Deltaic process and architectural evolution during cross‐shelf transits, Maastrichtian Fox Hills Formation, Washakie Basin, Wyoming. AAPG Bulletin, 96, 1931–1956. https://doi.org/10.1306/03261211119
    [Google Scholar]
  28. Paim, P. S. G., da Silveira, A. S., Lavina, E. L. C., Faccini, U. F., Leanza, H. A., Teixeira de Oliveira, J. M. M., & D'Avila, R. S. F. (2008). High resolution stratigraphy and gravity flow deposits in the Los Molles formation (Cuyo Group ‐ Jurassic) at La Jardinera region, Neuquén Basin. Revista de la Asociacion Geologica Argentina, 63, 728–753.
    [Google Scholar]
  29. Paim, P. S. G., Lavina, E. L. C., da Faccini, U. F., Silveira, A. S., Leanza, H., & D’Avila, R. S. F. (2011). Fluvial‐derived turbidites in the Los Molles Formation (Jurassic of the Neuquén Basin): Initiation, transport, and deposition. In R. M.Slatt & C.Zavala (Eds.), Sediment transfer from shelf to deepwater‐Revisiting the delivery system (Vol. 61, pp. 95–116). Tulsa, OK: The American Association of Petroleum Geologists and SEPM.
    [Google Scholar]
  30. Patruno, S., Hampson, G. J., & Jackson, C.‐A.‐L. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  31. Patruno, S., & Helland‐Hansen, W. (2018). Clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  32. Petter, A. L., Steel, R. J., Mohrig, D., Kim, W., & Carvajal, C. (2013). Estimation of the paleoflux of terrestrial‐derived solids across ancient basin margins using the stratigraphic record. Geological Society of America Bulletin, 125, 578–593. https://doi.org/10.1130/B30603.1
    [Google Scholar]
  33. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin margin: Progradation: Processes and implications. Journal of Sedimentary Research, 86, 863–878. https://doi.org/10.2110/jsr.2016.57
    [Google Scholar]
  34. Proust, J.‐N., Pouderoux, H., Ando, H., Hesselbo, S. P., Hodgson, D. M., Lofi, J., … Sugarman, P. J. (2018). Facies architecture of Miocene subaqueous clinothems of the New Jersey passive margin: Results from IODP‐ICDP Expedition 313. Geophsphere, 14, 1–28.
    [Google Scholar]
  35. Rich, J. L. (1951). Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them. Bulletin of the Geological Society of America, 62, 1–20. https://doi.org/10.1130/0016-7606(1951)62[1:TCEODA]2.0.CO;2
    [Google Scholar]
  36. Rossi, V. M., & Steel, R. J. (2016). The role of tides, waves and river currents in the evolution of mixed energy deltas: An example from the Lajas Formation (Argentina). Sedimentology, 63, 824–864.
    [Google Scholar]
  37. Ryan, M. C., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Erosional vs. accretionary shelf margins: The influence of margin type on deepwater sedimentation: An example from the Porcupine Basin, offshore western Ireland. Basin Research, 21, 676–703. https://doi.org/10.1111/j.1365-2117.2009.00424.x
    [Google Scholar]
  38. Santra, M., Steel, R. J., Olariu, C., & Sweet, M. L. (2013). Stages of sedimentary prism development on a convergent margin – Eocene Tyee Forearc Basin, Coast Range, Oregon, USA. Global and Planetary Change, 103, 207–231. https://doi.org/10.1016/j.gloplacha.2012.11.006
    [Google Scholar]
  39. Southard, J. B., & Stanley, D. J. (1976). Shelf‐break processes and sedimentation. In D. J.Stanley, & D. J. P.Swift (Eds.), Marine sediment transport and environmental management (pp. 351–377). Hoboken, NJ: Wiley.
    [Google Scholar]
  40. Steel, E., Simms, A. R., Steel, R. J., & Olariu, C. (2018). Hyperpycnal delivery of sand to the continental shelf: Insights from the Jurassic Lajas Formation, Neuquén Basin, Argentina. Sedimentology, 65, 2149–2170. https://doi.org/10.1111/sed.12460
    [Google Scholar]
  41. Steel, R., Carvajal, C., Petter, A., & Uroza, C. (2008). Shelf and shelf‐margin growth in scenarios of rising and falling sea level. In G.Hampson, R.Steel, P. M.Burgess, & R. W.Dalrymple (Eds.), Recent advances in models of siliciclastic shallow‐marine stratigraphy (SEPM Special Publication, Vol. 90, pp. 47–71).
    [Google Scholar]
  42. Steel, R. J., Olariu, C., Zhang, J., & Chen, S.. (this volume) What is the topset of a shelf prism?Basin Research. (in press)
    [Google Scholar]
  43. Steel, R., & Olsen, T. (2002). Clinoforms, clinoform trajectories and deepwater sands. In J. M.Armentrout & N. C.Rosen (Eds.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models 83 and applications histories (pp. 367–380). Gulf Coast Section SEPM Proc. 22nd Annu. Res. Conf. Houston, TX: Gulf Coast SEction SEPM Foundation
    [Google Scholar]
  44. Sztanó, O., Szafián, P., Magyar, I., Horanyi, A., Bada, G., Hughes, D. W., … Wallis, R. J. (2013). Aggradation and progradation controlled clinothems and deep‐water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Global and Planetary Change, 103, 149–167. https://doi.org/10.1016/j.gloplacha.2012.05.026
    [Google Scholar]
  45. Vergani, G. D., Tankard, A. J., Belotti, H. J., & Welsink, H. J. (1995). Tectonic evolution and palaeogeography of the Neuquén Basin, Argentina. In A. J.Tankard, et al. (Eds.), Petroleum basins of South America (Vol. 62, pp. 383–402). Tulsa, OK: The American Association of Petroleum Geologists.
    [Google Scholar]
  46. Walsh, J. P., & Nittrouer, C. A. (2009). Understanding fine‐grained river‐sediment dispersal on continental margins. Marine Geology, 263, 34–45. https://doi.org/10.1016/j.margeo.2009.03.016
    [Google Scholar]
  47. Zavala, C. A. (1996). Sequence stratigraphy in continental to marine transitions. An example from the middle Jurassic Cuyo Group, South Neuquén Basin, Argentina. In A. C.Riccardi (Ed), Advances in Jurassic Research (GeoResearch Forum 1–2, pp. 285–294). Switzerland: Transtec Publications.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12395
Loading
/content/journals/10.1111/bre.12395
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error