1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

[Abstract

Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep‐sided talus‐cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field‐acquired data from a coarse‐grained alluvial syn‐rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south‐west, south and south‐east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small‐scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non‐cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand‐ and silt‐grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end‐member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.

,

A high‐resolution sedimentological dataset has been analysed from an early syn‐rift section in the Gulf of Corinth, Greece. Interpretation indicates the presence of a dominant transverse alluvial system to the rift axis, deposited over the hangingwall dipslope, resulting in a stacked conglomeratic succession. Results underline the importance of previous drainage catchments and their orientations on early rift stratigraphy.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12396
2019-09-16
2024-04-24
Loading full text...

Full text loading...

References

  1. Abdul Aziz, H., Sanz‐Rubio, E., Calvo, J. P., Hilgen, F. J., & Krijgsman, W. (2003). Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Calatayud Basin (NE Spain). Sedimentology, 50, 211–236. https://doi.org/10.1046/j.1365-3091.2003.00544.x
    [Google Scholar]
  2. Allen, J. R. L. (1982). Sedimentary Structures: Their Character and Physical Basis. Developments in Sedimentology, 30. Amsterdam: Elsevier.
    [Google Scholar]
  3. Allen, P. A., & Densmore, A. L. (2000). Sediment flux from an uplifting fault block. Basin Research, 12, 367–380.
    [Google Scholar]
  4. Alonso‐Zarza, A. M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth‐Science Reviews, 60, 261–298. https://doi.org/10.1016/S0012-8252(02)00106-X
    [Google Scholar]
  5. Alvarez‐Zarikian, C. A., Soter, S., & Katsonopoulou, D. (2008). Recurrent submergence and uplift in the area of ancient Helike, gulf of corinth, Greece: Microfaunal and archaeological evidence. Journal of Coastal Research, 24, 110–125. https://doi.org/10.2112/05-0454.1
    [Google Scholar]
  6. Backert, N., Ford, M., & Malartre, F. (2010). Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57, 543–586. https://doi.org/10.1111/j.1365-3091.2009.01105.x
    [Google Scholar]
  7. Beckers, A., Hubert‐Ferrari, A., Beck, C., Bodeux, S., Tripsanas, E., Sakellariou, D., & de Batist, M. (2015). Active faulting at the western tip of the Gulf of Corinth, Greece, from high‐resolution seismic data. Marine Geology, 360, 55–69. https://doi.org/10.1016/j.margeo.2014.12.003
    [Google Scholar]
  8. Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth rift, central Greece. Basin Research, 21, 824–855. https://doi.org/10.1111/j.1365-2117.2009.00401.x
    [Google Scholar]
  9. Bentham, P., Collier, R. E., Gawthorpe, R. L., Leeder, M. R., & Stark, C. (1991). Tectono‐sedimentary development of an extensional basin: The Neogene Megara Basin, Greece. Journal of the Geological Society, 148, 923–934. https://doi.org/10.1144/gsjgs.148.5.0923
    [Google Scholar]
  10. Blair, T. C., & McPherson, J. G. (1994). Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. SEPM Journal of Sedimentary Research, 64A, 450–489.
    [Google Scholar]
  11. Calhoun, N. C., & Clague, J. J. (2018). Distinguishing between debris flows and hyperconcentrated flows: An example from the eastern Swiss Alps. Earth Surface Processes and Landforms, 43, 1280–1294. https://doi.org/10.1002/esp.4313
    [Google Scholar]
  12. Chakraborty, T., & Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Geomorphology, 115, 252–266. https://doi.org/10.1016/j.geomorph.2009.06.035
    [Google Scholar]
  13. Clarke, L. E. (2015). Experimental alluvial fans: Advances in understanding of fan dynamics and processes. Geomorphology, 244, 135–145. https://doi.org/10.1016/j.geomorph.2015.04.013
    [Google Scholar]
  14. Clarke, L., Quine, T. A., & Nicholas, A. (2010). An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115, 278–285. https://doi.org/10.1016/j.geomorph.2009.06.033
    [Google Scholar]
  15. Collier, R. E. L., & Dart, C. J. (1991). Neogene to quaternary rifting, sedimentation and uplift in the Corinth Basin, Greece. Journal of the Geological Society, 148, 1049–1065. https://doi.org/10.1144/gsjgs.148.6.1049
    [Google Scholar]
  16. Collier, R. E. L., & Gawthorpe, R. L. (1995). Neotectonics, drainage and sedimentation in central Greece: Insights into coastal reservoir geometries in syn‐rift sequences. Geological Society, London, Special Publications, 80, 165–181. https://doi.org/10.1144/GSL.SP.1995.080.01.08
    [Google Scholar]
  17. Collinson, J., Mountney, N. P., & Thompson, D. (2006). Sedimentary structures, 3rd ed. Harpenden: Terra Publishing.
    [Google Scholar]
  18. Colombera, L., & Bersezio, R. (2011). Impact of the magnitude and frequency of debris‐flow events on the evolution of an alpine alluvial fan during the last two centuries: Responses to natural and anthropogenic controls. Earth Surface Processes and Landforms, 36, 1632–1646. https://doi.org/10.1002/esp.2178
    [Google Scholar]
  19. Costa, J. E. (1988). Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In V. R.Baker, R. C.Kochel, & P. C.Patton (Eds.), Flood geomorphology (pp. 113–122). Chichester: John Wiley & Sons Inc.
    [Google Scholar]
  20. Croci, A., Della Porta, G., & Capezzuoli, E. (2016). Depositional architecture of a mixed travertine‐terrigenous system in a fault‐controlled continental extensional basin (Messinian, Southern Tuscany, Central Italy). Sedimentary Geology, 332, 13–39. https://doi.org/10.1016/j.sedgeo.2015.11.007
    [Google Scholar]
  21. Cronin, S. J., Lecointre, J. A., Palmer, A. S., & Neall, V. E. (2000). Transformation, internal stratification, and depositional processes within a channelised, multi‐peaked lahar flow. New Zealand Journal of Geology and Geophysics, 43, 117–128. https://doi.org/10.1080/00288306.2000.9514874
    [Google Scholar]
  22. Dart, C. J., Collier, R. E. L., Gawthorpe, R. L., Keller, J. V. A., & Nichols, G. (1994). Sequence stratigraphy of (?)Pliocene‐Quaternary synrift, Gilbert‐type fan deltas, northern Peloponnesos, Greece. Marine and Petroleum Geology, 11, 545–560. https://doi.org/10.1016/0264-8172(94)90067-1
    [Google Scholar]
  23. Davies, N. S., & Gibling, M. R. (2010). Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants. Earth‐Science Reviews, 98, 171–200. https://doi.org/10.1016/j.earscirev.2009.11.002
    [Google Scholar]
  24. Degnan, P. J., & Robertson, A. H. F. (1998). Mesozoic‐early Tertiary passive margin evolution of the Pindos ocean (NW Peloponnese, Greece). Sedimentary Geology, 117, 33–70. https://doi.org/10.1016/S0037-0738(97)00113-9
    [Google Scholar]
  25. Densmore, A. L., Allen, P. A., & Simpson, G. (2007). Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. Journal of Geophysical Research, 112, F01002. https://doi.org/10.1029/2006JF000474
    [Google Scholar]
  26. Doutsos, T., Kontopoulos, N., & Poulimenos, G. (1988). The Corinth‐Patras rift as the initial stage of continental fragmentation behind an active island arc (Greece). Basin Research, 1, 177–190. https://doi.org/10.1111/j.1365-2117.1988.tb00014.x
    [Google Scholar]
  27. Doutsos, T., & Piper, D. J. W. (1990). Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: First stages of continental rifting. Bulletin of the Geological Society of America, 102, 812–829. https://doi.org/10.1130/0016-7606(1990)102<0812:LFSAME>2.3.CO;2
    [Google Scholar]
  28. Esu, D., & Girotti, O. (2015). The late Early Pleistocene non‐marine molluscan fauna from the Synania Formation (Achaia, Greece), with description of nine new species (Mollusca: Gastropoda). Archiv Für Molluskenkunde: International Journal of Malacology, 144, 65–81. https://doi.org/10.1127/arch.moll/1869-0963/144/065-081
    [Google Scholar]
  29. Flotté, N., Sorel, D., Müller, C., & Tensi, J. (2005). Along strike changes in the structural evolution over a brittle detachment fault: Example of the Pleistocene Corinth‐Patras rift (Greece). Tectonophysics, 403, 77–94. https://doi.org/10.1016/j.tecto.2005.03.015
    [Google Scholar]
  30. Ford, M., Hemelsdaël, R., Mancini, M., & Palyvos, N. (2016) Rift migration and lateral propagation: evolution of normal faults and sediment‐routing systems of the western Corinth rift (Greece). In: C.Childs, R. E.Holdsworth, C. A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The Geometry of Normal Faults. Geological Society, London, Special Publications, (439) London.
    [Google Scholar]
  31. Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malarte, F. (2013). Tectono‐sedimentary evolution of the western Corinth rift (Central Greece). Basin Research, 25, 3–25. https://doi.org/10.1111/j.1365-2117.2012.00550.x
    [Google Scholar]
  32. Franke, D., Hornung, J., & Hinderer, M. (2015). A combined study of radar facies, lithofacies and three‐dimensional architecture of an alpine alluvial fan (Illgraben fan, Switzerland). Sedimentology, 62, 57–86. https://doi.org/10.1111/sed.12139
    [Google Scholar]
  33. Gawthorpe, R., & Colella, A. (1990) Tectonic controls on coarse‐grained delta depositional systems in rift basins. In A.Colella & D. B.Prior (Eds.), Coarse‐grained Deltas (113–127). Chichester, UK: John Wiley & Sons Inc.
    [Google Scholar]
  34. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658. https://doi.org/10.1016/0264-8172(94)90021-3
    [Google Scholar]
  35. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  36. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., … Stamatakis, M. (2017). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research, 30, 448–479. https://doi.org/10.1111/bre.12260
    [Google Scholar]
  37. Gloppen, T. G., & Steel, R. J. (1981). The deposits, internal structure and geometry in six alluvial fan‐fan delta bodies (Devonian‐Norway)‐A study in the significance of bedding sequence in conglomerates. Society for Sedimentary Geology Special Publication, 31, 49–69.
    [Google Scholar]
  38. Graham, S. A., Hendrix, M. S., Johnson, C. L., Badamgarav, D., Badarch, G., Amory, J., … Hacker, B. R. (2001). Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Bulletin of the Geological Society of America, 113, 1560–1579. https://doi.org/10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
    [Google Scholar]
  39. Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. L. (1999). Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai. Egypt. Basin Research, 11, 167–189. https://doi.org/10.1046/j.1365-2117.1999.00300.x
    [Google Scholar]
  40. Hemelsdaël, R., Ford, M., Malartre, F., & Gawthorpe, R. L. (2017). Interaction of an antecedent fluvial system with early normal fault growth: Implications for syn‐rift stratigraphy, western Corinth rift (Greece). Sedimentology, 64, 1957–1997. https://doi.org/10.1111/sed.12381
    [Google Scholar]
  41. Hopkins, M. C., & Dawers, N. H. (2018). The role of fault length, overlap and spacing in controlling extensional relay ramp fluvial system geometry. Basin Research, 30, 20–34. https://doi.org/10.1111/bre.12240
    [Google Scholar]
  42. Hwang, I. G., Chough, S. K., Hong, S. W., & Choe, M. Y. (1995). Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sedimentary Geology, 98, 147–179. https://doi.org/10.1016/0037-0738(95)00031-3
    [Google Scholar]
  43. Jo, H. R., & Chough, S. K. (2001). Architectural analysis of fluvial sequences in the Northwestern part of Kyongsang Basin (Early Cretaceous), SE Korea. Sedimentary Geology, 144, 307–334. https://doi.org/10.1016/S0037-0738(01)00123-3
    [Google Scholar]
  44. Jo, H. R., Rhee, C. W., & Chough, S. K. (1997). Distinctive characteristics of a streamflow‐dominated alluvial fan deposit: Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea. Sedimentary Geology, 110, 51–79. https://doi.org/10.1016/S0037-0738(96)00083-8
    [Google Scholar]
  45. Karpeta, W. P. (1993). Sedimentology and gravel bar morphology in an Archaean braided river sequence: The Witpan Conglomerate Member (Witwatersrand Supergroup) in the Welkom Goldfield, South Africa. Geological Society, London, Special Publications, 75, 369–388. https://doi.org/10.1144/GSL.SP.1993.075.01.21
    [Google Scholar]
  46. Khadkikar, A. S. (1999). Trough cross‐bedded conglomerate facies. Sedimentary Geology, 128, 39–49. https://doi.org/10.1016/S0037-0738(99)00060-3
    [Google Scholar]
  47. Kim, S. B., Kim, Y.-G., Jo, H. R., Jeong, K. S., & Chough, S. K. (2009). Depositional facies, architecture and environments of the Sihwa Formation (Lower Cretaceous), mid-west Korea with special reference to dinosaur eggs. Cretaceous Research, 30(1), 100–126.
    [Google Scholar]
  48. Kim, B. C., & Lowe, D. R. (2004). Depositional processes of the gravelly debris flow deposits, South Dolomite alluvial fan, Owens Valley, California. Geosciences Journal, 8, 153–171. https://doi.org/10.1007/BF02910191
    [Google Scholar]
  49. Köykkä, J. (2011). Precambrian alluvial fan and braidplain sedimentation patterns: Example from the Mesoproterozoic Rjukan Rift Basin, southern Norway. Sedimentary Geology, 234, 89–108. https://doi.org/10.1016/j.sedgeo.2010.12.004
    [Google Scholar]
  50. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Research, 5, 79–102. https://doi.org/10.1111/j.1365-2117.1993.tb00059.x
    [Google Scholar]
  51. Leeder, M. R., Mark, D. F., Gawthorpe, R. L., Kranis, H., Loveless, S., Pedentchouk, N., … Stamatakis, M. (2012). A “Great Deepening”: Chronology of rift climax, Corinth rift, Greece. Geology, 40, 999–1002. https://doi.org/10.1130/G33360.1
    [Google Scholar]
  52. Lewis, M. M., Jackson, C.‐L., & Gawthorpe, R. L. (2017). Tectono‐sedimentary development of early syn‐rift deposits: The Abura Graben, Suez Rift. Egypt. Basin Research, 29, 327–351. https://doi.org/10.1111/bre.12151
    [Google Scholar]
  53. Lindsey, D. A., Langer, W. H., & Knepper, D.H.Jr., (2005). Stratigraphy, lithology, and sedimentary features of Quaternary alluvial deposits of the South Platte River and some of its tributaries east of the Front Range. Colorado. U.S. Geological Survey Professional Paper. 1705.
  54. Lowe, D. R. (1979). Sediment gravity flows: Their classification and some problems of application to natural flows and deposits. SEPM Special Publication, 27, 75–82.
    [Google Scholar]
  55. Mack, G. H., James, W. C., & Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105, 129–136. https://doi.org/10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2
    [Google Scholar]
  56. Mack, G. H., & Leeder, M. R. (1999). Climatic and tectonic controls on alluvial‐fan and axial‐fluvial sedimentation in the Plio‐Pleistocene Palomas half graben, southern Rio Grande Rift. Journal of Sedimentary Research, 69, 635–652. https://doi.org/10.2110/jsr.69.635
    [Google Scholar]
  57. Mack, G. H., & Seager, W. R. (1990). Tectonic control on facies distribution of the Camp Rice and Palomas Formations (Pliocene‐Pleistocene) in the southern Rio Grande rift. Bulletin of the Geological Society of America, 102, 45–53. https://doi.org/10.1130/0016-7606(1990)102<0045:TCOFDO>2.3.CO;2
    [Google Scholar]
  58. Maizels, J. (1993). Lithofacies variations within sandur deposits: The role of runoff regime, flow dynamics and sediment supply characteristics. Sedimentary Geology, 85, 299–325. https://doi.org/10.1016/0037-0738(93)90090-R
    [Google Scholar]
  59. Major, J. J. (1998). Pebble orientation on large, experimental debris‐flow deposits. Sedimentary Geology, 117, 151–164. https://doi.org/10.1016/S0037-0738(98)00014-1
    [Google Scholar]
  60. Martini, I. P., & Sagri, M. (1993). Tectono‐sedimentary characteristics of Late Miocene‐Quaternary extensional basins of the Northern Apennines, Italy. Earth Science Reviews, 34, 197–233. https://doi.org/10.1016/0012-8252(93)90034-5
    [Google Scholar]
  61. Martins‐Neto, M. A., & Catuneanu, O. (2010). Rift sequence stratigraphy. Marine and Petroleum Geology, 27, 247–253. https://doi.org/10.1016/j.marpetgeo.2009.08.001
    [Google Scholar]
  62. Miall, A. D. (1996). The Geology of Fluvial Deposits, Sedimentary Facies, Basin Analysis, and Petroleum Geology (p. 582). New York: Springer.
    [Google Scholar]
  63. Mirabella, F., Bucci, F., Santangelo, M., Cardinali, M., Caielli, G., de Franco, R., … Barchi, M. R., (2018). In press. Alluvial fan shifts and stream captures driven by extensional tectonics in central Italy. Journal of the Geological Society, 175, 788–805. https://doi.org/10.1144/jgs2017-138
    [Google Scholar]
  64. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer Zones in the East African Rift System and Their Relavance to Hydrocarbon Exploration in Rifts. American Association of Petroleum Geologists Bulletin, 74, 1234–1253.
    [Google Scholar]
  65. Moscariello, A., Marchi, L., Maraga, F., & Mortara, G. (2002). Alluvial fans in the Italian Alps: Sedimentary facies and processes. Flood and Megaflood Processes and Deposits: Recent and Ancient Examples, 32, 141–166.
    [Google Scholar]
  66. Murcia, H. F., Hurtado, B. O., Cortés, G. P., Macías, J. L., & Cepeda, H. (2008). The ~ 2500 yr B.P. Chicoral non‐cohesive debris flow from Cerro Machín Volcano, Colombia. Journal of Volcanology and Geothermal Research, 171, 201–214. https://doi.org/10.1016/j.jvolgeores.2007.11.016
    [Google Scholar]
  67. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass‐flow deposits. Sedimentology of Gravels and Conglomerates, 10, 1–31.
    [Google Scholar]
  68. Nichols, G. J., & Fisher, J. A. (2007). Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195, 75–90. https://doi.org/10.1016/j.sedgeo.2006.07.004
    [Google Scholar]
  69. Nixon, C. W., McNeill, L. C., Bull, J. M., Bell, R. E., Gawthorpe, R. L., Henstock, T. J., … Kranis, H. (2016). Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, 35, 1225–1248. https://doi.org/10.1002/2015TC004026
    [Google Scholar]
  70. North, C. P., & Davidson, S. K. (2012). Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction. Earth‐Science Reviews, 111, 199–223. https://doi.org/10.1016/j.earscirev.2011.11.008
    [Google Scholar]
  71. Ori, G. G. (1989). Geologic history of the extensional basin of the Gulf of Corinth (?Miocene‐Pleistocene), Greece. Geology, 17, 918–921. https://doi.org/10.1130/0091-7613(1989)017<0918:GHOTEB>2.3.CO;2
    [Google Scholar]
  72. Palyvos, N., Mancini, M., Sorel, D., Lemeille, F., Pantosti, D., Julia, R., … de Martini, P.‐M. (2010). Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geological Journal, 45, 78–104. https://doi.org/10.1002/gj.1171
    [Google Scholar]
  73. Palyvos, N., Sorel, D., Lemeille, F., Mancini, M., Pantosti, D., Julia, R., … de Martini, P.‐M. (2007). Review and new data on uplift rates at the W termination of the Corinth Rift and the NE Rion graben area (Achaia, NW Peloponnesos). Bulletin of the Geological Society of Greece, 40, 412–424. https://doi.org/10.12681/bgsg.16631
    [Google Scholar]
  74. Pechlivanidou, S., Cowie, P. A., Hannisdal, B., Whittaker, A. C., Gawthorpe, R. L., Pennos, C., & Riiser, O. S. (2018). Source‐to‐sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece. Basin Research, 30, 522–543. https://doi.org/10.1111/bre.12263
    [Google Scholar]
  75. Piper, D. J. W., Kontopoulos, N., Anagnostou, C., Chronis, G., & Panagos, A. G. (1990). Modern Fan Deltas in the Western Gulf of Corinth, Greece. Geo‐Marine Letters, 10, 5–12. https://doi.org/10.1007/BF02431016
    [Google Scholar]
  76. Platt, N. H., & Keller, B. (1992). Distal alluvial deposits in a foreland basin setting—the Lower Freshwater Miocene, Switzerland: Sedimentology, architecture and palaeosols. Sedimentology, 39, 545–565. https://doi.org/10.1111/j.1365-3091.1992.tb02136.x
    [Google Scholar]
  77. Puy‐Alquiza, M. J., Miranda‐Avilés, R., García‐Barragán, J. C., Loza‐Aguirre, I., Li, Y., & Zanor, G. A. (2017). Facies analysis, stratigraphic architecture and depositional environments of the Guanajuato conglomerate in the Sierra de Guanajuato, Mexico. Boletin De La Sociedad Geologica Mexicana, 69, 385–408. https://doi.org/10.18268/BSGM2017v69n2a5
    [Google Scholar]
  78. Reading, H. G. (1996). Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd. Oxford: Blackwell Scientific.
    [Google Scholar]
  79. Reitz, M. D., & Jerolmack, D. J. (2012). Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. Journal of Geophysical Research: Earth Surface, 117, 1–19. https://doi.org/10.1029/2011JF002261
    [Google Scholar]
  80. Retallack, G. J. (2001). Soils of the Past. An introduction to Paleopedology, 2nd ed. (p. 404). Oxford: Blackwell Science.
    [Google Scholar]
  81. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: Implications for its structural evolution. Tectonophysics, 440, 5–28. https://doi.org/10.1016/j.tecto.2006.11.006
    [Google Scholar]
  82. Rohais, S., Eschard, R., & Guillocheau, F. (2008). Depositional model and stratigraphic architecture of rift climax Gilbert‐type fan deltas (Gulf of Corinth, Greece). Sedimentary Geology, 210, 132–145. https://doi.org/10.1016/j.sedgeo.2008.08.001
    [Google Scholar]
  83. Seger, M., & Alexander, J. (1993). Distribution of Plio‐Pleistocene and Modern Coarse‐Grained Deltas South of the Gulf of Corinth, Greece. Tectonic Controls and Signatures in Sedimentary Successions, 20, 37–48.
    [Google Scholar]
  84. Shukla, U. K. (2009). Sedimentation model of gravel‐dominated alluvial piedmont fan, Ganga Plain, India. International Journal of Earth Sciences, 98, 443–459. https://doi.org/10.1007/s00531-007-0261-4
    [Google Scholar]
  85. Sinclair, I. K., Shannon, P. M., Williams, B. P. J., Harker, S. D., & Mooren, J. G. (1994). Tectonic control on sedimentary evolution of three North Atlantic borderland Mesozoic basins1. Basin Research, 6, 193–217. https://doi.org/10.1111/j.1365-2117.1994.tb00085.x
    [Google Scholar]
  86. Skourlis, K., & Doutsos, T. (2003). The Pindos Fold‐and‐thrust belt (Greece): Inversion kinematics of a passive continental margin. International Journal of Earth Sciences, 92, 891–903. https://doi.org/10.1007/s00531-003-0365-4
    [Google Scholar]
  87. Sohn, Y. K., Rhee, C. W., & Kim, B. C. (1999). Debris Flow and Hyperconcentrated Flood‐Flow Deposits in an Alluvial Fan, Northwestern Part of the Cretaceous Yongdong Basin, Central Korea. The Journal of Geology, 107, 111–132. https://doi.org/10.1086/314334
    [Google Scholar]
  88. Sorel, D. (2000). A Pleistocene and still‐active detachment fault and the origin of the Corinth‐Patras rift, Greece. Geology, 28, 83–86. https://doi.org/10.1130/0091-7613(2000)28<83:APASDF>2.0.CO;2
    [Google Scholar]
  89. Steel, R. J., & Thompson, D. B. (1983). Structures and textures in Triassic braided stream conglomerates (“Bunter” Pebble Beds) in the Sherwood Sandstone Group, North Staffordshire, England. Sedimentology, 30, 341–367. https://doi.org/10.1111/j.1365-3091.1983.tb00677.x
    [Google Scholar]
  90. Suresh, N., Bagati, T. N., Kumar, R., & Thakur, V. C. (2007). Evolution of quaternary alluvial fans and terraces in the intramontane Pinjaur Dun, Sub‐Himalaya, NW India: Interaction between tectonics and climate change. Sedimentology, 54, 809–833. https://doi.org/10.1111/j.1365-3091.2007.00861.x
    [Google Scholar]
  91. Teixeira, B. M. N., Astini, R. A., Gomez, F. J., Morales, N., & Pimentel, M. M. (2018). Source‐to‐sink analysis of continental rift sedimentation: Triassic Cuyo basin, Precordillera Argentina. Sedimentary Geology, 376, 164–184. https://doi.org/10.1016/j.sedgeo.2018.08.007
    [Google Scholar]
  92. Todd, S. P. (1989). Stream‐driven, high‐density gravelly traction carpets: Possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, 36, 513–530. https://doi.org/10.1111/j.1365-3091.1989.tb02083.x
    [Google Scholar]
  93. Turner, S. A. (2010). Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China. Precambrian Research, 181, 85–96. https://doi.org/10.1016/j.precamres.2010.05.015
    [Google Scholar]
  94. Underhill, J. R. (1989). Late Cenozoic deformation of the Hellenic foreland, Western Greece. Bulletin of the Geological Society of America, 101, 613–634.
    [Google Scholar]
  95. van Dijk, M., Kleinhans, M. G., Postma, G., & Kraal, E. (2012). Contrasting morphodynamics in alluvial fans and fan deltas: Effect of the downstream boundary. Sedimentology, 59, 2125–2145. https://doi.org/10.1111/j.1365-3091.2012.01337.x
    [Google Scholar]
  96. Wells, N. A. (1984). Sheet debris flow and Sheetflood conglomerates in Cretaceous cool‐maritime alluvial fans, South Orkney Islands, Antarctica. Sedimentology of Gravels and Conglomerates, 10, 133–145.
    [Google Scholar]
  97. Went, D. J. (2005). Pre‐vegetation alluvial fan facies and processes: An example from the Cambro‐Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology, 52, 693–713. https://doi.org/10.1111/j.1365-3091.2005.00716.x
    [Google Scholar]
  98. Zelilidis, A. (2000). Drainage evolution in a rifted basin, Corinth graben, Greece. Geomorphology, 35, 69–85. https://doi.org/10.1016/S0169-555X(00)00023-4
    [Google Scholar]
  99. Zaghloul, M. N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., … Ventimiglia, C. (2010). Depositional systems, composition and geochemistry of Triassic rifted‐continental margin redbeds of the Internal Rif Chain. Morocco. Sedimentology, 57(2), 312–350.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12396
Loading
/content/journals/10.1111/bre.12396
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): alluvial fan; antecedent river; conglomerate; Gulf of Corinth; rift basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error