1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Basin models can simulate geological, geochemical and geophysical processes and potentially also the deep biosphere, starting from a burial curve, assuming a thermal history and utilizing other experimentally obtained data. Here, we apply basin modelling techniques to model cell abundances within the deep coalbed biosphere off Shimokita Peninsula, Japan, drilled during Integrated Ocean Drilling Program Expedition 337. Two approaches were used to simulate the deep coalbed biosphere: (a) In the first approach, the deep biosphere was modelled using a material balance approach that treats the deep biosphere as a carbon reservoir, in which fluxes are governed by temperature‐controlled metabolic processes that retain carbon via cell‐growth and cell‐repair and pass it back via cell‐damaging reactions. (b) In the second approach, the deep biosphere was modelled as a microbial community with a temperature‐controlled growth ratio and carrying capacity (a limit on the size of the deep biosphere) modulated by diagenetic‐processes. In all cases, the biosphere in the coalbeds and adjacent habitat are best modelled as a carbon‐limited community undergoing starvation because labile sedimentary organic matter is no longer present and petroleum generation is yet to occur. This state of starvation was represented by the conversion of organic carbon to authigenic carbonate and the formation of kerogen. The potential for the biosphere to be stimulated by the generation of carbon‐dioxide from the coal during its transition from brown to sub‐bituminous coal was evaluated and a net thickness of 20 m of lignite was found sufficient to support an order of magnitude greater number of cells within a low‐total organic carbon (TOC) horizon. By comparison, the stimulation of microbial populations in a coalbed or high‐TOC horizon would be harder to detect because the increase in population size would be proportionally very small.

,

Using geological information and a basin modelling approach the deep biosphere of the Shimokita coalbeds has been modelled over deep geological time. This required coupling metabolic and geochemical processes to far field geological and tectonic events. Viewed in this light sedimentary basins become living breathing entities that operate on geological time scales.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12399
2020-09-26
2024-04-25
Loading full text...

Full text loading...

References

  1. Amend, J. P., & Shock, E. L. (2001). Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews, 25, 175–243. https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
    [Google Scholar]
  2. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–22.
    [Google Scholar]
  3. Bennett, B., Aitken, C. M., Jones, D. M., Farrimond, P., & Larter, S. R. (2007). The occurrence and significance of 25‐norhopanoic acids in petroleum reservoirs. Organic Geochemistry, 38(11), 1977–1985. https://doi.org/10.1016/j.orggeochem.2007.06.011
    [Google Scholar]
  4. Bernard, F. P., & Connan, J. (1992 October). Indigenous microorganisms in connate waters of many oilfields: A new tool in exploration and production techniques. SPE 24811. In 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers (pp. 467–476). Washington, DC.
    [Google Scholar]
  5. Berner, R. A. (1968). Calcium carbonate concentrations formed by the decomposition of organic matter. Science, 159, 195–197. https://doi.org/10.1126/science.159.3811.195
    [Google Scholar]
  6. Beulig, F., Røy, H., Glombitza, C., & Jørgensen, B. B. (2018). Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proceedings of the National Academy of Sciences, 115, 367–372. https://doi.org/10.1073/pnas.1715789115
    [Google Scholar]
  7. Braun, R. L., & Burnham, A. K. (1987). Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy & Fuels, 1, 153–161. https://doi.org/10.1021/ef00002a003
    [Google Scholar]
  8. Braun, R. L., & Burnham, A. K. (1988). KINETICS: A computer program to analyze chemical reaction data. Lawrence Livermore National Laboratory Report UCID‐21588.
  9. Braun, S., Morono, Y., Littmann, S., Kuypers, M., Aslan, H., Dong, M., … Lomstein, B. A. (2016). Size and carbon content of sub‐seafloor microbial cells at Landsort Deep, Baltic Sea. Frontiers in Microbiology, 7, 1375. https://doi.org/10.3389/fmicb.2016.01375
    [Google Scholar]
  10. Breuker, A., Köweker, G., Blazejak, A., & Schippers, A. (2011). The deep biosphere in terrestrial sediments in the Chesapeake Bay Area, Virginia, USA. Frontiers in Microbiology, 2, Article 156. https://doi.org/10.3389/fmicb.2011.00156
    [Google Scholar]
  11. Burnham, A. K., & Braun, R. L. (1990). Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks. Organic Geochemistry, 16, 27–39. https://doi.org/10.1016/0146-6380(90)90023-S
    [Google Scholar]
  12. Burnham, A., & Sweeny, J. J. (1989). A Simple kinetic model of petroleum formation and cracking. Geochimica et Cosmochimica Acta, 43, 649–2657.
    [Google Scholar]
  13. Colwell, F. S., Boyd, S., Delwiche, M. E., Reed, D. W., Phelps, T. J., & Newby, D. T. (2008). Estimate of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia Margin. Applied and Environmental Microbiology, 74, 3444–3452. https://doi.org/10.1128/AEM.02114-07
    [Google Scholar]
  14. Connan, J. (1984). Biodegradation of crude oils in reservoirs. Advances in Petroleum Geochemistry, 1, 299–335. https://doi.org/10.1016/B978-0-12-032001-1.50011-0
    [Google Scholar]
  15. Crill, M., & Martens, C. S. (1986). Methane production from bicarbnate and acetate in an anoxic marine sediment. Gochimica et Cosmochimica Acta, 50, 2089–2097. https://doi.org/10.1016/0016-7037(86)90262-0
    [Google Scholar]
  16. Daniels, L., Sparling, R., & Sprott, G. D. (1984). The bioenergetics of methanogenesis. Biochimica et Biophysica Acta, 768, 113–163. https://doi.org/10.1016/0304-4173(84)90002-8
    [Google Scholar]
  17. Egeberg, P. K., & Abdullah, M. I. (1990). The diagenetic factors controlling the dissolved organic carbon (DOC) in pore water from deep sea sediments (ODP Leg 113, Weddell Sea). In P. F.Barker, & J. P.Kennett, et al. (Eds.), Proc. ODP, Sci. Results, 113 (pp. 169–177). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  18. Emerson, S., Jahnke, R., Bender, M., Froelich, P., Klinkhammer, G., Bowser, C., & Setlock, G. (1980). Early diagenesis in sediments from the eastern equatorial Pacific, I. Pore water nutrient and carbonate results. Earth and Planetary Science Letters, 49, 57–80. https://doi.org/10.1016/0012-821X(80)90150-8
    [Google Scholar]
  19. Farrimond, P., Taylor, A., & TelnÆs, N. (1998). Biomarker maturity parameters: The role of generation and thermal degradation. Organic Geochemistry, 29, 1181–1197. https://doi.org/10.1016/S0146-6380(98)00079-5
    [Google Scholar]
  20. Glombitza, C., Mangelsdorf, K., & Horsfield, B. (2016). Differences in bitumen and kerogen‐bound fatty acid fractions during diagenesis and early catagenesis in a maturity series of New Zealand coals. International Journal of Coal Geology, 153, 28–36. https://doi.org/10.1016/j.coal.2015.11.009
    [Google Scholar]
  21. Gross, D., Bechtel, A., & Harrington, G. J. (2015). Variability in coal facies as reflected by organic petrological and geochemical data in Cenozoic coal beds offshore Shimokita (Japan)—IODP Exp. 337. International Journal of Coal Geology, 152, 3–79. https://doi.org/10.1016/j.coal.2015.10.007
    [Google Scholar]
  22. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling (pp. 103–150). Berlin: Springer.
    [Google Scholar]
  23. Hay, W. W., Sloan, J. L. I., & Wold, C. N. (1998). The mass/age distribution of sediments on the ocean floor and the global rate of loss of sediment. Journal of Geophysical Research, 93(B12), 14,933–14, 940.
    [Google Scholar]
  24. Head, I. M., Jones, D. M., & Larter, S. R. (2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344–352. https://doi.org/10.1038/nature02134
    [Google Scholar]
  25. Hinrichs, K.‐U., & Inagaki, F. (2012). Downsizing the deep biosphere. Science, 338(6104), 204–205. https://doi.org/10.1126/science.1229296
    [Google Scholar]
  26. Honda, S. (1985). Thermal structure beneath Tohoku, northeast Japan. Tectonophysics, 112(1–4), 69–102. https://doi.org/10.1016/0040-1951(85)90173-8
    [Google Scholar]
  27. Horsfield, B., Schenk, H. J., Zink, K., Ondrak, R., Dieckmann, V., Kallmeyer, J., … Cragg, B. (2006). Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere. Earth and Planetary Science Letters, 246, 55–69. https://doi.org/10.1016/j.epsl.2006.03.040
    [Google Scholar]
  28. Horstad, I., & Larter, S. R. (1997). Petroleum migration, alteration, and remigration within Troll field, Norwegian North Sea. AAPG Bulletin, 81, 222–248.
    [Google Scholar]
  29. Hoshino, T., & Inagaki, F. (2019). Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. ISME Journal, 13, 227–231. https://doi.org/10.1038/s41396-018-0253-3
    [Google Scholar]
  30. Hoshino, T., Morono, Y., Terada, T., Imachi, H., Ferdelman, T. G., & Inagaki, F. (2011). Comparative study of subseafloor microbial community structures in deeply buried coral fossils and sediment matrices from the Challenger Mound in the Porcupine Seabight. Frontiers in Microbiology, 2, 231. https://doi.org/10.3389/fmicb.2011.00231
    [Google Scholar]
  31. House, C. H., Cragg, B. A., Teske, A., & The Leg 201 Scientific Party . (2003). Drilling contamination tests during ODP leg 201 using chemical and particulate tracers. In S. L.D'Hondt, B. B.Jørgensen, D. J.Miller et al. (Eds.), Proc ODP int repts (Vol. 201, pp. 1–19). College Station, TX (Ocean Drilling Program). https://doi.org/10.2973/odp.proc.ir.201.102.2003
    [Google Scholar]
  32. Inagaki, F., Hinrichs, K.‐U., & Kubo, Y., & The Expedition 337 Scientists . (2013). Proc. IODP, 337. Tokyo: Integrated Ocean Drilling Program Management International, Inc.
    [Google Scholar]
  33. Inagaki, F., Hinrichs, K.‐U., Kubo, Y., Bowles, M. W., Heuer, V. B., Hong, W.‐L., …Yamada, Y. (2015). Exploring deep microbial life in coal‐bearing sediment down to ∼2.5 km below the ocean floor. Science, 349, 420–424. https://doi.org/10.1126/science.aaa6882
    [Google Scholar]
  34. Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., … Horikoshi, K. (2003). Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Applied and Environmental Microbiology, 69, 7224–7235. https://doi.org/10.1128/AEM.69.12.7224-7235.2003
    [Google Scholar]
  35. Iversen, N., & Jorgensen, B. B. (1985). Anaerobic methane oxidation rates at the sulfate‐methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30, 944–955. https://doi.org/10.4319/lo.1985.30.5.0944
    [Google Scholar]
  36. Jolivet, L., Tamaki, K., & Fournier, M. (1994). Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research, 99(B11), 22237–22259. https://doi.org/10.1029/93JB03463
    [Google Scholar]
  37. Jones, D. M., Head, I. M., Gray, N. D., Adams, J. J., Rowan, A. K., Aitken, C. M., … Larter, S. R. (2008). Crude‐oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 451, 176–180. https://doi.org/10.1038/nature06484
    [Google Scholar]
  38. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., & D'Hondt, S. (2012). Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 109, 16213–16216. https://doi.org/10.1073/pnas.1203849109
    [Google Scholar]
  39. Kallmeyer, J., Smith, D. C., Spivack, A. J., & D'Hondt, S. (2008). New cell extraction procedure applied to deep subsurface sediments. Limnology and Oceanography:Methods, 6, 236–245.
    [Google Scholar]
  40. Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., & Fischer, W. W. (2007). Paleophysiology and end‐Permian mass extinction. Earth and Planetary Science Letters, 256, 295–313. https://doi.org/10.1016/j.epsl.2007.02.018
    [Google Scholar]
  41. Kohnen, M. E., Sinninghe Damsté, J. S., Kock‐van Dalen, A. C., & Jan, W. D. L. (1991). Di‐ or polysulphide‐bound biomarkers in sulphur‐rich geomacromolecules as revealed by selective chemolysis. Geochimica et Cosmochimica Acta, 55, 1375–1394. https://doi.org/10.1016/0016-7037(91)90315-V
    [Google Scholar]
  42. Lamorde, U. A., Parnell, J., & Bowden, S. A. (2015). Constraining the genetic relationships of 25‐norhopanes, hopanoic and 25‐norhopanoic acids in onshore Niger Delta oils using a temperature‐dependent material balance. Organic Geochemistry, 79, 31–43. https://doi.org/10.1016/j.orggeochem.2014.12.004
    [Google Scholar]
  43. Langerhuus, A. T., Røy, H., Lever, M. A., Morono, Y., Inagaki, F., Jørgensen, B. B., & Lomstein, B. A. (2012). Endospore abundance and D: L‐amino acid modeling of bacterial turnover in Holocene marine sediment (Aarhus Bay). Geochimica et Cosmochimica Acta, 99, 87–99. https://doi.org/10.1016/j.gca.2012.09.023
    [Google Scholar]
  44. Larter, S., Wilhelms, A., Head, I., Koopmans, M., Aplin, A., Di Primio, R., … Telnaes, N. (2003). The controls on the composition of biodegraded oils in the deep subsurface – Part 1: Biodegradation rates in petroleum reservoirs. Organic Geochemistry, 34, 601–613. https://doi.org/10.1016/S0146-6380(02)00240-1
    [Google Scholar]
  45. Lever, M. A. (2012). Acetogenesis in the energy‐starved deep biosphere—A paradox?Frontiers in Microbiology, 2, 284. https://doi.org/10.3389/fmicb.2011.00284
    [Google Scholar]
  46. Lever, M. A., Rogers, K. L., Lloyd, K. G., Overmann, J., Schink, B., Thauer, R. K., … Jørgensen, B. B. (2015). Life under extreme energy limitation: A synthesis of laboratory‐ and field‐based investigations. FEMS Microbiology Review, 39, 688–728. https://doi.org/10.1093/femsre/fuv020
    [Google Scholar]
  47. Lipp, J. S., Morono, Y., Inagaki, F., & Hinrichs, K.‐U. (2008). Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454, 991–994. https://doi.org/10.1038/nature07174
    [Google Scholar]
  48. Liu, C.‐H., Huang, X., Xie, T.‐N., Duan, N., Xue, Y.‐R., Zhao, T.‐X., … Inagaki, F. (2017). Exploration of cultivable fungal communities in deep coal‐bearing sediments from ∼1.3 to 2.5 km below the ocean floor. Environmental Microbiology, 19, 803–818. https://doi.org/10.1111/1462-2920.13653
    [Google Scholar]
  49. Lomstein, B. A., Langerhuus, A. T., D'Hondt, S., Jørgensen, B. B., & Spivack, A. J. (2012). Endospore abundance, microbial growth and necromass turnover in deep sub‐seafloor sediment. Nature, 484, 101–104. https://doi.org/10.1038/nature10905
    [Google Scholar]
  50. Magnabosco, C., Lin, L.‐H., Dong, H., Bomberg, M., Ghiorse, W., Stan‐Lotter, H., … Onstott, T. C. (2018). The biomass and biodiversity of the continental subsurface. Nature Geoscience, 11, 707–717. https://doi.org/10.1038/s41561-018-0221-6
    [Google Scholar]
  51. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012-821X(78)90071-7
    [Google Scholar]
  52. McMahon, S., & Parnell, J. (2014). Weighing the deep continental biosphere. FEMS Microbiology Ecology, 87, 113–120. https://doi.org/10.1111/1574-6941.12196
    [Google Scholar]
  53. Meister, P. (2015). For the deep biosphere, the present is not always the key to the past: What we can learn from the geological record. Terra Nova, 27, 400–408. https://doi.org/10.1111/ter.12174
    [Google Scholar]
  54. Middelburg, J. J. (1989). A simple rate model for organic matter decomposition in marine sediments. Geochimica et Cosmochimica Acta, 53, 1577–1581. https://doi.org/10.1016/0016-7037(89)90239-1
    [Google Scholar]
  55. Morita, R. Y., & ZoBell, C. L. (1955). Occurrence of bacteria in pelagic sediments collected during the Mid‐Pacific expedition. Deep‐Sea Research, 3, 66–73. https://doi.org/10.1016/0146-6313(55)90036-8
    [Google Scholar]
  56. Morono, Y., Terada, T., Masui, N., & Inagaki, F. (2009). Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME Journal, 3, 503–511. https://doi.org/10.1038/ismej.2009.1
    [Google Scholar]
  57. Muirhead, D. K., Parnell, J., Taylor, C., & Bowden, S. A. (2012). A kinetic model for the thermal evolution of sedimentary and meteoritic organic carbon using Raman spectroscopy. Journal of Analytical and Applied Pyrolysis, 96, 153–161. https://doi.org/10.1016/j.jaap.2012.03.017
    [Google Scholar]
  58. Nunoura, T., Soffientino, B., Blazejak, A., Kakuta, J., Oida, H., Schippers, A., & Takai, K. (2009). Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiology Ecology, 69, 410–424. https://doi.org/10.1111/j.1574-6941.2009.00718.x
    [Google Scholar]
  59. Omar, G., Onstott, T., & Hoek, J. (2003). The origin of deep subsurface microbial communities in the Witwatersrand Basin, South Africa as deduced from apatite fission track analyses. Geofluids, 3, 69–80. https://doi.org/10.1046/j.1468-8123.2003.00050.x
    [Google Scholar]
  60. Parkes, R. J., Cragg, B. A., Bale, S. J., Getlifff, J. M., Goodman, K., Rochelle, P. A., … Harvey, S. M. (1994). Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410–413. https://doi.org/10.1038/371410a0
    [Google Scholar]
  61. Parkes, R. J., Cragg, B. A., & Wellsbury, P. (2000). Recent studies on bacterial populations and processes in subseafloor sediments: A review. Hydrogeology Journal, 8, 11–28. https://doi.org/10.1007/PL00010971
    [Google Scholar]
  62. Peters, K. E., & Nelson, P. H. (2012). Analysing the thermal history of sedimentary basins: Methods and case studies. SEPM Special Publication, 103, 5–15.
    [Google Scholar]
  63. Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide, Vol 2. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  64. Phillips, S. C., Hong, W.‐L., Johnson, J. E., Fahnestock, M. F., & Bryce, J. G. (2018). Authigenic carbonate formation influenced by freshwater inputs and methanogenesis in coal‐bearing strata offshore Shimokita, Japan (IODP Site C0020). Marine and Petroleum Geology, 96, 288–303. https://doi.org/10.1016/j.marpetgeo.2018.06.007
    [Google Scholar]
  65. Phillips, S. C., Johnson, J. E., Clyde, W. C., Setera, J. B., Maxbauer, D. P., Severmann, S., & Riedinger, N. (2017). Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal‐bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020). Geochemistry, Geophysics, Geosystems, 18, 2076–2098. https://doi.org/10.1002/2017GC006943
    [Google Scholar]
  66. Price, P. B., & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences, 101, 4631–4636. https://doi.org/10.1073/pnas.0400522101
    [Google Scholar]
  67. R Core Team
    R Core Team . (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
    [Google Scholar]
  68. Rabinowitz, H. S., Polissar, P. J., & Savage, H. M. (2017). Reaction kinetics of alkenone and n‐alkane thermal alteration at seismic timescales. Geochemistry, Geophysics, Geosystems, 18, 204–219. https://doi.org/10.1002/2016GC006553
    [Google Scholar]
  69. Renshaw, E. (1991). Modeling biological populations in space and time (pp. 6–9). Cambridge University Press.
    [Google Scholar]
  70. Romanova, N. D., & Sazhin, A. F. (2010). Relationships between the cell volume and the carbon content of bacteria. Oceanology, 50, 522. https://doi.org/10.1134/S0001437010040089
    [Google Scholar]
  71. Roussel, E. G., Cragg, B. A., Webster, G., Sass, H., Tang, X., Williams, A. S., … Parkes, R. J. (2015). Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: Critical temperatures and substrate changes. FEMS Microbiology Ecology, 91, fiv084. https://doi.org/10.1093/femsec/fiv084
    [Google Scholar]
  72. Sajgó, C., & Lefler, J. (1986). A reaction kinetic approach to the temperature‐time history of sedimentary basins. In G.Buntebarth, & L.Stegena (Eds.), Paleogeothermics. Lecture notes in earth sciences (Vol. 5). Berlin, Heidelberg: Springer.
    [Google Scholar]
  73. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74, 1559–1570.
    [Google Scholar]
  74. Tanikawa, W., Tadai, O., Morita, S., Lin, W., Yamada, Y., Sanada, Y., … Inagaki, F. (2016). Thermal properties and thermal structure in the deep‐water coalbed basin off the Shimokita Peninsula, Japan. Marine and Petroleum Geology, 73, 445–461. https://doi.org/10.1016/j.marpetgeo.2016.03.006
    [Google Scholar]
  75. Tanikawa, W., Tadai, O., Morono, Y., Hinrichs, K.‐U., & Inagaki, F. (2018). Geophysical constraints on microbial biomass in subseafloor sediments down to ~2.5 km‐deep coal seams off Shimokita Peninsula, Japan. Progress in Earth and Planetary Science (under Revision).
    [Google Scholar]
  76. Tegelaar, E. W., & Noble, R. K. (1994). Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis‐gas chromatography. Organic Geochemistry, 22, 543–574. https://doi.org/10.1016/0146-6380(94)90125-2
    [Google Scholar]
  77. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence. Berlin, Germany: Springer Verlag.
    [Google Scholar]
  78. Trembath‐Reichert, E., Morono, Y., Ijiri, A., Hoshino, T., Dawson, K. S., Inagaki, F., & Orphan, V. J. (2017). Methyl‐compound use and slow growth characterize microbial life in 2‐km‐deep subseafloor coal and shale beds. Proceedings of the National Academy of Sciences, 114, E9206–E9215. https://doi.org/10.1073/pnas.1707525114
    [Google Scholar]
  79. van Krevelen, D. W. (1950). Graphical‐statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269–284.
    [Google Scholar]
  80. Volkman, J. K., Alexander, R., Kagi, R. I., & Woodhouse, G. W. (1983). Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochimica et Cosmochimica Acta, 47, 785–794. https://doi.org/10.1016/0016-7037(83)90112-6
    [Google Scholar]
  81. Wangersky, P. (1978). Lotka‐Volterra population models. Annual Review of Ecology and Systematics, 9, 189–218. https://doi.org/10.1146/annurev.es.09.110178.001201
    [Google Scholar]
  82. Waples, D. W. (1980). Time and temperature in petroleum formation: Application of Lopatin's method to petroleum exploration. AAPG Bulletin, 64, 916–926.
    [Google Scholar]
  83. Waples, D. W. (1994). Modeling of sedimentary basins and petroleum systems. In L. B.Magoon, & W. G.Dow, American Association of Petroleum Geologists (Eds.), The petroleum system – From source to trap (pp. 307–322). https://doi.org/10.1306/M60585C18
    [Google Scholar]
  84. Webster, G., John Parkes, R., Cragg, B. A., Newberry, C. J., Weightman, A. J., & Fry, J. C. (2006). Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiology Ecology, 58, 65–85. https://doi.org/10.1111/j.1574-6941.2006.00147.x
    [Google Scholar]
  85. Weinbauer, M. G., Beckmann, C., & Höfle, M. G. (1998). Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Applied and Environment Microbiology, 64, 5000–5003.
    [Google Scholar]
  86. Westrich, J., & Berner, R. A. (1984). The role of sedimentary organic matter in bacterial sulfate reduction: The G‐model tested. Limnology and Oceanography, 29, 236–249. https://doi.org/10.4319/lo.1984.29.2.0236
    [Google Scholar]
  87. Wilhelms, A., Larter, S. R., Head, I., Farrimond, P., Di‐Primio, R., & Zwach, C. (2001). Biodegradation of oil in uplifted basins prevented by deep‐burial sterilization. Nature, 411, 1034–1037. https://doi.org/10.1038/35082535
    [Google Scholar]
  88. Wilkinson, M., & Damper, M. D. (1990). The rate of growth of sandstone‐hosted calcite concretions. Geochimica et Cosmochimica Acta, 54, 3391–3399. https://doi.org/10.1016/0016-7037(90)90293-T
    [Google Scholar]
  89. Wopenka, B., & Pasteris, J. D. (1993). Structural characterization of kerogens to granulite–facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78, 533–557.
    [Google Scholar]
  90. Zeikus, J. G. (1977). The biology of methanogenic bacteria. Bacteriology Review, 41, 514–541.
    [Google Scholar]
  91. Zhou, Q., Xiao, X., Pan, L., & Tian, H. (2014). The relationship between micro‐Raman spectral parameters and reflectance of solid bitumen. International Journal of Coal Geology, 121, 19–25. https://doi.org/10.1016/j.coal.2013.10.013
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12399
Loading
/content/journals/10.1111/bre.12399
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error