1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Miocene marine basins of Central and Southeast Europe, once comprising the Paratethys Sea, were gradually filled with sediments during the Neogene and turned to be the catchment area of the proto‐Danube and finally that of the modern Danube. Seismic data from various parts of the large Danube catchment area show that these several hundred meter deep basins were filled by lateral accretion of river‐transported sediments, appearing as shelf edge scale clinoform sets in seismic profiles. The direction of shelf edge progradation is NW to SE (N to S, W to E) in each basin, except for the Dacian basin where NE to SW direction prevails. The age of the clinoform sets is generally younging downstream: 19–18 Ma in the North Alpine Foreland basin, 14–13 Ma in the Vienna basin, 10–9 Ma in the Danube (Kisalföld) basin, 8.6–4 Ma in the Central Pannonian basin (Alföld), ?9–5 Ma in the Dacian basin, and 6–0 Ma in the Euxinian (Black Sea) basin. In spite of this geographical and temporal pattern, only the Danube (Kisalföld) and the western and central part of the Central Pannonian basin were filled by the proto‐Danube shelf accretion. Formation of the Danube, as a longitudinal river of the Alpine foreland that gradually elongated to the east and followed the retreating shoreline of the Paratethys, most probably took place at the beginning of the Late Miocene, ca. 11 Ma ago, thus the Early and Middle Miocene shelf advance in the North Alpine Foreland and Vienna basins, respectively, cannot be attributed to a „paleo‐Danube”. The clinoform systems of the Dacian basin are coeval with those of the upstream Central Pannonian basin, indicating that by the time the Danube sedimentary system reached the Dacian basin, it was already a shallow basin. The vast clinoforms of the northwestern Euxinian shelf also significantly overlap in age with the Pannonian basin ones; only the <4 Ma part of the shelf accretion can be attributed to the Danube sensu.

,

The Neogene Paratethyan basins, strung together by the Danube from the North Alpine Foreland basin (NAFB) downstream to the Euxinian (Black Sea) basin (EB) shelf, were transformed from several‐hundred‐meter‐deep marine or lacustrine basins to shallow marine and to fluvial environments during the Neogene. As the shelf‐edge clinoform sets of these basins along the present‐day course of the Danube indicate, this process took place generally from NW to SE within each basin, and with a general temporal younging between the basins from NW to SE. In spite of this geographical and temporal pattern, however, only the Danube (Kisalföld) basin (DKB), the Central Pannonian basin (CPB), and the younger part (<4 Myr) of the EB shelf were filled by the shelf advance of the proto‐Danube; the NAFB and the Vienna basin (VB) were filled by sediment transport systems that had no temporal continuity with the modern Danube, whereas the Dacian basin (DB) had been filled by local sediment systems by the time the proto‐Danube found its way to the DB ca. 4 Mys ago.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12401
2019-08-31
2024-03-28
Loading full text...

Full text loading...

References

  1. Arzmüller, G., Buchta, Š., Ralbovský, E., & Wessely, G. (2006). The Vienna basin. In J.Golonka & F. J.Picha (Eds.), The Carpathians and their foreland: Geology and hydrocarbon resources (Vol. 84, pp. 191‐204). Tulsa, OK: The American Association of Petroleum Geologists.
    [Google Scholar]
  2. Balázs, A., Magyar, I., Matenco, L., Sztanó, O., Tőkés, L., & Horváth, F. (2018). Morphology of a large paleo‐lake: Analysis of compaction in the Miocene‐Quaternary Pannonian Basin. Global and Planetary Change, 171, 134–147. https://doi.org/10.1016/j.gloplacha.2017.10.012
    [Google Scholar]
  3. Balázs, A., Matenco, L., Magyar, I., Horváth, F., & Cloetingh, S. (2016). The link between tectonics and sedimentation in back‐arc basins: New genetic constraints from the analysis of the Pannonian Basin. Tectonics, 35(6), 1526–1559, https://doi.org/10.1002/2015TC004109
    [Google Scholar]
  4. de Leeuw, A., Morton, A., van Baak, C. G. C., & Vincent, S. J. (2018). Timing of the arrival of the Danube to the Blakc Sea: Provenance of sediments from DSDP site 380/380A. Terra Nova, 30, 114–124.
    [Google Scholar]
  5. Dinu, C., Wong, H. K., Tambrea, D., & Matenco, L. (2005). Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics, 410, 417–435. https://doi.org/10.1016/j.tecto.2005.04.012
    [Google Scholar]
  6. Fongngern, R., Olariu, C., Steel, R. J., & Krézsek, C. S., (2015). Clinoform growth in a Miocene, Para‐tethyan deep lake basin: Thin topsets, irregular foresets and thick bottomsets. Basin Research, 28, 770–795. https://doi.org/10.1111/bre.12132
    [Google Scholar]
  7. Fuchs, R., & Hamilton, W. (2006). New depositional architecture for an old giant: The Matzen field, Austria. In J.Golonka & F. J.Picha (Eds.), The Carpathians and their foreland: Geology and hydrocarbon (Vol. 84, pp. 205–219). Tulsa, OK: The American Association of Petroleum Geologists.
    [Google Scholar]
  8. Grunert, P., Auer, G., Harzhauser, M., & Piller, W. (2015). Stratigraphic constraints for the upper Oligocene to lower Miocene Puchkirchen Group (North Alpine Foreland Basin, Central Paratethys). Newsletters on Stratigraphy, 48, 111–133. https://doi.org/10.1127/nos/2014/0056
    [Google Scholar]
  9. Gusterhuber, J., Dunkl, I., Hinsch, R., Linzer, H.‐G., & Sachsenhofer, R. (2012). Neogene uplift and erosion in the Alpine Foreland Basin (Upper Austria and Salzburg). Geologica Carpathica, 63, 295–305. https://doi.org/10.2478/v10096-012-0023-5
    [Google Scholar]
  10. Hinsch, R. (2008). New insights into the Oligocene to Miocene geological evolution of the molasse basin of Austria. Oil Gas European Magazine, 3(2008), 138–143.
    [Google Scholar]
  11. Jipa, D. C., & Olariu, C. (2009). Dacian Basin, Geo‐Eco‐Marina Special Publication 3 (p. 264). Bucharest: National Institute of Marine Geology and Geo‐ecology.
    [Google Scholar]
  12. Jipa, D. C., & Olariu, C. (2013). Sediment routing in a semi‐enclosed epicontinental sea: Dacian Basin, Paratethys domain, Late Neogene, Romania. Global and Planetary Change, 103, 193–206. https://doi.org/10.1016/j.gloplacha.2012.06.009
    [Google Scholar]
  13. Jiřiček, R., & Seifert, P. (1990). Palaeogeography of the Neogene in the Vienna Basin and the adjacent part of the foredeep. In D.Minaříková & H.Lobitzer (Eds.), Thirty years of geological cooperation between Austria and Czechoslovakia (pp. 89–105). Prague: Ustredni ustav Geologicky.
    [Google Scholar]
  14. Kováč, M., Baráth, I., Harzhauser, M., Hlavatý, I., & Hudáčková, N. (2004). Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Courier Forschungsinstitut Senckenberg, 246, 187–212.
    [Google Scholar]
  15. Kováč, M., Synak, R., Fordinál, K., Joniak, P., Tóth, C., Vojtko, R., … Minár, J. (2011). Late Miocene and Pliocene history of the Danube Basin: Inferred from development of depositional systems and timing of sedimentary facies changes. Geologica Carpathica, 62, 519–534. https://doi.org/10.2478/v10096-011-0037-4
    [Google Scholar]
  16. Krézsek, C., Schleder, Z., Bega, Z., Ionescu, G., & Tari, G. (2016). The Messinian sea‐level fall in the western Black Sea: Small or large? Insights from offshore Romania. Petroleum Geoscience, 22, 392–399. https://doi.org/10.1144/petgeo2015-093
    [Google Scholar]
  17. Kuhlemann, J., & Kempf, O. (2002). Post‐eocene evolution of the north alpine foreland basin and its response to alpine tectonics. Sedimentary Geology, 152, 45–78. https://doi.org/10.1016/S0037-0738(01)00285-8
    [Google Scholar]
  18. Laskarev, V. D. (1924). Sur les équivalents du Sarmatien supérieur en Serbie. In Recueil de travaux offert a M. Jovan Cviji par ses amis et collaborateurs a l'occasion de ses trente‐six ans de travail scientifique (pp 73–85). Belgrade: Državna Štamparija.
    [Google Scholar]
  19. Lee, E. Y., & Wagreich, M. (2016). 3D visualization of the sedimentary fill and subsidence evolution in the northern and central Vienna Basin (Miocene). Austrian Journal of Earth Sciences, 109, 241–251. https://doi.org/10.17738/ajes.2016.0018
    [Google Scholar]
  20. Leever, K. A., Matenco, L., Rabagia, T., Cloetingh, S., Krijgsman, W., & Stoica, M. (2009). Messinian sea level fall in the Dacic Basin (Eastern Paratethys): Palaeogeographical implications from seismic sequence stratigraphy. Terra Nova, 22, 12–17. https://doi.org/10.1111/j.1365-3121.2009.00910.x
    [Google Scholar]
  21. Magyar, I., Lantos, M., Ujszászi, K., & Kordos, L. (2007). Magnetostratigraphic, seismic and biostratigraphic correlations of the Upper Miocene sediments in the northwestern Pannonian Basin System. Geologica Carpathica, 58, 277–290.
    [Google Scholar]
  22. Magyar, I., Müller, P., Geary, D. H., Sanders, H. C., & Tari, G. C. (2000). Diachronous deposits of Lake Pannon in the Kisalföld basin reflect basin and mollusc evolution. Abhandlungen Der Geologischen Bundesanstalt, 56, 669–678.
    [Google Scholar]
  23. Magyar, I., Radivojevic, D., Sztanó, O., Synak, R., Ujszászi, K., & Pócsik, M. (2013). Progradation of the paleo‐Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103, 168–173. https://doi.org/10.1016/j.gloplacha.2012.06.007
    [Google Scholar]
  24. Matoshko, A., Matoshko, A., de Leeuw, A., & Stoica, M. (2016). Facies analysis of the Balta Formation: Evidence for a large late Miocene fluvio‐deltaic system in the East Carpathian Foreland. Sedimentary Geology, 343, 165–189. https://doi.org/10.1016/j.sedgeo.2016.08.004
    [Google Scholar]
  25. Munteanu, I., Matenco, L., Dinu, C., & Cloetingh, S. (2011). Kinematics of back‐arc inversion of the Western Black Sea Basin. Tectonics, 30(TC5004), 1–21. https://doi.org/10.1029/2011TC002865
    [Google Scholar]
  26. Munteanu, I., Matenco, L., Dinu, C., & Cloetingh, S. (2012). Effects of large sea‐level variations in connected basins: The Dacian‐Black Sea system of the Eastern Paratethys. Basin Research, 24, 583–597. https://doi.org/10.1111/j.1365-2117.2012.00541.x
    [Google Scholar]
  27. Olariu, C., Krezsek, C., & Jipa, D. C. (2017). The Danube river inception: Evidence for a 4 Ma continental‐scale river born from segmented ParaTethys basins. Terra Nova, 30, 63–71.
    [Google Scholar]
  28. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  29. Strauss, P., Harzhauser, M., Hinsch, R., & Wagreich, M. (2006). Sequence stratigraphy in a classic pull‐apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geologica Carpathica, 57, 185–197.
    [Google Scholar]
  30. Šujan, M., Braucher, R., Kovác, M., Bourlés, D. L., Rybár, S., Guillou, V., & Hudácková, N. (2016). Application of the authigenic 10Be/9Be dating method to Late Miocene – Pliocene sequences in the northern Danube Basin (Pannonian Basin System): Confirmation of heterochronous evolution of sedimentary environments. Global and Planetary Change, 137, 35–53. https://doi.org/10.1016/j.gloplacha.2015.12.013
    [Google Scholar]
  31. Sztanó, O., Kováč, M., Magyar, I., Šujan, M., Fodor, L., Uhrin, A., … Tőkés, L. (2016). Late Miocene sedimentary record of the Danube / Kisalföld Basin: Interregional correlation of depositional systems, stratigraphy and structural evolution. Geologica Carpathica, 67, 525–542. https://doi.org/10.1515/geoca-2016-0033
    [Google Scholar]
  32. Sztanó, O., Magyar, I., Szónoky, M., Lantos, M., Müller, P., Lenkey, L., … Csillag, G. (2013). Tihany Formation in the surroundings of Lake Balaton: Type locality, depositional setting and stratigraphy. Földtani Közlöny, 143, 73–98.
    [Google Scholar]
  33. Tărăpoancă, M., Bertotti, G., Maţenco, L., Dinu, C., & Cloetingh, S. A. P. L. (2003). Architecture of the Focşani Depression: A 13 km deep basin in the Carpathians bend zone. Tectonics, 22, https://doi.org/10.1029/2002TC001486
    [Google Scholar]
  34. Tari, G. (1996). Neoalpine tectonics of the Danube Basin (NW Pannonian Basin, Hungary)InP. A.Ziegler & F.Horváth (Eds.), Peri‐Tethys Memoir 2: Structure and prospects of Alpine basins and forelands (pp. 439–454). Paris: Mémoires du Muséum national d'Histoire naturelle.
    [Google Scholar]
  35. Vakarcs, G., Vail, P. R., Tari, G., Pogácsás, G. Y., Mattick, R. E., & Szabó, A. (1994). Third‐order Middle Miocene‐Early Pliocene depositional sequences in the prograding delta complex of the Pannonian basin. Tectonophysics, 240, 81–106. https://doi.org/10.1016/0040-1951(94)90265-8
    [Google Scholar]
  36. Winterberg, S., & Willett, S. D. (2019). Greater Alpine river network evolution, interpretations based on novel drainage analysis. Swiss Journal of Geosciences, 112, 3–22. https://doi.org/10.1007/s00015-018-0332-5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12401
Loading
/content/journals/10.1111/bre.12401
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): clinoform; Danube; Neogene; Paratethys; sediment flux; sedimentology; stratigraphy

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error