1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Understanding the development of sedimentary systems during continental rifting is important for tracking environmental change and lithospheric processes. Conceptual models have been developed for the sourcing, routing and facies architecture of sediments in rift‐settings, driven in part by quantitative sediment tracking. Here, we present laser ablation split‐stream detrital zircon U/Pb geochronology and Hf‐isotopes for post‐rift (Cretaceous‐Paleogene) clastic sediments from Ocean Drilling Program (ODP) wells and Plio‐Pleistocene palaeoshoreline material, from the southern margin of Australia. Provenance results are contextualized through comparison with well‐characterized source regions and regional pre‐ and syn‐rift sediment reservoirs to track changes associated with Australia‐Antarctica separation during East Gondwana break‐up. The provenance character of the post‐rift sediments studied are distinct from pre‐existing sediment reservoirs and demonstrate termination of previously stable sediment routing systems and a dominance of local basement of the Proterozoic Madura and Coompana provinces (~1.2 Ga and CHUR‐like Hf‐signatures; Moodini Supersuite) in offshore ODP wells. A composite post‐rift Cretaceous?‐Eocene sample in the easternmost well expresses characteristic Phanerozoic zircon age signatures associated with source regions in eastern Australia that are interpreted to reflect inversion in the Ceduna Sub‐basin to the east. Detrital zircon signatures in Plio‐Pleistocene palaeoshoreline sediment are also relatively distinct, indicating derivation from coastal erosion in the Leeuwin Complex (~0.5 and 0.7 Ga subchondritic grains) and Albany–Fraser Orogen (~1.2 Ga subchondritic grains) several hundred, to over a thousand kilometers to the west. Collectively, results highlight the fundamental geological processes associated with rifting that dramatically change the character of sediment provenance via (a) isolation of pre‐existing primary and secondary sources of detritus, (b) development of new source regions in basin compartmentalized highs and localized fault scarps, and (c) establishment of marine and coastal currents that redefine clastic sediment transport.

,

Detrital zircon U/Pb age and Hf‐isotopes facilitate a robust understanding of sediment source to sink relationships on the southern margin of Australia. Provenance analysis tracks complete reorganisation of sediment systems associated with the rifting of Australia and Antarctica during Gondwana break‐up.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12403
2020-09-26
2024-04-19
Loading full text...

Full text loading...

References

  1. Aitken, A. R. A., Young, D. A., Ferraccioli, F., Betts, P. G., Greenbaum, J. S., Richter, T. G., … Siegert, M. J. (2014). The subglacial geology of Wilkes Land, East Antarctica. Geophysical Research Letters, 41(7), 2390–2400. https://doi.org/10.1002/2014GL059405
    [Google Scholar]
  2. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235. http://www.nature.com/ngeo/journal/v4/n4/abs/ngeo1087.html#supplementary-information
    [Google Scholar]
  3. Ball, P., Eagles, G., Ebinger, C., McClay, K., & Totterdell, J. (2013). The spatial and temporal evolution of strain during the separation of Australia and Antarctica. Geochemistry, Geophysics, Geosystems, 14(8), 2771–2799. https://doi.org/10.1002/ggge.20160
    [Google Scholar]
  4. Barham, M., Kirkland, C. L., & Danišík, M. (2019). Assessing volcanic origins within detrital zircon populations – a case study from the Mesozoic non‐volcanic margin of southern Australia. Geoscience Frontiers, https://doi.org/10.1016/j.gsf.2019.01.003
    [Google Scholar]
  5. Barham, M., Kirkland, C. L., & Hollis, J. (2019). Spot the difference: Zircon disparity tracks crustal evolution. Geology, 47(5), 435–439. https://doi.org/10.1130/G45840.1
    [Google Scholar]
  6. Barham, M., Kirkland, C. L., Reynolds, S., O’Leary, M. J., Evans, N. J., Allen, H., … Goodall, J. (2016). The answers are blowin’ in the wind: Ultra‐distal ashfall zircons, indicators of Cretaceous super‐eruptions in eastern Gondwana. Geology, 44(8), 643–646. https://doi.org/10.1130/g38000.1
    [Google Scholar]
  7. Barham, M., Reynolds, S., Kirkland, C. L., O'Leary, M. J., Evans, N. J., Allen, H. J., … McDonald, B. J. (2018). Sediment routing and basin evolution in Proterozoic to Mesozoic east Gondwana: A case study from southern Australia. Gondwana Research, 58, 122–140. https://doi.org/10.1016/j.gr.2018.03.006
    [Google Scholar]
  8. Barnett‐Moore, N., Flament, N., Heine, C., Butterworth, N., & Müller, R. D. (2014). Cenozoic uplift of south Western Australia as constrained by river profiles. Tectonophysics, 622, 186–197. https://doi.org/10.1016/j.tecto.2014.03.010
    [Google Scholar]
  9. Bein, J., & Taylor, M. L. (1981). The Eyre Sub‐basin: Recent exploration results. APEA Journal, 21(1), 91–98. https://doi.org/10.1071/AJ80012
    [Google Scholar]
  10. Belousova, E., Griffin, W., O'Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602–622. https://doi.org/10.1007/s00410-002-0364-7
    [Google Scholar]
  11. Belousova, E. A., Reid, A. J., Griffin, W. L., & O'Reilly, S. Y. (2009). Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U‐Pb and Hf isotopes in detrital zircon. Lithos, 113(3–4), 570–582. https://doi.org/10.1016/j.lithos.2009.06.028
    [Google Scholar]
  12. Bendall, B., Jensen‐Schmidt, B., Holford, S., Dutch, R., & Pawley, M. (2016). Insights into the nature and extent of sedimentary basins underlying the Eucla Basin from reprocessing and interpretation of the 13GA‐EG1 Eucla‐Gawler Seismic Survey. Adelaide, South Australia: Paper presented at the Australian Earth Sciences Convention.
    [Google Scholar]
  13. Betts, P. G., & Giles, D. (2006). The 1800–1100 Ma tectonic evolution of Australia. Precambrian Research, 144(1), 92–125. https://doi.org/10.1016/j.precamres.2005.11.006
    [Google Scholar]
  14. Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., … Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace‐element‐related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003
    [Google Scholar]
  15. Blakey, R. C. (2008). Gondwana paleogeography from assembly to breakup ‐ A 500 m.y. odyssey. In C. R.Fielding, T. D.Frank, & J. L.Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space (pp. 1–28). Boulder, Colorado: The Geological Society of America, Special Paper 441.
    [Google Scholar]
  16. Blatt, H., & Jones, R. L. (1975). Proportions of Exposed Igneous, Metamorphic, and Sedimentary Rocks. GSA Bulletin, 86(8), 1085–1088. https://doi.org/10.1130/0016-7606(1975)86<1085:POEIMA>2.0.CO;2
    [Google Scholar]
  17. Blevin, J. E., & Cathro, D. L. (2008). Australian Southern Margin Synthesis, Project GA707. Retrieved from.
    [Google Scholar]
  18. Blichert‐Toft, J., & Albarède, F. (1997). The Lu‐Hf isotope geochemistry of chondrites and the evolution of the mantle‐crust system. Earth and Planetary Science Letters, 148(1–2), 243–258. https://doi.org/10.1016/S0012-821X(97)00040-X
    [Google Scholar]
  19. Bodorkos, S., Love, G. J., Nelson, D. R., & Wingate, M. T. D. (2006). 149695: Quartz sandstone, Quadrio Lake; Geochronology dataset 616. Compilation of geochronology data, June 2006 update. Western Australia Geological Survey.
    [Google Scholar]
  20. Boger, S. D. (2011). Antarctica — Before and after Gondwana. Gondwana Research, 19(2), 335–371. https://doi.org/10.1016/j.gr.2010.09.003
    [Google Scholar]
  21. Bradshaw, B. E., Rollet, N., Totterdell, J. M., & Borissova, I. (2003). A revised structural framework for frontier basins on the Southern and Southwestern Australian Continental Margin. Geoscience Australia, Record, 2003(03), 1–94.
    [Google Scholar]
  22. Bryan, S. E., Constantine, A. E., Stephens, C. J., Ewart, A., Schön, R. W., & Parianos, J. (1997). Early Cretaceous volcano‐sedimentary successions along the eastern Australian continental margin: Implications for the break‐up of eastern Gondwana. Earth and Planetary Science Letters, 153(1–2), 85–102. https://doi.org/10.1016/S0012-821X(97)00124-6
    [Google Scholar]
  23. Bryan, S. E., Cook, A. G., Allen, C. M., Siegel, C., Purdy, D. J., Greentree, J. S., & Uysal, I. T. (2012). Early‐mid cretaceous tectonic evolution of eastern Gondwana: From silicic LIP magmatism to continental rupture. Episodes, 35(1), 142–152.
    [Google Scholar]
  24. Camacho, A., Hensen, B. J., & Armstrong, R. (2002). Isotopic test of a thermally driven intraplate orogenic model, Australia. Geology, 30(10), 887–890. https://doi.org/10.1130/0091-7613(2002)030%3c0887:ITOATD%3e2.0.CO;2
    [Google Scholar]
  25. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40(10), 875–878. https://doi.org/10.1130/g32945.1
    [Google Scholar]
  26. Cawood, P. A., & Korsch, R. J. (2008). Assembling Australia: Proterozoic building of a continent. Precambrian Research, 166(1–4), 1–35. https://doi.org/10.1016/j.precamres.2008.08.006
    [Google Scholar]
  27. Cawood, P. A., & Nemchin, A. A. (2000). Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134(3–4), 209–234. https://doi.org/10.1016/S0037-0738(00)00044-0
    [Google Scholar]
  28. Cawood, P. A., Nemchin, A. A., Freeman, M., & Sircombe, K. (2003). Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210(1–2), 259–268. https://doi.org/10.1016/S0012-821X(03)00122-5
    [Google Scholar]
  29. Collins, A. S. (2003). Structure and age of the northern Leeuwin Complex, Western Australia: Constraints from field mapping and U‐Pb isotopic analysis. Australian Journal of Earth Sciences, 50(4), 585–599. https://doi.org/10.1046/j.1440-0952.2003.01014.x
    [Google Scholar]
  30. Corti, G. (2009). Continental rift evolution: From rift initiation to incipient break‐up in the Main Ethiopian Rift, East Africa. Earth‐science Reviews, 96(1), 1–53. https://doi.org/10.1016/j.earscirev.2009.06.005
    [Google Scholar]
  31. de Broekert, P., & Sandiford, M. (2005). Buried inset‐valleys in the eastern Yilgarn Craton, Western Australia: Geomorphology, age, and allogenic control. The Journal of Geology, 113(4), 471–493. https://doi.org/10.1086/430244
    [Google Scholar]
  32. Direen, N. G., Borissova, I., Stagg, H. M. J., Colwell, J. B., & Symonds, P. A. (2007). Nature of the continent–ocean transition zone along the southern Australian continental margin: A comparison of the Naturaliste Plateau, SW Australia, and the central Great Australian Bight sectors. Geological Society, London, Special Publications, 282(1), 239–263. https://doi.org/10.1144/sp282.12
    [Google Scholar]
  33. Direen, N. G., Stagg, H. M. J., Symonds, P. A., & Colwell, J. B. (2011). Dominant symmetry of a conjugate southern Australian and East Antarctic magma‐poor rifted margin segment. Geochemistry, Geophysics, Geosystems, 12(2). https://doi.org/10.1029/2010GC003306
    [Google Scholar]
  34. Espurt, N., Callot, J.‐P., Roure, F., Totterdell, J. M., Struckmeyer, H. I. M., & Vially, R. (2012). Transition from symmetry to asymmetry during continental rifting: An example from the Bight Basin‐Terre Adélie (Australian and Antarctic conjugate margins). Terra Nova, 24(3), 167–180. https://doi.org/10.1111/j.1365-3121.2011.01055.x
    [Google Scholar]
  35. Espurt, N., Callot, J.‐P., Totterdell, J., Struckmeyer, H., & Vially, R. (2009). Interactions between continental breakup dynamics and large‐scale delta system evolution: Insights from the Cretaceous Ceduna delta system, Bight Basin, Southern Australian margin. Tectonics, 28(6), https://doi.org/10.1029/2009TC002447
    [Google Scholar]
  36. Feary, D. A., Hine, A. C., James, N. P., & Malone, M. J. (2004). Leg 182 synthesis: exposed secrets of the Great Australian Bight. In A. C.Hine, D. A.Feary, & M. J.Malone (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 182, pp. 1–30). College Station, TX: Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.182.017.2004
    [Google Scholar]
  37. Feary, D. A., Hine, A. C., & Malone, M. J. (1999). Ocean Drilling Program Leg 182 preliminary report ‐ Great Australian Bight: Cenozoic cool‐water carbonates. Texas: A&M University.
    [Google Scholar]
  38. Feary, D. A., & James, N. P. (1998). Seismic stratigraphy and geological evolution of the Cenozoic, cool‐water Eucla Platform. Great Australian Bight. AAPG Bulletin, 82(5A), 792–816.
    [Google Scholar]
  39. Fedo, C. M., Sircombe, K. N., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1), 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  40. Fielding, L., Najman, Y., Millar, I., Butterworth, P., Ando, S., Padoan, M., … Kneller, B. (2017). A detrital record of the Nile River and its catchment. Journal of the Geological Society, 174(2), 301–317. https://doi.org/10.1144/jgs2016-075
    [Google Scholar]
  41. Fitzsimons, I. C. W. (2003). Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. Geological Society, London, Special Publications, 206(1), 93–130. https://doi.org/10.1144/gsl.sp.2003.206.01.07
    [Google Scholar]
  42. Fraser, G. L., & Neumann, N. L. (2016). Under the Nullarbor: New SHRIMP UPb zircon ages from the Coompana, Madura and Albany‐Fraser Provinces, and Officer Basin, western South Australia and eastern Western Australia: July 2014‐June 2015. Canberra: Record 2016/16. Geoscience Australia.
    [Google Scholar]
  43. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
    [Google Scholar]
  44. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  45. Gibbons, A. D., Whittaker, J. M., & Müller, R. D. (2013). The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best‐fit tectonic model. Journal of Geophysical Research: Solid Earth, 118(3), 808–822. https://doi.org/10.1002/jgrb.50079
    [Google Scholar]
  46. Gibson, G. M., Totterdell, J. M., White, L. T., Mitchell, C. H., Stacey, A. R., Morse, M. P., & Whitaker, A. (2013). Pre‐existing basement structure and its influence on continental rifting and fracture zone development along Australia’s southern rifted margin. Journal of the Geological Society, 170(2), 365. https://doi.org/10.1144/jgs2012-040
    [Google Scholar]
  47. Grey, K., Hocking, R. H., Stevens, M. K., Bagas, L., Carlsen, G. M., Irimies, F., … Apak, S. N. (2005). Lithostratigraphic nomenclature of the Officer Basin and correlative parts of the Paterson Orogen. Western Australia: Geological Survey of Western Australia Report, 93.
    [Google Scholar]
  48. Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J., & O’Reilly, S. Y. (2004). Archean crustal evolution in the northern Yilgarn Craton: U‐Pb and Hf‐isotope evidence from detrital zircons. Precambrian Research, 131(3–4), 231–282. https://doi.org/10.1016/j.precamres.2003.12.011
    [Google Scholar]
  49. Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., … Schwartz, J. J. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7), 643–646. https://doi.org/10.1130/g23603a.1
    [Google Scholar]
  50. Grimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. E. (2015). “Fingerprinting” tectono‐magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170(5–6), 1–26. https://doi.org/10.1007/s00410-015-1199-3
    [Google Scholar]
  51. Haines, P. W., Hocking, R. M., Grey, K., & Stevens, M. K. (2008). Vines 1 revisited: Are older Neoproterozoic glacial deposits preserved in Western Australia?Australian Journal of Earth Sciences, 55(3), 397–406. https://doi.org/10.1080/08120090701769506
    [Google Scholar]
  52. Haines, P. W., Kirkland, C. L., Wingate, M. T. D., Allen, H., Belousova, E. A., & Gréau, Y. (2016). Tracking sediment dispersal during orogenesis: A zircon age and Hf isotope study from the western Amadeus Basin, Australia. Gondwana Research, 37, 324–347. https://doi.org/10.1016/j.gr.2015.08.011
    [Google Scholar]
  53. Haines, P. W., Wingate, M. T. D., & Kirkland, C. L. (2013). Detrital Zircon U–Pb ages from the Paleozoic of the Canning and Officer Basins, Western Australia: Implications for provenance and interbasin connections. Proceedings of the West Australian Basins Symposium, sponsored by the Western Australian Branch of the Petroleum Exploration Society of Australia, Perth, 1–19.
    [Google Scholar]
  54. Hawkesworth, C. J., & Kemp, A. I. S. (2006). Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3–4), 144–162. https://doi.org/10.1016/j.chemgeo.2005.09.018
    [Google Scholar]
  55. Holford, S. P., Tuitt, A. K., Hillis, R. R., Green, P. F., Stoker, M. S., Duddy, I. R., … Tassone, D. R. (2014). Cenozoic deformation in the Otway Basin, southern Australian margin: Implications for the origin and nature of post‐breakup compression at rifted margins. Basin Research, 26, 10–37. https://doi.org/10.1111/bre.12035
    [Google Scholar]
  56. Hou, B., Alley, N. F., Frakes, L. A., Stoian, L., & Cowley, W. M. (2006). Eocene stratigraphic succession in the Eucla Basin of South Australia and correlation to major regional sea‐level events. Sedimentary Geology, 183(3–4), 297–319. https://doi.org/10.1016/j.sedgeo.2005.10.007
    [Google Scholar]
  57. Hou, B., Keeling, J., Reid, A., Fairclough, M., Wairland, I., Belousova, E., … Hocking, R. (2011). Heavy mineral sands in the Eucla Basin, Southern Australia: Depositional and province‐scale prospectivity. Economic Geology, 106, 687–712.
    [Google Scholar]
  58. Huston, D. L., Blewett, R. S., & Champion, D. C. (2012). Australia through time: A summary of its tectonic and metallogenic evolution. Episodes, 35(1), 23–43.
    [Google Scholar]
  59. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U‐Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  60. James, N. P., & Bone, Y. (2007). A late Pliocene–early Pleistocene, inner‐shelf, subtropical, seagrass‐dominated carbonate: Roe Calcarenite, Great Australian Bight, Western Australia.Palaios, 22(4), 343–359. https://doi.org/10.2110/palo.2005.p05-117r
    [Google Scholar]
  61. James, N. P., Bone, Y., Collins, L. B., & Kurtis Kyser, T. (2001). Surficial sediments of the great australian bight: Facies dynamics and oceanography on a vast cool‐water carbonate shelf. Journal of Sedimentary Research, 71(4), 549–567. https://doi.org/10.1306/102000710549
    [Google Scholar]
  62. James, N. P., Feary, D. A., Betzler, C., Bone, Y., Holbourn, A. E., Li, Q., … Surlyk, F. (2004). Origin of late pleistocene bryozoan reef mounds; Great Australian Bight. Journal of Sedimentary Research, 74(1), 20–48. https://doi.org/10.1306/062303740020
    [Google Scholar]
  63. JNOC
    JNOC (1992). Geological and geophysical study in offshore Eucla Basins, Western Australia. Retrieved from Tokyo, Japan.
    [Google Scholar]
  64. Johnson, S. P. (2013). The birth of supercontinents and the Proterozoic assembly of Western Australia: Geological Survey of Western Australia.
    [Google Scholar]
  65. Kirkland, C. L., Smithies, R. H., & Spaggiari, C. V. (2015). Foreign contemporaries – Unravelling disparate isotopic signatures from Mesoproterozoic Central and Western Australia. Precambrian Research, 265, 218–231. https://doi.org/10.1016/j.precamres.2014.12.001
    [Google Scholar]
  66. Kirkland, C. L., Smithies, R. H., Spaggiari, C. V., Wingate, M., Quentin de Gromard, R., Clark, C., … Belousova, E. A. (2017). Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna. Lithos, 278–281, 427–444. https://doi.org/10.1016/j.lithos.2017.01.029
    [Google Scholar]
  67. Kirkland, C. L., Smithies, R. H., Woodhouse, A. J., Howard, H. M., Wingate, M. T. D., Belousova, E. A., … Spaggiari, C. V. (2013). Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research, 23(2), 759–781. https://doi.org/10.1016/j.gr.2012.06.001
    [Google Scholar]
  68. Kositcin, N. (2010). Geodynamic synthesis of the Gawler Craton and Curnamona Province (Vol. 2010/27). Geoscience Australia Record.
    [Google Scholar]
  69. Krassay, A. A., & Totterdell, J. M. (2003). Seismic stratigraphy of a large, Cretaceous shelf‐margin delta complex, offshore southern Australia. AAPG Bulletin, 87(6), 935–963. https://doi.org/10.1306/01240300015
    [Google Scholar]
  70. Lambiase, J. J., Morley, C. K., White, R. S., Watts, A. B., Bowler, D., Holroyd, R., & Kusznir, N. (1999). Hydrocarbons in rift basins: The role of stratigraphy [and discussion]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357(1753), 877–900. https://doi.org/10.1098/rsta.1999.0356
    [Google Scholar]
  71. Leeder, M. R., & Jackson, J. A. (1993). The interaction between normal faulting and drainage in active extensional basins, with examples from the western United States and central Greece. Basin Research, 5(2), 79–102. https://doi.org/10.1111/j.1365-2117.1993.tb00059.x
    [Google Scholar]
  72. Li, Q., James, N. P., & McGowran, B. (2003). Middle and Late Eocene Great Australian Bight lithobiostratigraphy and stepwise evolution of the southern Australian continental margin. Australian Journal of Earth Sciences, 50(1), 113–128. https://doi.org/10.1046/j.1440-0952.2003.00978.x
    [Google Scholar]
  73. Lloyd, J., Collins, A. S., Payne, J. L., Glorie, S., Holford, S., & Reid, A. J. (2016). Tracking the Cretaceous transcontinental Ceduna River through Australia: The hafnium isotope record of detrital zircons from offshore southern Australia. Geoscience Frontiers, 7(2), 237–244. https://doi.org/10.1016/j.gsf.2015.06.001
    [Google Scholar]
  74. Lowry, D. C. (1970). Geology of the Western Australian part of the Eucla Basin. (Bulletin 122). Perth: Geological Survey of Western Australia.
    [Google Scholar]
  75. Ludwig, K. R. (1998). On the treatment of concordant uranium‐lead ages. Geochimica Et Cosmochimica Acta, 62(4), 665–676. https://doi.org/10.1016/S0016-7037(98)00059-3
    [Google Scholar]
  76. Ludwig, K. R. (2012). User’s manual for Isoplot/Ex, vol 3.75, a geochronological toolkit for Microsoft Excel (p. 5). Berkeley, CA: Berkeley Geochronological Center.
    [Google Scholar]
  77. Macdonald, J., Backé, G., King, R., Holford, S., & Hillis, R. (2012). Geomechanical modelling of fault reactivation in the Ceduna Sub‐basin, Bight Basin, Australia. Geological Society, London, Special Publications, 367(1), 71. https://doi.org/10.1144/SP367.6
    [Google Scholar]
  78. MacDonald, J. D., Holford, S. P., Green, P. F., Duddy, I. R., King, R. C., & Backé, G. (2013). Detrital zircon data reveal the origin of Australia’s largest delta system. Journal of the Geological Society, 170(1), 3–6. https://doi.org/10.1144/jgs2012-093
    [Google Scholar]
  79. Makulini, P., Kirkland, C. L., & Barham, M. (2019). Zircon grain shape holds provenance information; a case study from southwestern Australia. Geological Journal, 54, 1279–1293.
    [Google Scholar]
  80. Mann, P., Gahagan, L., & Gordon, M. B. (2003). Tectonic setting of the World's giant oil and gas fields. In M. T.Halbouty (Ed.), Giant oil and gas fields in the decade 1990–1999 (pp. 15–105). AAPG Memoir 78.
    [Google Scholar]
  81. Markwitz, V., Kirkland, C. L., & Evans, N. J. (2016). Early Cambrian metamorphic zircon in the northern Pinjarra Orogen: Implications for the structure of the West Australian Craton margin. Lithosphere, https://doi.org/10.1130/l569.1
    [Google Scholar]
  82. Mason, C. C., Fildani, A., Gerber, T., Blum, M. D., Clark, J. D., & Dykstra, M. (2017). Climatic and anthropogenic influences on sediment mixing in the Mississippi source‐to‐sink system using detrital zircons: Late Pleistocene to recent. Earth and Planetary Science Letters, 466, 70–79. https://doi.org/10.1016/j.epsl.2017.03.001
    [Google Scholar]
  83. Meeuws, F. J. E., Holford, S. P., Foden, J. D., & Schofield, N. (2016). Distribution, chronology and causes of Cretaceous – Cenozoic magmatism along the magma‐poor rifted southern Australian margin: Links between mantle melting and basin formation. Marine and Petroleum Geology, 73, 271–298. https://doi.org/10.1016/j.marpetgeo.2016.03.003
    [Google Scholar]
  84. Mole, D. R., Fiorentini, M. L., Cassidy, K. F., Kirkland, C. L., Thebaud, N., McCuaig, T. C., … Miller, J. (2013). Crustal evolution, intra‐cratonic architecture and the metallogeny of an Archaean craton. Geological Society, London, Special Publications, 393(1), 23–80. https://doi.org/10.1144/sp393.8
    [Google Scholar]
  85. Mole, D. R., Fiorentini, M. L., Thebaud, N., Cassidy, K. F., McCuaig, T. C., Kirkland, C. L., … Miller, J. (2014). Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Sciences, 111(28), 10083. https://doi.org/10.1073/pnas.1400273111
    [Google Scholar]
  86. Morel, M. L. A., Nebel, O., Nebel‐Jacobsen, Y. J., Miller, J. S., & Vroon, P. Z. (2008). Hafnium isotope characterization of the GJ‐1 zircon reference material by solution and laser‐ablation MC‐ICPMS. Chemical Geology, 255(1), 231–235. https://doi.org/10.1016/j.chemgeo.2008.06.040
    [Google Scholar]
  87. Morón, S., Cawood, P. A., Haines, P. W., Gallagher, S. J., Zahirovic, S., Lewis, C. J., & Moresi, L. (2019). Long‐lived transcontinental sediment transport pathways of East Gondwana. Geology, 47(6), 513–516. https://doi.org/10.1130/G45915.1
    [Google Scholar]
  88. Morrissey, L. J., Hand, M., & Kelsey, D. E. (2017). A curious case of agreement between conventional thermobarometry and phase equilibria modelling in granulites: New constraints on P‐T estimates in the Antarctica segment of the Musgrave–Albany–Fraser–Wilkes Orogen. Journal of Metamorphic Geology, 35(9), 1023–1050. https://doi.org/10.1111/jmg.12266
    [Google Scholar]
  89. Morrissey, L. J., Payne, J. L., Hand, M., Clark, C., Taylor, R., Kirkland, C. L., & Kylander‐Clark, A. (2017). Linking the Windmill Islands, east Antarctica and the Albany‐Fraser Orogen: Insights from U‐Pb zircon geochronology and Hf isotopes. Precambrian Research, 293, 131–149. https://doi.org/10.1016/j.precamres.2017.03.005
    [Google Scholar]
  90. Müller, R. D., Flament, N., Matthews, K. J., Williams, S. E., & Gurnis, M. (2016). Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 441, 60–70. https://doi.org/10.1016/j.epsl.2016.02.025
    [Google Scholar]
  91. Nelson, D. R. (1997). Evolution of the Archaean granite‐greenstone terranes of the Eastern Goldfields, Western Australia: SHRIMP U‐Pb zircon constraints. Precambrian Research, 83(1), 57–81. https://doi.org/10.1016/S0301-9268(97)00005-3
    [Google Scholar]
  92. Nelson, D. R. (1999). 154109: Quartz‐carbonate diamictite, Empress 1A. In Compilation of geochronology data, 1998 (pp. 190–193). Western Australia Geological Survey, Record 1999/2.
    [Google Scholar]
  93. Nelson, D. R. (2002a). 154880: Sandstone, Pirrilyungka Outstation; Geochronology dataset 259. In Compilation of geochronology data, June 2006 update. Western Australia Geological Survey.
    [Google Scholar]
  94. Nelson, D. R. (2002b). 154881: Sandstone, Pirrilyungka Outstation; Geochronology dataset 260. In Compilation of geochronology data, June 2006 update. Western Australia Geological Survey.
    [Google Scholar]
  95. Nelson, D. R. (2004a). 154666: Arenite, Empress 1A; Geochronology dataset 52. In Compilation of geochronology data, June 2006 update. Western Australia Geological Survey.
    [Google Scholar]
  96. Nelson, D. R. (2004b). 154667: Sandstone, Empress 1A; Geochronology dataset 258. In Compilation of geochronology data, June 2006 update. Western Australia Geological Survey.
    [Google Scholar]
  97. Nelson, D. R. (2004c). 154668: Sandstone, Empress 1A; Geochronology dataset 53. In Compilation of geochronology data, June 2006 update. Western Australia Geological Survey.
    [Google Scholar]
  98. Neumann, N. L., & Fraser, G. L. (2016). Under the Nullarbor: New SHRIMP U‐Pb zircon ages from the Coompana, Madura and Albany‐Fraser Provinces, and Officer Basin, western South Australia and eastern Western Australia. Commonwealth of Australia (Geoscience Australia), Canberra, Australia.
  99. Olierook, H. K. H., Barham, M., Fitzsimons, I. C. W., Timms, N. E., Jiang, Q., Evans, N. J., & McDonald, B. J. (2019). Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U‐Pb and Hf isotope analysis from the Perth Basin, Western Australia. Gondwana Research, 66, 126–142. https://doi.org/10.1016/j.gr.2018.11.002
    [Google Scholar]
  100. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  101. Payne, J. L., Hand, M., Barovich, K. M., Reid, A., & Evans, D. A. D. (2009). Correlations and reconstruction models for the 2500–1500 Ma evolution of the Mawson Continent. Geological Society, London, Special Publications, 323(1), 319–355. https://doi.org/10.1144/sp323.16
    [Google Scholar]
  102. Pearce, A., Hart, A., Murphy, D., & Rice, H. (2015). Seasonal wind patterns around the Western Australian coastline and their application in fisheries analysis. Western Australia: Department of Fisheries.
    [Google Scholar]
  103. Quigley, M. C., Clark, D., & Sandiford, M. (2010). Tectonic geomorphology of Australia. Geological Society, London, Special Publications, 346(1), 243–265. https://doi.org/10.1144/sp346.13
    [Google Scholar]
  104. Reid, A., Keeling, J., Boyd, D., Belousova, E., & Hou, B. (2013). Source of zircon in world‐class heavy mineral placer deposits of the Cenozoic Eucla Basin, southern Australia from LA‐ICPMS U‐Pb geochronology. Sedimentary Geology, 286–287, 1–19. https://doi.org/10.1016/j.sedgeo.2012.10.008
    [Google Scholar]
  105. Requilme, L. (2016). Detrital mineral assemblage analysis of modern and ancient shorelines from Western Australia. (BSc (Hons.)), Curtin University.
    [Google Scholar]
  106. Roberts, N. M. W., & Spencer, C. J. (2015). The zircon archive of continent formation through time. Geological Society, London, Special Publications, 389(1), 197–225. https://doi.org/10.1144/sp389.14
    [Google Scholar]
  107. Ronov, A. B., Khain, V. E., Balukhovsky, A. N., & Seslavinsky, K. B. (1980). Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology, 25(4), 311–325. https://doi.org/10.1016/0037-0738(80)90067-6
    [Google Scholar]
  108. Rovere, A., Raymo, M. E., Mitrovica, J. X., Hearty, P. J., O'Leary, M. J., & Inglis, J. D. (2014). The Mid‐Pliocene sea‐level conundrum: Glacial isostasy, eustasy and dynamic topography. Earth and Planetary Science Letters, 387, 27–33. https://doi.org/10.1016/j.epsl.2013.10.030
    [Google Scholar]
  109. Salles, T., Flament, N., & Müller, D. (2017). Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period. Geochemistry, Geophysics, Geosystems, 18(1), 280–305. https://doi.org/10.1002/2016GC006617
    [Google Scholar]
  110. Sandiford, M. (2007). The tilting continent: A new constraint on the dynamic topographic field from Australia. Earth and Planetary Science Letters, 261(1–2), 152–163. https://doi.org/10.1016/j.epsl.2007.06.023
    [Google Scholar]
  111. Scherer, E., Münker, C., & Mezger, K. (2001). Calibration of the lutetium‐hafnium clock. Science, 293(5530), 683–687. https://doi.org/10.1126/science.1061372
    [Google Scholar]
  112. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., … Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth‐Science Reviews, 113(3), 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    [Google Scholar]
  113. Shaanan, U., Rosenbaum, G., & Sihombing, F. M. H. (2017). Continuation of the Ross‐Delamerian Orogen: Insights from eastern Australian detrital‐zircon data. Australian Journal of Earth Sciences, 65(7‐8), 1123–1131. https://doi.org/10.1080/08120099.2017.1354916
    [Google Scholar]
  114. Sircombe, K. N., & Freeman, M. J. (1999). Provenance of detrital zircons on the Western Australia coastline—Implications for the geologic history of the Perth basin and denudation of the Yilgarn craton. Geology, 27(10), 879–882. https://doi.org/10.1130/0091-7613(1999)027<0879:podzot>2.3.co;2
    [Google Scholar]
  115. Spaggiari, C. V., Kirkland, C. L., Smithies, R. H., Wingate, M. T. D., & Belousova, E. A. (2015). Transformation of an Archean craton margin during Proterozoic basin formation and magmatism: The Albany‐Fraser Orogen, Western Australia. Precambrian Research, 266, 440–466. https://doi.org/10.1016/j.precamres.2015.05.036
    [Google Scholar]
  116. Spaggiari, C. V., & Smithies, R. H. (2015). Eucla basement stratigraphic drilling results release workshop: Extended abstracts. Retrieved from.
    [Google Scholar]
  117. Stagg, H. M. J., Cockshell, C. D., Willcox, J. B., Hill, A. J., Needham, D. J. L., Thomas, B., & Hough, L. P. (1990). Basins of the Great Australian Bight region: Geology and petroleum potential. Bureau of Mineral Resources, Continental Margins Program Folio 5.
    [Google Scholar]
  118. Totterdell, J. M., Blevin, J. E., Struckmeyer, H. I. M., Bradshaw, B. E., Colwell, J. B., & Kennard, J. M. (2000). A new sequence framework for the Great Australian Bight: Starting with a clean slate. Australian Petroleum Production & Exploration Association, 40, 95–117. https://doi.org/10.1071/AJ99007
    [Google Scholar]
  119. Totterdell, J. M., & Bradshaw, B. E. (2004). The structural framework and tectonic evolution of the Bight Basin. In P. J.Boult, D. R.Johns, & S. C.Lang (Eds.), Eastern Australasian Basins Symposium II (pp. 41–61). Petroleum Exploration Society of Australia, Special Publication.
    [Google Scholar]
  120. Totterdell, J. M., & Krassay, A. A. (2003). Sequence stratigraphic correlation of onshore and offshore Bight Basin successions. Retrieved from.
    [Google Scholar]
  121. Tucker, R. T. (2014). Stratigraphy, sedimentation and age of the upper Cretaceous Winton Formation, central‐western Queensland, Australia: Implications for regional palaeogeography, palaeoenvironments and Gondwanan palaeontology. (PhD), James Cook University.
    [Google Scholar]
  122. Tucker, R. T., Roberts, E. M., Henderson, R. A., & Kemp, A. I. S. (2016). Large igneous province or long‐lived magmatic arc along the eastern margin of Australia during the Cretaceous? Insights from the sedimentary record. Geological Society of America Bulletin, 128(9–10), 1461–1480. https://doi.org/10.1130/b31337.1
    [Google Scholar]
  123. Tucker, R. T., Roberts, E. M., Hu, Y., Kemp, A. I. S., & Salisbury, S. W. (2013). Detrital zircon age constraints for the Winton Formation, Queensland: Contextualizing Australia's Late Cretaceous dinosaur faunas. Gondwana Research, 24(2), 767–779. https://doi.org/10.1016/j.gr.2012.12.009
    [Google Scholar]
  124. Vavrek, M. J. (2016). The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity. Biology Letters, 12(9), 20160528. https://doi.org/10.1098/rsbl.2016.0528
    [Google Scholar]
  125. Veevers, J. J., Belousova, E. A., & Saeed, A. (2016). Zircons traced from the 700–500 Ma Transgondwanan Supermountains and the Gamburtsev Subglacial Mountains to the Ordovician Lachlan Orogen, Cretaceous Ceduna Delta, and modern Channel Country, central‐southern Australia. Sedimentary Geology, 334, 115–141. https://doi.org/10.1016/j.sedgeo.2016.01.014
    [Google Scholar]
  126. Veevers, J. J., Saeed, A., Belousova, E. A., & Griffin, W. L. (2005). U‐Pb ages and source composition by Hf‐isotope and trace‐element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth‐Science Reviews, 68(3–4), 245–279. https://doi.org/10.1016/j.earscirev.2004.05.005
    [Google Scholar]
  127. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3), 441–451. https://doi.org/10.1016/j.epsl.2004.05.037
    [Google Scholar]
  128. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312–313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  129. Vermeesch, P. (2018). Dissimilarity measures in detrital geochronology. Earth‐Science Reviews, 178, 310–321. https://doi.org/10.1016/j.earscirev.2017.11.027
    [Google Scholar]
  130. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336(Supplement C), 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  131. Walter, M. R., Veevers, J. J., Calver, C. R., & Grey, K. (1995). Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Research, 73(1), 173–195. https://doi.org/10.1016/0301-9268(94)00077-5
    [Google Scholar]
  132. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., … Spiegel, W. (1995). Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards Newsletter, 19(1), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
    [Google Scholar]
  133. Willcox, J. B., & Stagg, H. M. J. (1990). Australia's southern margin: A product of oblique extension. Tectonophysics, 173(1), 269–281. https://doi.org/10.1016/0040-1951(90)90223-U
    [Google Scholar]
  134. Wingate, M. T. D., & Bodorkos, S. (2007a). 181871: Quartz sandstone, Lancer 1; Geochronology dataset 683. In Compilation of geochronology data. Western Australia Geological Survey.
    [Google Scholar]
  135. Wingate, M. T. D., & Bodorkos, S. (2007b). 181872: Quartz sandstone, Lancer 1; Geochronology dataset 684. In Compilation of geochronology data. Western Australia Geological Survey.
    [Google Scholar]
  136. Wingate, M. T. D., & Bodorkos, S. (2007c). 181873: Quartz sandstone, Lancer 1; Geochronology dataset 685. In Compilation of geochronology data. Western Australia Geological Survey.
    [Google Scholar]
  137. Wingate, M. T. D., Kirkland, C. L., Haines, P. W., & Hocking, R. M. (2013). 199424: Sandstone, Empress 1; Geochronology Record 1113. Geological Survey of Western Australia.
    [Google Scholar]
  138. Wingate, M. T. D., Kirkland, C. L., Spaggiari, C. V., & Smithies, R. H. (2015). U‐Pb geochronology of the Madura Province. In C. V.Spaggiari, & R. H.Smithies (Eds.), Eucla basement stratigraphic drilling results release workshop: Extended abstracts (pp. 14–16). Geological Survey of Western Australia, Record 2015/10.
    [Google Scholar]
  139. Woodhead, J. D., & Hergt, J. M. (2005). A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2), 183–195. https://doi.org/10.1111/j.1751-908X.2005.tb00891.x
    [Google Scholar]
  140. Xu, J., Snedden, J. W., Stockli, D. F., Fulthorpe, C. S., & Galloway, W. E. (2017). Early Miocene continental‐scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of America Bulletin, 129(1–2), 3–22. https://doi.org/10.1130/b31465.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12403
Loading
/content/journals/10.1111/bre.12403
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error