1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

We use 3D seismic data from the Lower Congo Basin to show that minibasin subsidence is largely controlled by salt weld as the associated depocentres migrate along‐ and across‐strike under thin‐skinned extension (a and b) and sedimentary loading (c). Notably, the salt weld processes formed the salt‐core structure (c) under the minibasin are protracted and diachronous, contrasting to the one‐time weld model in current literature.

, Abstract

Salt tectonics is an important part of the geological evolution of many continental margins, yet the four‐dimensional evolution of the minibasins, the fundamental building block of these and many other salt basins, remains poorly understood. Using high‐quality 3D seismic data from the Lower Congo Basin, offshore Angola we document the long‐term (>70 Myr) dynamics of minibasin subsidence. We show that, during the Albian, a broadly tabular layer of carbonate was deposited prior to substantial salt flow, diapirism, and minibasin formation. We identify four subsequent stages of salt‐tectonics and related minibasin evolution: (i) thin‐skinned extension (Cenomanian to Coniacian) driven by basinward tilting of the salt layer, resulting in the formation of low‐displacement normal faults and related salt rollers. During this stage, local salt welding led to the along‐strike migration of fault‐bound depocentres; (ii) salt welding below the eastern part of the minibasin (Santonian to Paleocene), causing a westward shift in depocentre location; (iii) welding below the minibasin centre (Eocene to Oligocene), resulting in the formation of a turtle and an abrupt shift of depocentres towards the flanks of the bounding salt walls; and (iv) an eastward shift in depocentre location due to regional tilting, contraction, and diapir squeezing (Miocene to Holocene). Our study shows that salt welding and subsequent contraction are key controls on minibasin geometry, subsidence and stratigraphic patterns. In particular, we show how salt welding is a protracted process, spanning > 70 Myr of the salt‐tectonic history of this, and likely other salt‐rich basins. The progressive migration of minibasin depocentres, and the associated stratigraphic architecture, record weld dynamics. Our study has implications for the tectono‐stratigraphic evolution of minibasins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12404
2020-09-26
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/5/bre12404.html?itemId=/content/journals/10.1111/bre.12404&mimeType=html&fmt=ahah

References

  1. Anderson, J. E., Cartwright, J., Drysdall, S. J., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola. Marine and Petroleum Geology, 17(10), 1165–1203. https://doi.org/10.1016/S0264-8172(00)00059-3
    [Google Scholar]
  2. Anka, Z., & Séranne, M. (2004). Reconnaissance study of the ancient Zaire (Congo) deep‐sea fan. (ZaiAngo Project). Marine Geology, 209(1), 223–244. https://doi.org/10.1016/j.margeo.2004.06.007
    [Google Scholar]
  3. Barde, J.‐P., Chamberlain, P., Galavazi, M., Harwijanto, J., Marsky, J., Gralla, P., & van den Belt, F. (2002). Sedimentation during halokinesis: Permo‐Triassic reservoirs of the Saigak field, Precaspian basin. Kazakhstan. Petroleum Geoscience, 8(2), 177–187. https://doi.org/10.1144/petgeo.8.2.177
    [Google Scholar]
  4. Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 1083–1102. https://doi.org/10.1029/JZ065i004p01083
    [Google Scholar]
  5. Bouroullec, R., & Weimer, P. (2017). Geometry and kinematics of Neogene allochthonous salt systems in the Mississippi Canyon, Atwater Valley, western Lloyd Ridge, and western DeSoto Canyon protraction areas, northern deep‐water Gulf of Mexico. AAPG Bulletin, 101(7), 1003–1034. https://doi.org/10.1306/09011609186
    [Google Scholar]
  6. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28(6), 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  7. Callot, J.‐P., Salel, J.‐F., Letouzey, J., Daniel, J.‐M., & Ringenbach, J.‐C. (2016). Three‐dimensional evolution of salt‐controlled minibasins: Interactions, folding, and megaflap development. AAPG Bulletin, 100(9), 1419–1442. https://doi.org/10.1306/03101614087
    [Google Scholar]
  8. Clark, J., Stewart, S., & Cartwright, J. (1998). Evolution of the NW margin of the North Permian Basin, UK North Sea. Journal of the Geological Society, London, 155(4), 663–676. https://doi.org/10.1144/gsjgs.155.4.0663
    [Google Scholar]
  9. Cramez, C., & Jackson, M. P. A. (2000). Superposed deformation straddling the continental‐oceanic transition in deep‐water Angola. Marine and Petroleum Geology, 17(10), 1095–1109. https://doi.org/10.1016/S0264-8172(00)00053-2
    [Google Scholar]
  10. Dooley, T. P., Hudec, M. R., Pichel, L. M., & Jackson, M. P. A. (2018). The impact of base‐salt relief on salt flow and suprasalt deformation patterns at the autochthonous, paraautochthonous and allochthonous level: Insights from physical models (p. 476). London, Special Publications: Geological Society.
    [Google Scholar]
  11. Duffy, O. B., Fernandez, N., Hudec, M. R., Jackson, M. P., Burg, G., Dooley, T. P., & Jackson, C.‐A.‐L. (2017). Lateral mobility of minibasins during shortening: Insights from the SE Precaspian Basin, Kazakhstan. Journal of Structural Geology, 97, 257–276. https://doi.org/10.1016/j.jsg.2017.02.002
    [Google Scholar]
  12. Duval, B., Cramez, C., & Jackson, M. P. A. (1992). Raft tectonics in the Kwanza basin, Angola. Marine and Petroleum Geology, 9(4), 389–404. https://doi.org/10.1016/0264-8172(92)90050-O
    [Google Scholar]
  13. Fernandez, N., Duffy, O. B., Hudec, M. R., Jackson, M. P. A., Burg, G., Jackson, C. A. L., & Dooley, T. P. (2017). The origin of salt‐encased sediment packages: Observations from the SE Precaspian Basin (Kazakhstan). Journal of Structural Geology, 97, 237–256. https://doi.org/10.1016/j.jsg.2017.01.008
    [Google Scholar]
  14. Fernandez, N., Hudec, M. R., Jackson, C. A., Dooley, T. P., & Duffy, O. B. (2019). The competition for salt and kinematic interactions between minibasins during density‐driven subsidence: observations from numerical models. https://, https://doi.org/10.31223/osf.io/jak5u
  15. Fort, X., Brun, J.‐P., & Chauvel, F. (2004). Salt tectonics on the Angolan margin, synsedimentary deformation processes. AAPG Bulletin, 88(11), 1523–1544. https://doi.org/10.1306/06010403012
    [Google Scholar]
  16. Ge, H., Jackson, M. P., & Vendeville, B. C. (1997). Kinematics and dynamics of salt tectonics driven by progradation. AAPG Bulletin, 81(3), 398–423.
    [Google Scholar]
  17. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363(1), 7–31. https://doi.org/10.1144/SP363.2
    [Google Scholar]
  18. Goteti, R., Ings, S. J., & Beaumont, C. (2012). Development of salt minibasins initiated by sedimentary topographic relief. Earth and Planetary Science Letters, 339–340, 103–116. https://doi.org/10.1016/j.epsl.2012.04.045
    [Google Scholar]
  19. Hodgson, N. A., Farnsworth, J., & Fraser, A. J. (1992). Salt‐related tectonics, sedimentation and hydrocarbon plays in the Central Graben, North Sea, UKCS. Geological Society, London, Special Publications, 67(1), 31–63. https://doi.org/10.1144/GSL.SP.1992.067.01.03
    [Google Scholar]
  20. Hudec, M. R., & Jackson, M. P. A. (2004). Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. AAPG Bulletin, 88(7), 971–990. https://doi.org/10.1306/02050403061
    [Google Scholar]
  21. Hudec, M. R., & Jackson, M. P. A. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1), 1–28.
    [Google Scholar]
  22. Hudec, M. R., Jackson, M. P. A., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121(1–2), 201–221.
    [Google Scholar]
  23. Hudec, M. R., Jackson, M. P. A., Vendeville, B. C., Schultz‐Ela, D. D., & Dooley, T. P. (2011). The salt mine: A digital atlas of salt tectonics.
  24. Ings, S. J., & Beaumont, C. (2010). Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal'minibasins. Geology, 38(4), 339–342.
    [Google Scholar]
  25. Jackson, C.‐A.‐L., Duffy, O. B., Fernandez, N., Dooley, T. P., Hudec, M. R., Jackson, M. P. A., & Burg, G. (2019) The stratigraphic record of Minibasin subsidence, Precaspian basin, kazakhstan. Basin Research, 1–25. https://doi.org/10.1111/bre.12393
    [Google Scholar]
  26. Jackson, C.‐A.‐L., Rodriguez, C. R., Rotevatn, A., & Bell, R. E. (2014). Geological and geophysical expression of a primary salt weld: An example from the Santos Basin. Brazil. Interpretation, 2(4), SM77–SM89.
    [Google Scholar]
  27. Jackson, C.‐A.‐L., Zhang, Y., Herron, D. A., & Fitch, P. J. R. (2018). Subsurface expression of a salt weld. Gulf of Mexico. Petroleum Geoscience, 25(1), 102–111.
    [Google Scholar]
  28. Jackson, M. P. A., & Cramez, C. (1989). Seismic recognition of salt welds in salt tectonics regimes. Paper presented at the Gulf of Mexico salt tectonics, associated processes and exploration potential: Gulf Coast Section SEPM Foundation 10th Annual Research Conference.
  29. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  30. Jackson, M. P. A., & Talbot, C. J. (1991). A glossary of salt tectonics: Bureau of Economic Geology. Austin, TX: University of Texas at Austin.
    [Google Scholar]
  31. Jackson, M. & Vendeville, B. C. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106(1), 57–73. https://doi.org/10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2
    [Google Scholar]
  32. Jackson, M. P. A., Vendeville, B. C., & Schultz‐Ela, D. D. (1994). Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93–117. https://doi.org/10.1146/annurev.ea.22.050194.000521
    [Google Scholar]
  33. Lamb, M. P., Toniolo, H., & Parker, G. (2006). Trapping of sustained turbidity currents by intraslope minibasins. Sedimentology, 53(1), 147–160. https://doi.org/10.1111/j.1365-3091.2005.00754.x
    [Google Scholar]
  34. Lavier, L. L., Steckler, M. S., & Brigaud, F. (2001). Climatic and tectonic control on the Cenozoic evolution of the West African margin. Marine Geology, 178(1–4), 63–80. https://doi.org/10.1016/S0025-3227(01)00175-X
    [Google Scholar]
  35. López‐Mir, B., Muñoz, J. A., & García‐Senz, J. (2016). 3D geometric reconstruction of Upper Cretaceous passive diapirs and salt withdrawal basins in the Cotiella Basin (southern Pyrenees). Journal of the Geological Society, 173(4), 616–627. https://doi.org/10.1144/jgs2016-002
    [Google Scholar]
  36. Marsh, N., Imber, J., Holdsworth, R. E., Brockbank, P., & Ringrose, P. (2010). The structural evolution of the Halten Terrace, offshore Mid‐Norway: Extensional fault growth and strain localisation in a multi‐layer brittle–ductile system. Basin Research, 22(2), 195–214. https://doi.org/10.1111/j.1365-2117.2009.00404.x
    [Google Scholar]
  37. Marton, G., Tari, G. C., & Lehmann, C. T. (2000). Evolution of the Angolan Passive Margin, West Africa, With Emphasis on Post‐Salt Structural Styles. Geophysical Monograph‐American Geophysical Union, 115, 129–149.
    [Google Scholar]
  38. McBride, B. C., Rowan, M. G., & Weimer, P. (1998). The evolution of allochthonous salt systems, northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1013–1036.
    [Google Scholar]
  39. Nürnberg, D., & Müller, R. D. (1991). The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191(1), 27–53. https://doi.org/10.1016/0040-1951(91)90231-G
    [Google Scholar]
  40. Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., & Hadler‐Jacobsen, F. (2014). Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Research, 26(4), 597–620. https://doi.org/10.1111/bre.12051
    [Google Scholar]
  41. Peel, F. J. (2014a). How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics, 630, 222–235. https://doi.org/10.1016/j.tecto.2014.05.027
    [Google Scholar]
  42. Peel, F. J. (2014b). The engines of gravity‐driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142. https://doi.org/10.1016/j.tecto.2014.06.023
    [Google Scholar]
  43. Pichel, L. M., Peel, F., Jackson, C. A. L., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  44. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82(5), 701–728.
    [Google Scholar]
  45. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & Von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and Kwanza basins. Geological Society, London, Special Publications, 363(1), 207–244. https://doi.org/10.1144/SP363.10
    [Google Scholar]
  46. Roberts, M. J., Metzgar, C. R., Liu, J., & Lim, S. J. (2004). Regional assessment of salt weld timing, Campos Basin, Brazil. In P. J.Post, D. L.Olson, K. T.Lyons, S. L.Palmes, P. F.Harrison, & N. C.Rosen (Eds.), Salt‐Sediment Interactions and Hydrocarbon Prospectivity: Concepts, Applications, and Case Studies for the 21st Century (pp. 371–389). Houston: Society of Economic Paleontologist and Mineralogists, Gulf Coast Section.
    [Google Scholar]
  47. Rowan, M. G. (1993). A systematic technique for the sequential restoration of salt structures. Tectonophysics, 228(3–4), 331–348. https://doi.org/10.1016/0040-1951(93)90347-M
    [Google Scholar]
  48. Rowan, M. G. (2004). Do Salt Welds Seal? Paper presented at the Salt Sediment Interactions and Hydrocarbon Prospectivity Concepts, Applications and Case Studies for the, 21st Century. ed.
  49. Rowan, M. G., Lawton, T. F., & Giles, K. A. (2012). Anatomy of an exposed vertical salt weld and flanking strata, La Popa Basin, Mexico. Geological Society, London, Special Publications, 363(1), 33–57. https://doi.org/10.1144/SP363.3
    [Google Scholar]
  50. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins. In K. R.McClay (Ed.), AAPG Memoir (Vol. 82, pp. 157–182). Tulsa, OK: The American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  51. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1055–1082.
    [Google Scholar]
  52. Stewart, S. A. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. In A. C. Ries, R. W. H. Butler, & R. H. Graham (Eds.), Geological Society, London, Special Publications (Vol. 272, pp. 361–396). https://doi.org/10.1144/GSL.SP.2007.272.01.19
    [Google Scholar]
  53. Stewart, S. A., & Clark, J. A. (1999). Impact of salt on the structure of the Central North Sea hydrocarbon fairways. Paper presented at the Geological Society, London, Petroleum Geology Conference series
  54. Trudgill, B. D. (2011). Evolution of salt structures in the northern Paradox Basin: Controls on evaporite deposition, salt wall growth and supra‐salt stratigraphic architecture. Basin Research, 23(2), 208–238. https://doi.org/10.1111/j.1365-2117.2010.00478.x
    [Google Scholar]
  55. Valle, P. J., Gjelberg, J. G., & Helland‐Hansen, W. (2001). Tectonostratigraphic development in the eastern Lower Congo Basin, offshore Angola, west Africa. Marine and Petroleum Geology, 18(8), 909–927. https://doi.org/10.1016/S0264-8172(01)00036-8
    [Google Scholar]
  56. Vendeville, B. C. (2005). Salt tectonics driven by sediment progradation: Part I—Mechanics and kinematics. AAPG Bulletin, 89(8), 1071–1079. https://doi.org/10.1306/03310503063
    [Google Scholar]
  57. Vendeville, B. C., & Jackson, M. P. A. (1992). The fall of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 354–371. https://doi.org/10.1016/0264-8172(92)90048-J
    [Google Scholar]
  58. Wagner, B. H. (2010). An analysis of salt welding. (PhD), University of Texas at Austin.
    [Google Scholar]
  59. Wagner, B. H., & Jackson, M. P. A. (2011). Viscous flow during salt welding. Tectonophysics, 510(3), 309–326. https://doi.org/10.1016/j.tecto.2011.07.012
    [Google Scholar]
  60. Warsitzka, M., Kley, J., & Kukowski, N. (2013). Salt diapirism driven by differential loading — Some insights from analogue modelling. Tectonophysics, 591, 83–97. https://doi.org/10.1016/j.tecto.2011.11.018
    [Google Scholar]
  61. Weimer, P., Bouroullec, R., van den Berg, A. A., Lapinski, T. G., Roesink, J. G., & Adson, J. (2017). Structural setting and evolution of the Mensa and Thunder Horse intraslope basins, northern deep‐water Gulf of Mexico: A case study. AAPG Bulletin, 101(7), 1145–1172. https://doi.org/10.1306/09011609112
    [Google Scholar]
  62. Worrall, D. M., & Snelson, S. (1989). Evolution of the northern Gulf of Mexico, with emphasis on Cenozoic growth faulting and the role of salt. In A. W.Bally, & A. R.Palmer (Eds.), The Geology of North America‐An Overview (pp. 97–137). Boulder, CO: Geological Society of America, Inc.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12404
Loading
/content/journals/10.1111/bre.12404
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): depocentre migration; minibasin; offshore Angola; passive margin; salt tectonics; salt weld

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error