1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south‐central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U‐Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south‐central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.

,

We present detrital apatite and zircon (U‐Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the Hoh Xil Basin (HXB). These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that ~4–2.7 km vertical exhumation initiated at 30 Ma in the eastern HXB. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12405
2020-09-26
2024-03-28
Loading full text...

Full text loading...

References

  1. Ault, A. K., & Flowers, R. M. (2012). Is apatite U‐Th zonation information necessary for accurate interpretation of apatite (U‐Th)/He thermochronometry data?Geochimica Et Cosmochimica Acta, 79, 60–78. https://doi.org/10.1016/j.gca.2011.11.037
    [Google Scholar]
  2. Barker, C. E., & Pawlewicz, M. J. (1994). Calculation of vitrinite reflectance from thermal histories and peak temperatures, vitrinite reflectance as a maturity parameter. ​In P. K. A. D.Mukhopadhyay & W. G.Dow (Eds.), Vitrinite reflectance as a maturity parameter: Applications and limitations (pp. 216–229). Washington, DC: American Chemical Society. https://doi.org/10.1021/bk-1994-0570.ch014
    [Google Scholar]
  3. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65, 291–329. https://doi.org/10.1111/j.1365-246X.1981.tb02715.x
    [Google Scholar]
  4. Beucher, R., Brown, R. W., Roper, S., Stuart, F., & Persano, C. (2013). Natural age dispersion arising from the analysis of broken crystals: Part II. Practical application to apatite (U–Th)/He thermochronometry. Geochimica Et Cosmochimica Acta, 120, 395–416. https://doi.org/10.1016/j.gca.2013.05.042
    [Google Scholar]
  5. Blisniuk, P. M., Hacker, B. R., Glodny, J., Ratschbacher, L., Bi, S. W., Wu, Z. H., … Calvert, A. (2001). Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412, 628–632.
    [Google Scholar]
  6. Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., & Fitzgerald, P. (2013). Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U–Th)/He thermochronometer. Geochimica Et Cosmochimica Acta, 122, 478–497. https://doi.org/10.1016/j.gca.2013.05.041
    [Google Scholar]
  7. Bush, M. A., Saylor, J. E., Horton, B. K., & Nie, J. (2016). Growth of the Qaidam basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere, 8, 58–82. https://doi.org/10.1130/L449.1
    [Google Scholar]
  8. Cecil, M. R., Saleeby, Z., Saleeby, J., & Farley, K. A. (2014). Pliocene‐Quaternary subsidence and exhumation of the southeastern San Joaquin Basin, California, in response to mantle lithosphere removal. Geosphere, 10, 129–147. https://doi.org/10.1130/ges00882.1
    [Google Scholar]
  9. Chen, J.‐L., Yin, A., Xu, J.‐F., Dong, Y.‐H., & Kang, Z.‐Q. (2018). Late Cenozoic magmatic inflation, crustal thickening, and > 2 km of surface uplift in central Tibet. Geology, 46, 19–22. https://doi.org/10.1130/G39699.1
    [Google Scholar]
  10. Cheng, F., Fu, S. T., Jolivet, M., Zhang, C. H., & Guo, Z. J. (2016). Source to sink relation between the eastern Kunlun range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128, 258–283. https://doi.org/10.1130/b31260.1
    [Google Scholar]
  11. Coleman, M., & Hodges, K. (1995). Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east‐west extension. Nature, 374, 49–52. https://doi.org/10.1038/374049a0
    [Google Scholar]
  12. Coward, M. P., Kidd, W. S. F., Yun, P., Shackleton, R. M., & Hu, Z. (1988). The Structure of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327, 307–333. https://doi.org/10.1098/rsta.1988.0131
    [Google Scholar]
  13. Cyr, A. J., Currie, B. S., & Rowley, D. B. (2005). Geochemical evaluation of fenghuoshan group lacustrine carbonates, north‐central tibet: Implications for the paleoaltimetry of the eocene tibetan plateau. The Journal of Geology, 113, 517–533. https://doi.org/10.1086/431907
    [Google Scholar]
  14. Dai, J., Wang, C., Hourigan, J., Li, Z., & Zhuang, G. (2013). Exhumation history of the Gangdese batholith, southern tibetan plateau: Evidence from apatite and zircon (U‐Th)/He thermochronology. The Journal of Geology, 121, 155–172. https://doi.org/10.1086/669250
    [Google Scholar]
  15. Dai, J., Wang, C., Hourigan, J., & Santosh, M. (2013). Insights into the early Tibetan Plateau from (U–Th)/He thermochronology. Journal of the Geological Society, 170, 917–927. https://doi.org/10.1144/jgs2012-076
    [Google Scholar]
  16. Dai, J., Zhao, X., Wang, C., Zhu, L., Li, Y., & Finn, D. (2012). The vast proto‐Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin. Gondwana Research, 22, 434–446. https://doi.org/10.1016/j.gr.2011.08.019
    [Google Scholar]
  17. Danišík, M. (2019). Integration of fission‐track thermochronology with other geochronologic methods on single crystals. In M. G.Malusà & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 93–108). Cham, Switzerland: Springer International Publishing AG, Springer. https://doi.org/10.1007/978-3-319-89421-8_5
    [Google Scholar]
  18. DeCelles, P. G., Quade, J., Kapp, P., Fan, M. J., Dettman, D. L., & Ding, L. (2007). High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253, 389–401. https://doi.org/10.1016/j.epsl.2006.11.001
    [Google Scholar]
  19. DeCelles, P. G., Robinson, D. M., & Zandt, G. (2002). Implications of shortening in the Himalayan fold‐thrust belt for uplift of the Tibetan Plateau. Tectonics, 21. https://doi.org/10.1029/2001TC001322
    [Google Scholar]
  20. DiBiase, R. A., Whipple, K. X., Heimsath, A. M., & Ouimet, W. B. (2010). Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth and Planetary Science Letters, 289, 134–144. https://doi.org/10.1016/j.epsl.2009.10.036
    [Google Scholar]
  21. Ding, L., Xu, Q., Yue, Y., Wang, H., Cai, F., & Li, S. (2014). The Andean‐type Gangdese mountains: Paleoelevation record from the Paleocene‐Eocene Linzhou basin. Earth and Planetary Science Letters, 392, 250–264. https://doi.org/10.1016/j.epsl.2014.01.045http://dx.doi.org/
    [Google Scholar]
  22. Dupont‐Nivet, G., Krijgsman, W., Langereis, C. G., Abels, H. A., Dai, S., & Fang, X. M. (2007). Tibetan plateau aridification linked to global cooling at the Eocene‐Oligocene transition. Nature, 445, 635–638. https://doi.org/10.1038/nature05516
    [Google Scholar]
  23. Duvall, A. R., Clark, M. K., Avdeev, B., Farley, K. A., & Chen, Z. W. (2012). Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low‐temperature thermochronometry. Tectonics, 31, https://doi.org/10.1029/2011tc002969
    [Google Scholar]
  24. Ehlers, T. A., & Farley, K. A. (2003). Apatite (U–Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206, 1–14. https://doi.org/10.1016/s0012-821x(02)01069-5
    [Google Scholar]
  25. England, P., & Housemann, G. (1986). Finite strain calculations of continental deformation 2. Comparison with the Indian‐Asia plate collision. Journal of Geophysical Research‐Solid Earth, 91, 3664–3676.
    [Google Scholar]
  26. Farley, K. A., Shuster, D. L., & Ketcham, R. A. (2011). U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U–Th)/He system. Geochimica Et Cosmochimica Acta, 75, 4515–4530. https://doi.org/10.1016/j.gca.2011.05.020
    [Google Scholar]
  27. Farley, K. A., Wolf, R. A., & Silver, L. T. (1996). The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochimica Et Cosmochimica Acta, 60, 4223–4229. https://doi.org/10.1016/s0016-7037(96)00193-7
    [Google Scholar]
  28. Fillon, C., Gautheron, C., & van der Beek, P. (2013). Oligocene‐Miocene burial and exhumation of the Southern Pyrenean foreland quantified by low‐temperature thermochronology. Journal of the Geological Society, 170, 67–77. https://doi.org/10.1144/jgs2012-051
    [Google Scholar]
  29. Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., & O'Sullivan, P. B. (2006). Interpretation of (U‐Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225, 91–120. https://doi.org/10.1016/j.chemgeo.2005.09.001
    [Google Scholar]
  30. Fitzgerald, P. G., Malusà, M. G., & Muñoz, J. A. (2019). Detrital thermochronology using conglomerates and cobbles. In M. G.Malusà & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 295–314). Cham, Switzerland: Springer International Publishing AG, Springer. https://doi.org/10.1007/978-3-319-89421-8_17
    [Google Scholar]
  31. Flowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. (2009). Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica Et Cosmochimica Acta, 73, 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015
    [Google Scholar]
  32. Fox, M., Dai, J. G., & Carter, A. (2019). Badly behaved detrital (U‐Th)/He ages: Problems with He diffusion models or geological models?Geochemistry, Geophysics, Geosystems, 20, 2418–2432. https://doi.org/10.1029/2018GC008102
    [Google Scholar]
  33. Fox, M., & Shuster, D. L. (2014). The influence of burial heating on the (U–Th)/He system in apatite: Grand Canyon case study. Earth and Planetary Science Letters, 397, 174–183. https://doi.org/10.1016/j.epsl.2014.04.041
    [Google Scholar]
  34. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research, 117, B02408.
    [Google Scholar]
  35. Garzione, C. N., McQuarrie, N., Perez, N. D., Ehlers, T. A., Beck, S. L., Kar, N., … Horton, B. K. (2017). Tectonic evolution of the central Andean Plateau and implications for the growth of plateaus. Annual Review of Earth and Planetary Sciences, 45, 529–559. https://doi.org/10.1146/annurev-earth-063016-020612
    [Google Scholar]
  36. Gautheron, C., Barbarand, J., Ketcham, R. A., Tassan‐Got, L., van der Beek, P., Pagel, M., … Fialin, M. (2013). Chemical influence on α‐recoil damage annealing in apatite: Implications for (U–Th)/He dating. Chemical Geology, 351, 257–267. https://doi.org/10.1016/j.chemgeo.2013.05.027
    [Google Scholar]
  37. Gautheron, C., Tassan‐Got, L., Ketcham, R. A., & Dobson, K. J. (2012). Accounting for long alpha‐particle stopping distances in (U–Th–Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochimica Et Cosmochimica Acta, 96, 44–56. https://doi.org/10.1016/j.gca.2012.08.016
    [Google Scholar]
  38. Ge, Y.‐K., Dai, J.‐G., Wang, C.‐S., Li, Y.‐L., Xu, G.‐Q., & Danisik, M. (2017). Cenozoic thermo‐tectonic evolution of the Gangdese Batholith constrained by low‐temperature thermochronology. Gondwana Research, 41, 451–462. https://doi.org/10.1016/j.gr.2016.05.006
    [Google Scholar]
  39. George, A. D., Marshallsea, S. J., Wyrwoll, K. H., Chen, J., & Lu, Y. C. (2001). Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission‐track and vitrinite‐reflectance analysis. Geology, 29, 939–942. https://doi.org/10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2
    [Google Scholar]
  40. Gillis, R. J., Horton, B. K., & Grove, M. (2006). thermochronology, geochronology, and upper crustal structure of the cordillera real: Implications for Cenozoic exhumation of the Central Andean Plateau. Tectonics, 25, https://doi.org/10.1029/2005tc001887
    [Google Scholar]
  41. Green, P. F., Crowhurst, P. V., Duddy, I. R., Japsen, T., & Holford, S. P. (2006). Conflicting (U‐Th)/He and fission track ages in apatite: Enhanced He retention, not anomalous annealing behaviour. Earth and Planetary Science Letters, 250, 407–427. https://doi.org/10.1016/j.epsl.2006.08.022
    [Google Scholar]
  42. Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., & Giester, G. (2013). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U‐Th)/He thermochronology. American Journal of Science, 313, 145–198. https://doi.org/10.2475/03.2013.01
    [Google Scholar]
  43. Haider, V. L., Dunkl, I., Eynatten, H. V., Ding, L., Frei, D., & Zhang, L. (2013). Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70–71, 79–98. https://doi.org/10.1016/j.jseaes.2013.03.005
    [Google Scholar]
  44. Hetzel, R., Dunkl, I., Haider, V., Strobl, M., von Eynatten, H., Ding, L., & Frei, D. (2011). Peneplain formation in southern Tibet predates the India‐Asia collision and plateau uplift. Geology, 39, 983–986. https://doi.org/10.1130/g32069.1
    [Google Scholar]
  45. Hourigan, J. K., Reiners, P. W., & Brandon, M. T. (2005). U‐Th zonation‐dependent alpha‐ejection in (U‐Th)/He chronometry. Geochimica Et Cosmochimica Acta, 69, 3349–3365. https://doi.org/10.1016/j.gca.2005.01.024
    [Google Scholar]
  46. Jiang, L. (2009). Study on feature of Hydrocarbon Source Rock in Hoh Xil basin of the Tibetan Plateau (Master’s thesis). Retrieved from CNKI. Chengdu: Chengdu University of Technology.
  47. Jiménez‐munt, I., Fernàndez, M., Vergés, J., & Platt, J. P. (2008). Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth and Planetary Science Letters, 267, 276–289. https://doi.org/10.1016/j.epsl.2007.11.045
    [Google Scholar]
  48. Jin, C., Liu, Q., Liang, W., Roberts, A. P., Sun, J., Hu, P., … Yuan, S. (2018). Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India‐Eurasia Collision and Tibetan Plateau Deformation. Earth and Planetary Science Letters, 486, 41–53. https://doi.org/10.1016/j.epsl.2018.01.010
    [Google Scholar]
  49. Jolivet, M., Dempster, T., & Cox, R. (2003). Distribution of U and Th in apatites: Implications for U‐Th/He thermochronology. Comptes Rendus Geoscience, 335, 899–906.
    [Google Scholar]
  50. Kapp, P., Yin, A., Harrison, T. M., & Ding, L. (2005). Cretaceous‐Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117, 865–878. https://doi.org/10.1130/B25595.1
    [Google Scholar]
  51. Karplus, M. S., Zhao, W., Klemperer, S. L., Wu, Z., Mechie, J., Shi, D., … Chen, C. (2011). Injection of Tibetan Crust beneath the South Qaidam Basin: Evidence from Indepth Iv Wide‐Angle Seismic Data. Journal of Geophysical Research, 116, B07301. https://doi.org/10.1029/2010jb007911
    [Google Scholar]
  52. Ketcham, R. A. (2005). Forward and inverse modeling of low‐temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58(1), 275–314. https://doi.org/10.2138/rmg.2005.58.11
    [Google Scholar]
  53. Li, G., Kohn, B., Sandiford, M., Xu, Z., Tian, Y., & Seiler, C. (2016). Synorogenic morphotectonic evolution of the Gangdese batholith, South Tibet: Insights from low‐temperature thermochronology. Geochemistry, Geophysics, Geosystems, 17, 101–112. https://doi.org/10.1002/2015GC006047
    [Google Scholar]
  54. Li, L., Garzione, C. N., Pullen, A., Zhang, P., & Li, Y. (2018). Late Cretaceous‐Cenozoic Basin evolution and Topographic Growth of the Hoh Xil Basin, Central Tibetan Plateau. Geological Society of America Bulletin, 130, 499–521. https://doi.org/10.1130/B31769.1
    [Google Scholar]
  55. Li, L. L., Wu, C., & Yu, X. (2018). Cenozoic evolution of the Altyn Tagh and East Kunlun fault zones inferred from detrital garnet, tourmaline and rutile in southwestern Qaidam Basin (Northern Tibetan Plateau). Basin Research, 30, 35–58. https://doi.org/10.1111/bre.12241
    [Google Scholar]
  56. Li, Y., Wang, C., Zhao, X., Yin, A., & Ma, C. (2012). Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet. Gondwana Research, 22, 482–492. https://doi.org/10.1016/j.gr.2011.11.017
    [Google Scholar]
  57. Liu, Z. F., & Wang, C. S. (2001). Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, Northern Tibet. Sedimentary Geology, 140, 251–270. https://doi.org/10.1016/S0037-0738(00)00188-3
    [Google Scholar]
  58. Liu, Z. F., Wang, C. S., & Yi, H. S. (2001). Evolution and mass accumulation of the Cenozoic Hoh Xil Basin, Northern Tibet. Journal of Sedimentary Research, 71, 971–984. https://doi.org/10.1306/030901710971
    [Google Scholar]
  59. Liu, Z. F., Zhao, X. X., Wang, C. S., Liu, S. H., & Yi, H. S. (2003). Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: Implications for the Cenozoic tectonic history of the Tibetan Plateau. Geophysical Journal International, 154, 233–252. https://doi.org/10.1046/j.1365-246X.2003.01986.x
    [Google Scholar]
  60. McQuarrie, N., Barnes, J. B., & Ehlers, T. A. (2008). Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15‐17°S). Tectonics, 27, https://doi.org/10.1029/2006tc002054
    [Google Scholar]
  61. McQuarrie, N., & Ehlers, T. A. (2017). Techniques for understanding fold‐thrust belt kinematics and thermal evolution. In R. D.Law, J. R.Thigpen, A. J.Merschat, & H. H.Stowell (Eds.), Linkages and feedbacks in orogenic systems (pp. 1–30). Boulder, CO: Geological Society of America Memoir. https://doi.org/10.1130/2017.1213(02)
    [Google Scholar]
  62. Meesters, A. G. C. A., & Dunai, T. J. (2002a). Solving the production‐diffusion equation for finite diffusion domains of various shapes: Part I. Implications for low‐temperature (U‐Th)/He thermochronology. Chemical Geology, 186, 333–344. https://doi.org/10.1016/s0009-2541(01)00422-3
    [Google Scholar]
  63. Meesters, A. G. C. A., & Dunai, T. J. (2002b). Solving the production‐diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with [alpha]‐ejection and nonhomogeneous distribution of the source. Chemical Geology, 186, 57–73. https://doi.org/10.1016/s0009-2541(01)00423-5
    [Google Scholar]
  64. Miao, Y., Wu, F., Chang, H., Fang, X., Deng, T., Sun, J., & Jin, C. (2016). A Late‐Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation. Gondwana Research, 31, 241–252. https://doi.org/10.1016/j.gr.2015.01.007
    [Google Scholar]
  65. Misra, S., & Froelich, P. N. (2012). Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering. Science, 335, 818–823. https://doi.org/10.1126/science.1214697
    [Google Scholar]
  66. Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31, 357–396. https://doi.org/10.1029/93RG02030
    [Google Scholar]
  67. Mosolf, J., Horton, B., Heizler, T., & Matos, R., (2011). Unroofing the Core of the Central Andean Fold‐Thrust Belt During Focused Late Miocene Exhumation: Evidence from the Tipuani‐Mapiri Wedge‐Top Basin, Bolivia. Basin Research, 23, 346–360. https://doi.org/10.1111/j.1365-2117.2010.00491.x
    [Google Scholar]
  68. Murphy, M. A., Yin, A., Harrison, T. M., Durr, S. B., Chen, Z., Ryerson, F. J., … Zhou, X. (1997). Did the Indo‐Asia collision alone create the Tibetan plateau. Geology, 25, 719–722. https://doi.org/10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
    [Google Scholar]
  69. Murray, K. E., Orme, D. A., & Reiners, P. W. (2014). Effects of U‐Th‐rich grain boundary phases on apatite helium ages. Chemical Geology, 390, 135–151. https://doi.org/10.1016/j.chemgeo.2014.09.023
    [Google Scholar]
  70. Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., … Team, t H.‐C. (2009). Underplating in the Himalaya‐Tibet Collision Zone Revealed by the Hi‐CLIMB Experiment. Science, 325, 1371–1374. https://doi.org/10.1126/science.1167719
    [Google Scholar]
  71. Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A., & Currie, B. S. (2009). Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287, 64–76. https://doi.org/10.1016/j.epsl.2009.07.037
    [Google Scholar]
  72. Qiu, N., & Liu, S. (2018). Uplift and denudation in the continental area of China linked to climatic effects: Evidence from apatite and zircon fission track data. Scientific Reports, 8, 9546. https://doi.org/10.1038/s41598-018-27801-7
    [Google Scholar]
  73. Rak, A., McQuarrie, N., & Ehlers, T. A. (2017). Kinematics, exhumation, and sedimentation of the north‐central Andes (Bolivia): An integrated thermochronometer and thermokinematic modeling approach. Tectonics, 36, https://doi.org/10.1002/2016TC004440
    [Google Scholar]
  74. Raymo, M. E., & Ruddiman, W. F. (1992). Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117–122. doi: https://doi.org/10.1038/359117a0
    [Google Scholar]
  75. Richter, F. M., Rowley, D. B., & DePaolo, D. J. (1992). Sr isotope evolution of seawater: The role of tectonics. Earth and Planetary Science Letters, 109, 11–23. https://doi.org/10.1016/0012-821x(92)90070-c
    [Google Scholar]
  76. Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P. W., Guynn, J., Ding, L., & Heizler, M. (2012). Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40, 187–190. https://doi.org/10.1130/g32530.1
    [Google Scholar]
  77. Rowley, D. B., & Currie, B. S. (2006). Palaeo‐altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677–681. https://doi.org/10.1038/nature04506
    [Google Scholar]
  78. Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z. L., Shen, F., & Liu, Y. P. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276, 788–790. https://doi.org/10.1126/science.276.5313.788
    [Google Scholar]
  79. Shuster, D. L., & Farley, K. A. (2004). 4He/3He Thermochronometry. Earth and Planetary Science Letters, 217, 1–17. https://doi.org/10.1016/s0012-821x(03)00595-8
    [Google Scholar]
  80. Snell, K. E., Lippert, P. C., & Eiler, J. M. (2010). Stable and Clumped Isotope Analysis of Eocene Fenghuo Shan Group Sediments: Implications for Paleoelevation Estimates and Carbonate Diagenesis, paper presented at Proceedings for the 25th Himalaya‐Karakoram‐Tibet Workshop, U.S.Geological Survey, Open‐File Report.
  81. Spiegel, C., Kohn, B., Belton, D., Berner, Z., & Gleadow, A. (2009). Apatite (U‐Th‐Sm)/He thermochronology of rapidly cooled samples: The effect of he implantation. Earth and Planetary Science Letters, 285, 105–114. https://doi.org/10.1016/j.epsl.2009.05.045
    [Google Scholar]
  82. Staisch, L. M., Niemi, N. A., Clark, M. K., & Chang, H. (2016). Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau. Tectonics, 35(4), 862–895. 2015TC003972. doi: 10.1002/2015TC003972.
    [Google Scholar]
  83. Staisch, L. M., Niemi, N. A., Hong, C., Clark, M. K., Rowley, D. B., & Currie, B. (2014). A Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau. Tectonics, 33(3), 281–301, 2013TC003367. doi: https://doi.org/10.1002/2013tc003367.
    [Google Scholar]
  84. Stüwe, K., & Barr, T. D. (1998). On uplift and exhumation during convergence. Tectonics, 17, 80–88. https://doi.org/10.1029/97TC02557
    [Google Scholar]
  85. Sun, B., Wang, Y.‐F., Li, C.‐S., Yang, J., Li, J.‐F., Li, Y.‐L., … Mehrotra, R. C. (2015). Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence. Scientific Reports, 5, 10379. https://doi.org/10.1038/srep10379
    [Google Scholar]
  86. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10, 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2
    [Google Scholar]
  87. Tapponnier, P., Xu, Z. Q., Francoise, R., Bertrand, M., Nicolas, A., Gerard, W., & Yang, J. S. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671–1677. https://doi.org/10.1126/science.105978
    [Google Scholar]
  88. Tremblay, M. M., Fox, M., Schmidt, J. L., Tripathy‐Lang, A., Wielicki, M. M., Harrison, T. M., … Shuster, D. L. (2015). Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya. Proceedings of the National Academy of Sciences, 112, 12030–12035. https://doi.org/10.1073/pnas.1515652112
    [Google Scholar]
  89. Turner, S., Hawkesworth, C., Liu, J., Rogers, N., Kelley, S., & van Calsteren, P. (1993). Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364, 50–54. https://doi.org/10.1038/364050a0
    [Google Scholar]
  90. Vermeesch, P., Seward, D., Latkoczy, C., Wipf, M., Günther, D., & Baur, H. (2007). [alpha]‐Emitting mineral inclusions in apatite, their effect on (U‐Th)/He ages, and how to reduce it. Geochimica Et Cosmochimica Acta, 71, 1737–1746. https://doi.org/10.1016/j.gca.2006.09.020
    [Google Scholar]
  91. Vermeesch, P., & Tian, Y. T. (2014). Thermal History Modelling: Hefty Vs. Qtqt. Earth‐science Reviews, 139, 279–290. https://doi.org/10.1016/j.earscirev.2014.09.010
    [Google Scholar]
  92. Wang, C., Gao, R., Yin, A., Wang, H., Zhang, Y., Guo, T., … Li, Y. (2011). A mid‐crustal strain‐transfer model for continental deformation: A new perspective from high‐resolution deep seismic‐reflection profiling across NE Tibet. Earth and Planetary Science Letters, 306, 279–288. https://doi.org/10.1016/j.epsl.2011.04.010
    [Google Scholar]
  93. Wang, C. S., Liu, Z. F., Yi, H. S., Liu, S., & Zhao, X. X. (2002). Tertiary crustal shortening and peneplanation in the Hoh Xil region: Implications for the tectonic history of the northern Tibetan Plateau. Journal of Asian Earth Sciences, 20, 211–223. https://doi.org/10.1016/S1367-9120(01)00051-7
    [Google Scholar]
  94. Wang, C. S., Zhao, X. X., Liu, Z. F., Lippert, P. C., Graham, S. A., Coe, R. S., … Li, Y. L. (2008). Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 105, 4987–4992. https://doi.org/10.1073/pnas.0703595105
    [Google Scholar]
  95. Wang, F., Shi, W., Zhang, W., Wu, L., Yang, L., Wang, Y., & Zhu, R. (2017). Differential growth of the northern Tibetan margin: Evidence for oblique stepwise rise of the Tibetan Plateau. Scientific Reports, 7, 41164. https://doi.org/10.1038/srep41164
    [Google Scholar]
  96. Wang, Q., Chung, S.‐L., Li, X.‐H., Wyman, D., Li, Z.‐X., Sun, W.‐D., … Zhu, Y.‐T. (2012). Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid‐Miocene to Quaternary Strongly Peraluminous Rhyolites in the Southern Kunlun Range. Journal of Petrology, 53, 2523–2566. https://doi.org/10.1093/petrology/egs058
    [Google Scholar]
  97. Wang, Q., McDermott, F., Xu, J.‐F., Bellon, H., & Zhu, Y.‐T. (2005). Cenozoic K‐rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower‐crustal melting in an intracontinental setting. Geology, 33, 465–468. https://doi.org/10.1130/g21522.1
    [Google Scholar]
  98. Willett, C. D., Fox, M., & Shuster, D. L. (2017). A helium‐based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 477, 195–204. https://doi.org/10.1016/j.epsl.2017.07.047
    [Google Scholar]
  99. Wolf, R. A., Farley, K. A., & Silver, L. T. (1996). Helium diffusion and low‐temperature thermochronometry of apatite. Geochimica Et Cosmochimica Acta, 60, 4231–4240. https://doi.org/10.1016/s0016-7037(96)00192-5
    [Google Scholar]
  100. Wu, Z. H., Patrick, J. B., Wu, Z. H., Hu, D. G., Zhao, X., & Ye, P. S. (2008). Vast early Miocene lakes of the central Tibetan Plateau. Geological Society of America Bulletin, 120, 1326–1337. https://doi.org/10.1130/b26043.1
    [Google Scholar]
  101. Wu, C., Zuza, A. V., Zhou, Z., Yin, A., Mcrivette, M. W., Chen, X., … Geng, J. (2019). Mesozoic‐Cenozoic evolution of the Eastern Kunlun Range, central Tibet, and implications for basin evolution during the Indo‐Asian collision. Lithosphere, 11(4), 524–550, https://doi.org/10.1130/L1065.1
    [Google Scholar]
  102. Xu, Q., Ding, L., Zhang, L., Cai, F., Lai, Q., Yang, D., & Liu‐Zeng, J. (2013). Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau. Earth and Planetary Science Letters, 362, 31–42. https://doi.org/10.1016/j.epsl.2012.11.058
    [Google Scholar]
  103. Yakovlev, P. V., Saal, A., Clark, M. K., Hong, C., Niemi, N. A., & Mallick, S. (2019). The geochemistry of Tibetan lavas: Spatial and temporal relationships, tectonic links and geodynamic implications. Earth and Planetary Science Letters, 520, 115–126. https://doi.org/10.1016/j.epsl.2019.04.032
    [Google Scholar]
  104. Yin, A., Dang, Y.‐Q., Wang, L.‐C., Jiang, W.‐M., Zhou, S.‐P., Chen, X.‐H., … McRivette, M. W. (2008). Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120, 813–846. https://doi.org/10.1130/b26180.1
    [Google Scholar]
  105. Zeitler, P. K., Enkelmann, E., Thomas, J. B., Watson, E. B., Ancuta, L. D., & Idleman, B. D. (2017). Solubility and trapping of helium in apatite. Geochimica Et Cosmochimica Acta, 209, 1–8. https://doi.org/10.1016/j.gca.2017.03.041
    [Google Scholar]
  106. Zhao, W., Kumar, P., Mechie, J., Kind, R., Meissner, R., Wu, Z., … Tilmann, F. (2011). Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4, 870–873. https://doi.org/10.1038/ngeo1309
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12405
Loading
/content/journals/10.1111/bre.12405
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error