1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[

A seismic wedge (red) which is part of a clinoform complex (orange, brown and yellow) was recently drilled for the first time. The well encountered gascharged marine siltstones. Quantitative clinoform characterization, seismic stratigraphy and regional geology support the interpretation of further potential sandtone reservoirs within the targeted clinform complex.

, Abstract

Sandy clinothems are of interest as hydrocarbon reservoirs but there is no proven, economic, clinothem reservoir in the Norwegian Barents Sea. We used high‐resolution, 2D and 3D seismic, including proprietary data, to identify a previously untested, Barremian, clinoform wedge in the Fingerdjupet Subbasin (FSB). Data from recent well 7322/7‐1 plus seismic have been used to characterize this wedge and older Lower Cretaceous clinoforms in the FSB. In the latest Hauterivian – early Barremian, during post‐rift tectonic quiescence, shelf‐edge clinoforms (foreset height > 150 m) prograded into an under‐filled basin. Increased sediment input was related to regional uplift of the hinterland (northern Barents Shelf). Early Barremian erosion in the north‐western FSB and mass wasting towards the SE were followed by deposition of delta‐scale (<80 m high), high‐angle (c. 8°) clinoform sets seaward of older shelf‐edge clinoforms. This may be the local expression of a regional, early Barremian, regressive event. By the close of the Barremian, clinoforms had prograded, within a narrow, elongate basin, across the FSB and towards the uplifted Loppa High. A seismic wedge of high‐angle (10–12°), low‐relief, delta‐scale (25–80 m) clinoform sets occurs between shelf‐edge clinoforms to the NW and the uplifted area to the SE. Well 7322/7‐1, positioned on a direct hydrocarbon indicator, <1 km NNW of the high‐angle, low‐relief, delta‐scale clinoforms, found upward coarsening siltstone‐cycles linked to relative sea‐level fluctuations on a marine shelf. Sand may have accumulated, offshore from the well, in high‐angle, low‐relief foresets of the delta‐scale clinothems (which are typical geometries elsewhere interpreted as ‘delta‐scale, sand‐prone subaqueous clinoforms’). Deposition was controlled by the paleosurface, storms and longshore currents on an otherwise mud‐dominated shelf. The study highlights challenges associated with exploration for sandstone reservoirs in seismic wedges on an outer shelf.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12407
2019-10-17
2024-04-20
Loading full text...

Full text loading...

References

  1. Anell, I. M., Faleide, J. I., & Braathen, A. (2016). Regional tectono‐sedimentary development of the highs and basins of the northwestern Barents Shelf. Norsk Geologisk Tidsskrift, 96(1), 27–41. https://doi.org/10.17850/njg96-1-04
    [Google Scholar]
  2. Blaich, O. A., Tsikalas, F., & Faleide, J. I. (2017). New insights into the tectono‐stratigraphic evolution of the southern Stappen High and its transition to Bjørnøya basin, SW Barents Sea. Marine and Petroleum Geology, 85, 89–105. https://doi.org/10.1016/j.marpetgeo.2017.04.015
    [Google Scholar]
  3. Brookfield, M. E. (2008). Principles of stratigraphy. Blackwell Publishing Ltd.
  4. Cattaneo, A., Correggiari, A., Langone, L., & Trinicardi, F. (2003). The late‐Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology, 193, 61–91. https://doi.org/10.1016/S0025-3227(02)00614-X
    [Google Scholar]
  5. Cattaneo, A., Trinicardi, F., Asioli, A., & Correggiari, A. (2007). The Western Adriatic shelf clinoform: Energy‐limited bottomset. Continental Shelf Research, 27(3), 506–525. https://doi.org/10.1016/j.csr.2006.11.013
    [Google Scholar]
  6. Catuneanu, O. (2019). Model‐independent sequence stratigraphy. Earth‐Science Reviews, 188, 312–388. https://doi.org/10.1016/j.earscirev.2018.09.017
    [Google Scholar]
  7. Corseri, R., Faleide, T. S., Faleide, J. I., Midtkandal, I., Serck, C. S., Trulsvik, M., & Planke, S. (2018). A diverted submarine channel of Early Cretaceous age revealed by high‐resolution seismic data, SW Barents Sea. Marine and Petroleum Geology, 98, 462–476. https://doi.org/10.1016/j.marpetgeo.2018.08.037
    [Google Scholar]
  8. Dalland, A., Worsley, D., & Ofstad, K. (1988). A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid‐and northern Norway, NPD‐Bulletin No. 4.
    [Google Scholar]
  9. Embry, A. F., & Johannessen, E. P. (1993). T‐R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic‐Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. Norwegian Petroleum Society Special Publications, 2, 121–146.
    [Google Scholar]
  10. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the southwestern Barents Sea. Geological Society, London, Petroleum Geology Conference Series, 4, 933–950. https://doi.org/10.1144/0040933
    [Google Scholar]
  11. Gabrielsen, R. H., Færseth, R. B., Jensen, L. N., & Riis, F. (1990). Structural elements of the Norwegian continental shelf. Pt. 1. The Barents sea region. Norwegian Petroleum Directorate. Bulletin, 6, 47.
    [Google Scholar]
  12. Grundvåg, S. A., Marin, D., Kairanov, B., Sliwinska, K. K., Nøhr‐Hansen, H., Jelby, M. E., … Olaussen, S. (2017). The lower cretaceous succession of the Northwestern barents shelf: Onshore and offshore correlations. Marine and Petroleum Geology, 86, 834.
    [Google Scholar]
  13. Grundvåg, S. A., & Olaussen, S. (2017). Sedimentology of the Lower Cretaceous at Kikutodden and Keilhaufjellet, southern Spitsbergen: Implications for an onshore–offshore link. Polar Research, 36(1), 1302124. https://doi.org/10.1080/17518369.2017.1302124
    [Google Scholar]
  14. Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Klovjan, O. S., … Stoupakova, A. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London Memoirs, 35, 271–281. https://doi.org/10.1144/M35.17
    [Google Scholar]
  15. Hernández‐Molina, F. J., Fernández‐Salas, L. M., Lobo, F., Somoza, L., Díaz‐del‐RÍO, V., & Alveirinho Dias, J. M. (2000). The infralittoral prograding wedge. A new large‐scale progradational sedimentary body in shallow marine environments. Geo‐Marine Letters, 20, 109–117. https://doi.org/10.1007/s003670000040
    [Google Scholar]
  16. Hernández‐Molina, F. J., Somoza, L., & Lobo, F. (2000). Seismic stratigraphy of the Gulf of Cadiz Continental Shelf: a model for Late Quaternary very high‐resolution sequence stratigraphy and response to sea‐level fall. In D.Hunt, & R. L.Gawthorpe (Eds.), Sedimentary responses to forced regression (pp. 329–362). London: Geol. Soc. Lond., Spec. Publ., 172.
    [Google Scholar]
  17. Hinna, C. H. (2016). Seismic characterization of lower Cretaceous Clinoform packages in the Fingerdjupet sub‐basin, southwestern Barents sea. MSc Thesis. Norway: University of Stavanger.
    [Google Scholar]
  18. Indrevær, K., Gabrielsen, R. H., & Faleide, J. I. (2016). Early Cretaceous synrift uplift and tectonic inversion in the Loppa High area, southwestern Barents Sea, Norwegian shelf. 2016–2066. Journal of the Geological Society, 174(2), 242–254. https://doi.org/10.1144/jgs2016-066
    [Google Scholar]
  19. Jamil, M., Matapour, Z., Karlsen, D. A., & Gran, I. (2014). Understanding of petroleum systems from Palaeo‐petroleum present in the Fingerdjupet sub‐basin of the Bjørnøya basin, Norwegian Barents Sea. In International Conference & Exhibition
    [Google Scholar]
  20. Liu, J. P., Li, A. C., Xu, K. H., Velozzi, D. M., Yang, Z. S., Milliman, J. D., & DeMASTER, D. J. (2006). Sedimentary features of the Yangtze River‐derived along‐shelf clinoform deposit in the East China Sea. Continental Shelf Research, 26(17), 2141–2156. https://doi.org/10.1016/j.csr.2006.07.013
    [Google Scholar]
  21. LOCRA Final Report
    LOCRA Final Report . (2017). LoCRA: Lower Cretaceous clastic wedges. An under‐explored play in the Artic. A multi‐university collaboration. University of Stavanger and University Centre in Svalbard, Norway, internal report, 129.
    [Google Scholar]
  22. Marín, D., Escalona, A., Grundvåg, S.‐A., Nøhr‐Hansen, H., & Kairanov, B. (2018). Effects of adjacent fault systems on drainage patterns and evolution of uplifted rift shoulders: The Lower Cretaceous in the Loppa High, southwestern Barents Sea. Marine and Petroleum Geology, 94, 212–229. https://doi.org/10.1016/j.marpetgeo.2018.04.009
    [Google Scholar]
  23. Marin, D., Escalona, A., Śliwinśka, K. K., Nøhr‐Hansen, H., & Mordasova, A. (2017). Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the southwestern Barents Sea. AAPG Bulletin, 101(9), 1487–1517. https://doi.org/10.1306/10241616010
    [Google Scholar]
  24. Midtkandal, I., Faleide, T., Planke, S., Faleide, J. I., Anell, I., & Nystuen, J. P. (2019). Nested shelf platform clinoforms—evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 1–8. https://doi.org/10.1111/bre.12377
    [Google Scholar]
  25. Midtkandal, I., & Nystuen, J. P. (2009). Depositional architecture of a low‐gradient ramp shelf in an epicontinental sea: The Lower Cretaceous of Svalbard. Basin Research, 21, 655–675. https://doi.org/10.1111/j.1365-2117.2009.00399.x
    [Google Scholar]
  26. Mitchell, N. C. (2012). Modeling the rollovers of sandy clinoforms from the gravity effect on wave‐agitated sand. Journal of Sedimentary Research, 82(7), 464–468. https://doi.org/10.2110/jsr.2012.48
    [Google Scholar]
  27. Mitchell, N. C., Masselink, G., Huthnance, J. M., Fernández‐Salas, L. M., & Lobo, F. J. (2012). Depths of modern coastal sand clinoforms. Journal of Sedimentary Research, 82(7), 469–481. https://doi.org/10.2110/jsr.2012.40
    [Google Scholar]
  28. NPD Fa
    NPD Fact Pages (2019) Factpages, Norwegian Petroleum Directorate. http://npdfactpages.npd.no.
    [Google Scholar]
  29. Patruno, S., Hampson, G. J., & Jackson, C. A. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  30. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  31. Patruno, S., Scisciani, V., Helland‐Hansen, W., D'Intino, N., Reid, W., & Pellegrini, C. (2019). Upslope‐climbing shelf‐edge clinoforms and the stepwise evolution of the northern European glaciation (lower Pleistocene Eridanos Delta system, U.K. North Sea): When sediment supply overwhelms accommodation. Basin Research, 1–16. https://doi.org/10.1111/bre.12379
    [Google Scholar]
  32. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103, 24141–24157.
    [Google Scholar]
  33. Senger, K., Tveranger, J., Ogata, K., Braathen, A., & Planke, S. (2014). Late Mesozoic magmatism in Svalbard: A review. Earth‐Science Reviews, 139, 123–144. https://doi.org/10.1016/j.earscirev.2014.09.002
    [Google Scholar]
  34. Serck, C. S., Faleide, J. I., Braathen, A., Kjølhamar, B., & Escalona, A. (2017). Jurassic to early cretaceous basin configuration(s) in the Fingerdjupet Subbasin, SW Barents Sea. Marine and Petroleum Geology, 86, 874–891.
    [Google Scholar]
  35. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27, 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12407
Loading
/content/journals/10.1111/bre.12407
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error