1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Lorca and Fortuna basins are two intramontane Neogene basins located in the eastern Betic Cordillera (SE Spain). During the Late Tortonian—Early Messinian, marine and continental evaporites precipitated in these basins as a consequence of increased marine restriction and isolation. Here we show a stratigraphic correlation between the evaporite records of these basins based on geochemical indicators. We use SO isotope compositions and Sr isotopic ratios in gypsum, and halite Br contents to characterize these units and to identify the marine or continental source of the waters feeding the evaporite basins. In addition, we review the available chronological information used to date these evaporites in Lorca (La Serrata Fm), including a thick saline deposit, that we correlate with the First Evaporitic Group in Fortuna (Los Baños Fm). This correlation is also supported by micropalaeontological data, giving a Late Tortonian age for this sequence. The Second Evaporitic Group, (Chicamo Fm), and the Third Evaporitic Group (Rambla Salada Fm) developed only in Fortuna during the Messinian. According to the palaeogeographical scheme presented here, the evaporites of the Lorca and Fortuna basins were formed during the Late Tortonian—Early Messinian, close to the Betic Seaway closure. Sulphate isotope compositions and Sr isotopic ratios of the Ribera Gypsum Mb, at the base of the Rambla Salada Fm (Fortuna basin), match those of the Late Messinian selenite gypsum beds in San Miguel de Salinas, in the near Bajo Segura basin (40 km to the East), and other Messinian Salinity Crisis gypsum deposits in the Mediterranean. According to these geochemical indicators and the uncertainty of the chronology of this unit, the assignment of the Rambla Salada Fm to the MSC cannot be ruled out.

,

Palaeogeographical evolution sketch of the Betic seaway during Late Miocene.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12408
2020-09-26
2024-04-23
Loading full text...

Full text loading...

References

  1. Agustí, J., Cabrera, L., Garcés, M., Krijgsman, O., Oms, O., & Parés, J. M. (2001). A calibrated mammal scale for the Neogeone of Western Europe: State of the art. Earth Science Reviews, 52, 247–260.
    [Google Scholar]
  2. Agustí, J., Moya‐Solà, S., Gibert, J., & Labrador, M. (1985). Nuevos datos sobre la biostratigrafía del Neógeno continental de Murcia. Paleontología Y Evolución, 18, 83–93. (in Spanish).
    [Google Scholar]
  3. Andreetto, F., Dela Pierre, F., Gibert, L., Natalicchio, M., & Ferrando, S. (2019). Potential fossilized sulfide‐oxidizing bacteria in the Upper Miocene sulfur‐bearing limestones from the Lorca basin (SE Spain): Paleoenvironmental implications. Frontiers in Microbiology, 10, 1–15. https://doi.org/10.3389/fmicb.2019.01031
    [Google Scholar]
  4. Ayora, C., García‐Veigas, J., & Pueyo, J. J. (1994). X‐ray microanalysis of fluid inclusions and its application to geochemical modeling of evaporite basins. Geochimica Et Cosmochimica Acta, 58, 43–55.
    [Google Scholar]
  5. Bellon, H., Bortdet, P., & Montenat, C. (1983). Chronologie du magmatisme Néogène des Cordillères Bètiques (Espagne mérdionale). Bulletin De La Société Géologique De France, 7, 205–217. (in French).
    [Google Scholar]
  6. Benali, S., Schreiber, B. C., Helman, M. L., & Philp, R. P. (1995). Characterization of organic matter from a restricted/evaporite sedimentary environment: Late Miocene of Lorca Basin, Southeastern Spain. AAPG Bulletin, 79, 816–830.
    [Google Scholar]
  7. Benalioulhaj, S., Schreiber, B. C., & Philp, R. P. (1994). Relationship of organic geochemistry to sedimentation under highly variable environments, Lorca Basin (Spain): preliminary results. In R.Renaut & W.Last (Eds.), Sedimentology and geochemistry of modern and ancient saline lakes (Vol. 50, pp. 315–324). McLean, VA: GeoScience World.
    [Google Scholar]
  8. Böttcher, M. E., Brumsack, H. J., & Dürselen, C. D. (2007). The isotopic composition of modern seawater sulfate: I. Coastal waters with special regard to the North Sea. Journal of Marine Systems, 67, 73–82. https://doi.org/10.1016/j.jmarsys.2006.09.006
    [Google Scholar]
  9. Braga, J. C., Martín, J. M., Aguirre, J., Baird, C. D., Grunnaleite, I., Jensen, N. B., … Talbot, M. R. (2010). Middle‐Miocene (Serravallian) temperate carbonates in a seaway connecting the Atlantic Ocean and the Mediterranean Sea (North Betic Strait, S. Spain). Sedimentary Geology, 225, 19–33. https://doi.org/10.1016/j.sedgeo.2010.01.003
    [Google Scholar]
  10. Braga, J. C., Martín, J. M., & Quesada, C. (2003). Patterns and average rates of Late Neogene – Recent uplift of the Betic Cordillera, SE Spain. Geomorphology, 50, 3–26. https://doi.org/10.1016/S0169-555X(02)00205-2
    [Google Scholar]
  11. Braitsch, O. (1971). Salt deposits. Their origin and composition (p. 279). Berlin‐Heidelberg‐New York: Springer‐Verlag.
    [Google Scholar]
  12. Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnik, R. B., Nelso, H. F., & Otto, J. B. (1982). Variation of seawater 87/86Sr throughout Phanerozoic time. Geology, 10, 516–519.
    [Google Scholar]
  13. Calvo, J. P., Elízaga, E., López‐Martínez, N., Robles, F., & Usera, J. (1978). El Mioceno superior continental del Prebético externo: Evolución del estrecho nord‐bético. Boletín Geológico Y Minero, 89, 9–28. (In Spanish).
    [Google Scholar]
  14. Cendón, D. I. (1999) Evolución geoquímica de cuencas evaporíticas terciarias: implicaciones en la composición isotópica del sulfato disuelto en el océano durante el Terciario. PhD Thesis Universitat de Barcelona, 270 pp. (In Spanish).
    [Google Scholar]
  15. CIESM
    CIESM . (2008). The Messinian Salinity Crisis from Mega‐deposits to Microbiology. A consensus report. Iin: Briand, F (Ed.), CIESM Workshop Monographs 33, 91–96.
    [Google Scholar]
  16. Clauzon, G., Suc, J. P., Gautier, F., Berger, A., & Loutre, M. F. (1996). Alternate interpretation of the Messinian salinity crisis: Controversy resolved?Geology, 24, 363–366. https://doi.org/10.1130/0091-7613(1996)024<0363:AIOTMS>2.3.CO;2
    [Google Scholar]
  17. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., & Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260. https://doi.org/10.1016/0009-2541(80)90047-9
    [Google Scholar]
  18. Colom, G. (1952). Aquitanian‐Burdigalian diatom deposits of the North Betic Strait, Spain. Journal of Paleontology, 26, 867–885.
    [Google Scholar]
  19. Corbí, H., Lancis, C., García‐García, F., Pina, J. A., Soria, J. M., Tent‐Manclús, J. E., & Viseras, C. (2012). Updating the marine biostratigraphy of the Granada Basin (central Betic Cordillera). Insight for the Late Miocene palaeogeographic evolution of the Atlantic‐Mediterranean seaway. Geobios, 45, 249–263.
    [Google Scholar]
  20. Corbí, H., & Soria, J. M. (2016). Late Miocene – early Pliocene planktonic foraminifer event‐stratigraphy of the Bajo Segura basin: A complete record of the western Mediterranean. Marine and Petroleum Geology, 77, 1010–1027. https://doi.org/10.1016/j.marpetgeo.2016.08.004
    [Google Scholar]
  21. Corbí, H., Soria, J. M., Lancis, C., Giannetti, A., Tent‐Manclús, J. E., & Dinarès‐Turell, J. (2016). Sedimentological and paleoenvironmental scenario before, during, and after the Messinian Salinity Crisis: The San Miguel de Salinas composite section (western Mediterranean). Marine Geology, 379, 246–266. https://doi.org/10.1016/j.margeo.2016.05.017
    [Google Scholar]
  22. Crespo‐Blanc, A., Comas, M., & Balanyà, J. C. (2016). Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics, 683, 308–324. https://doi.org/10.1016/j.tecto.2016.05.045
    [Google Scholar]
  23. de Larouziére, F. D., Bolze, J., Bordet, P., Hernández, J., Montenat, C., & Ott d'Estevou, P. (1988). The Betic segment of the lithospheric Trans‐Alboran shear zone during the Late Miocene. Tectonophysics, 152, 41–52. https://doi.org/10.1016/0040-1951(88)90028-5
    [Google Scholar]
  24. Dinarès‐Turell, J., Ortí, F., Playà, E., & Rosell, L. (1999). Paleomagnetic chronology of the evaporitic sedimentation in the Neogene Fortuna Basin (SE Spain): Early restriction preceding the ‘Messinian Salinity Crisis'. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 161–178.
    [Google Scholar]
  25. Dinarès‐Turell, J. D., Sprovieri, R., Caruso, A., Di Stefano, E., Gomis‐Coll, E., Pueyo, J. J., … Taberner, C. (1997). Preliminary integrated magnetostratigraphic and biostratigraphic correlation in the Miocene Lorca basin (Murcia, SE Spain). Acta Geologica Hispánica, 32, 161–170.
    [Google Scholar]
  26. Dittert, N., Schrader, S., Skowronek, A., Wrobel, F., & Michalzik, D. (1993). Sedimentationszyklen im Messinium des Lorca‐Beckens (SE‐Spanien). Zentralblatt Für Geologie Und Paläntologie, 1, 841–851.
    [Google Scholar]
  27. Driussi, O., Maillard, A., Ochoa, D., Lofi, J., Chanier, F., Gaullier, V., … García, M. (2015). Messinian Salinity Crisis deposits widespread over the Balearic Promontory: Insights from new high‐resolution seismic data. Marine and Petroleum Geology, 66, 41–54. https://doi.org/10.1016/j.marpetgeo.2014.09.008
    [Google Scholar]
  28. Duggen, S., Hoernle, K., Van den Bogaard, O., & Garbe‐Schönberg, D. (2005). Post‐collisional transition from subduction to intraplate‐type magmatism in the westernmost Mediterranean: Evidence for continental‐edge delamination of subcontinental lithosphere. Journal of Petrology, 46, 1155–1201. https://doi.org/10.1093/petrology/egi013
    [Google Scholar]
  29. Duggen, S., Hoernle, K., van den Bogaard, P., Rüpke, L., & Phipps, M. J. (2003). Deep roots of the Messinian salinity crisis. Nature, 422, 602–606. https://doi.org/10.1038/nature01553
    [Google Scholar]
  30. Esteban, M., Braga, J. C., Martín, J. M., & Santisteban, C. (1996). An overview of Miocene reefs from Mediterranean areas: general trends and facies models. In E. K.Franseen, M.Esteban, W. C.Ward, & J. M.Rouchy (Eds.), Models for carbonate stratigraphy from Miocene reef complexes of Mediterranean regions (Vol. 5, pp. 3–53). McLean, VA: GeoScience World.
    [Google Scholar]
  31. Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C., Dmitrieva, E., Mayser, J. P., … Yousfi, M. Z. (2015). Evolution of the Late Miocene Mediterranean‐Atlantic gateways and their impact on regional and global environmental change. Earth‐Sciences Reviews, 150, 365–392. https://doi.org/10.1016/j.earscirev.2015.08.007
    [Google Scholar]
  32. Garcés, M., Krijgsman, W., & Agustí, J. (1998). Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): Implications for the Messinian evolution of the eastern Betics. Earth and Planetary Science Letters, 163, 69–81. https://doi.org/10.1016/S0012-821X(98)00176-9
    [Google Scholar]
  33. Garcés, M., Krijgsman, W., & Agustí, J. (2001). Chronostratigraphic framework and evolution of the Fortuna basin (Eastern Betics) since the Late Miocene. Basin Research, 13, 199–216. https://doi.org/10.1046/j.1365-2117.2001.00144.x
    [Google Scholar]
  34. García‐Veigas, J., Cendón, D. I., Gibert, L., Lowenstein, T. K., & Artiaga, D. (2018). Geochemical indicators in Western Mediterranean Messinian evaporites: Implications for the salinity crisis. Marine Geology, 403, 197–214. https://doi.org/10.1016/j.margeo.2018.06.005
    [Google Scholar]
  35. García‐Veigas, J., Ortí, F., Rosell, L., Ayora, C., Rouchy, J. M., & Lugli, S. (1995). The Messinian salt of the Mediterranean: Geochemical study of the salt from the Central Sicily Basin and comparison with the Lorca Basin (Spain). Bulletin De La Société Géologique De France, 166, 699–710.
    [Google Scholar]
  36. García‐Veigas, J., Ortí, F., Rosell, L., & Inglés, M. (1994). Caracterización petrológica y geoquímica de la Unidad Salina de la cuenca de Lorca (sondeos S4 y S5). Geogaceta, 15, 78–81. (in Spanish).
    [Google Scholar]
  37. Geel, T. (1976). Messinian gypsiferous deposits of the Lorca Basin (province of Murcia, SE Spain). Memories Società Geologica Italiana, 16, 369–385.
    [Google Scholar]
  38. Guerra‐Merchan, A., & Serrano, F. (1993). Tectosedimentary setting and chronostratigraphy of the Neogene reefs in the Almanzora corridor (Betic Cordillera, Spain). Geobios, 26, 57–67. https://doi.org/10.1016/S0016-6995(93)80007-E
    [Google Scholar]
  39. Guillén Mondéjar, F., Arana, R., Fernández, M. T., López‐Aguallo, F., Mancheño, M. A., Pérez Lorente, F., … Serrano, F. (1996). Las formaciones del Mapa Geológico 1:25000 de la Cuenca de Lorca (Murcia). Geogaceta, 20, 1196–1199.
    [Google Scholar]
  40. Guillén Mondéjar, F., Ródriguez Estrella, T., Arana, R., & López‐Aguallo, F. (1995). Historia geológica de la Cuenca de Lorca (Murcia): Influencia de la tectónica en la sedimentación. Geogaceta, 18, 30–33. (in Spanish).
    [Google Scholar]
  41. Hernández‐Fernández, M., Azanza, B., & Álvarez‐Sierra, M. A. (2004). Iberian Plio‐Pleistocene biochronology: Micromammalian evidence for MNs and ELMAs calibration in southwestern Europe. Journal of Quaternary Science, 19, 605–616. https://doi.org/10.1002/jqs.862
    [Google Scholar]
  42. Hodell, D. A., Mueller, P. A., & Garrido, J. (1991). Variations in the strontium isotopic composition of seawater during the Neogene. Geology, 19, 24–27. https://doi.org/10.1130/0091-7613(1991)019<0024:VITSIC>2.3.CO;2
    [Google Scholar]
  43. Holser, W. T. (1966). Bromide geochemistry of salt rocks. In J. L.Rau (Ed.), Second symposium on salt (pp. 248–275). Northern Ohio Geological Society.
    [Google Scholar]
  44. Holser, W. T., Wardlaw, N. C., & Watson, D. W. (1972). Bromine in salt rocks: Extraordinarily low content in the Lower Elk Point salt, Canada. In G.Richter‐Bernburg (Ed.), Geology of saline deposits: proceedings of the Hanover Symposium (pp. 69–75). Paris, France: UNESCO.
    [Google Scholar]
  45. Hsü, K. J., Cita, M. B., & Ryan, W. B. F. (1973). The origin of the Mediterranean salinity crisis. Initial Report DSDP, 13, 1203–1231.
    [Google Scholar]
  46. Hsü, K. J., Montadert, L., Bernoulii, D., Cita, M. B., Erikson, A., Garrison, R. G., … Wright, R. (1977). History of the Mediterranean salinity crisis. Initial Report DSDP, 42A, 1053–1078. https://doi.org/10.1038/267399a0
    [Google Scholar]
  47. Iaccarino, S. M., Premoli‐Silva, I., Biolzi, M., Foresi, L. M., Lirer, F., & Turco, E. (2007). Practical manual of Neogene planktonic foraminifera (p. 116). Madrid: Instituto Geológico y Minero de España (IGME). (unpublished, in Spanish).
    [Google Scholar]
  48. IGME
    IGME (1982). Ampliación de la investigación de pizarras bituminosas en la zona de Lorca (Murcia) (Fase II), (p. 116). Madrid: Instituto Geológico y Minero de España (IGME). (unpublished, in Spanish).
    [Google Scholar]
  49. Johnston, D. T., Gill, B. C., Masterson, A., Beirne, E., Casciotti, K. L., Knapp, A. N., & Berelson, W. (2014). Placing an upper limit on cryptic marine sulphur cycling. Nature, 513, 530–533. https://doi.org/10.1038/nature13698
    [Google Scholar]
  50. Jolivet, L., Augier, R., Robin, C., Suc, J. P., & Rouchy, J. M. (2006). Lithospheric scale geodynamic context of the Messinian salinity crisis. Sedimentary Geology, 188–189, 9–33. https://doi.org/10.1016/j.sedgeo.2006.02.004
    [Google Scholar]
  51. Kampschulte, A., & Strauss, H. (2004). The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology, 204, 255–286. https://doi.org/10.1016/j.chemgeo.2003.11.013
    [Google Scholar]
  52. Kasprzyk, A. (1997). Oxygen and sulphur isotope composition of Badenian (Middle Miocene) gypsum deposits in southern Poland: A preliminary study. Geological Quarterly, 41, 53–60.
    [Google Scholar]
  53. Korte, C. H., Kozur, H. W., Bruckschen, P., & Veizer, J. (2003). Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica Et Cosmochimica Acta, 67, 47–62. https://doi.org/10.1016/S0016-7037(02)01035-9
    [Google Scholar]
  54. Krijgsman, W., Capella, W., Simon, D., Hilgen, F. J., Kouwenhoven, T. J., Meijer, P. T., … Flecker, R. (2018). The Gibraltar corridor: Watergate of the Messinian Salinity Crisis. Marine Geology, 403, 238–246. https://doi.org/10.1016/j.margeo.2018.06.008
    [Google Scholar]
  55. Krijgsman, W., Garcés, M., Agiustí, J., Raffi, I., Taberner, C., & Zachariasse, W. J. (2000). The ‘Tortonian salinity crisis' of the eastern Betics (Spain). Earth and Planetary Science Letters, 181, 497–511. https://doi.org/10.1016/S0012-821X(00)00224-7
    [Google Scholar]
  56. Krijgsman, W., Garcés, M., Langereis, C. G., Daams, R., van Dam, J., Meulen, A., … Cabrera, L. (1996). A new chronology for the middle to late Miocene continental record in Spain. Earth and Planetary Science Letters, 142, 367–380. https://doi.org/10.1016/0012-821X(96)00109-4
    [Google Scholar]
  57. Krijgsman, W., Hilgen, F. J., Langereis, C. G., Santarelli, A., & Zachariasse, W. J. (1995). Late Miocene magnetostratigraphy, biostratigraphy and cyclostratigraphy in the Mediterranean. Earth and Planetary Science Letters, 136, 475–494. https://doi.org/10.1016/0012-821X(95)00206-R
    [Google Scholar]
  58. Krijgsman, W., Langereis, C. G., Zachariase, W. J., Boccaletti, M., & Moratti., G., Gelati, R., Iaccarino, S., Papani, G. & Villa, G., (1999). Late Neogene evolution of the Taza‐Guercif Basin (Rifian Corridor, Morroco) and implications for the Messinian salinity crisis. Marine Geology, 153, 147–160.
    [Google Scholar]
  59. Krijgsman, W., Leewis, M. E., Garcés, M., Kouwenhoven, T. J., Kuiper, C. F., & Sierro, F. J. (2006). Tectonic control for evaporite formation in the Eastern Betics (Tortonian, Spain). Sedimentary Geology, 188–189, 155–170. https://doi.org/10.1016/j.sedgeo.2006.03.003
    [Google Scholar]
  60. Kuiper, K. F., Krijgsman, W., Garcés, M., & Wijbrans, J. R. (2006). Revised isotopic (40Ar/39Ar) age for the lamproite volcano of Cabezos Negros, Fortuna Basin (Eastern Betics, SE Spain). Paleogeography, Palaeoclimatology, Palaeoecology, 238, 53–63. https://doi.org/10.1016/j.palaeo.2006.03.017
    [Google Scholar]
  61. Lancis, C., Tent‐Manclús, J. E., Soria, J. M., Caracuel, J. E., Corbí, H., Dinarès‐Turell, J., … Yébenes, A. (2010). Nannoplankton biostratigraphic calibration of the evaporitic events in the Neogene Fortuna Basin (SE Spain). Geobios, 43, 201–217. https://doi.org/10.1016/j.geobios.2009.09.007
    [Google Scholar]
  62. Lirer, F., Foresi, L. M., Iaccarino, S. M., Salvatorini, G., Turco, E., Cosentino, C., … Caruso, A. (2019). Mediterranean Neogene planktonic foraminifer biozonation and biochronology. Earth‐Science Reviews, 196, 1–36. https://doi.org/10.1016/j.earscirev.2019.05.013
    [Google Scholar]
  63. Lonergan, L., & White, N. (1997). Origin of the Betic‐Rif Mountain Belt. Tectonophysics, 16, 504–522.
    [Google Scholar]
  64. López‐Garrido, A. C., & Sanz de Galdeano, C. (1999). Neogene sedimentation and tectonic‐eustatic control of the Málaga Basin, South Spain. Journal of Petroleum Geology, 22, 81–96.
    [Google Scholar]
  65. Lourens, L., Hilgen, F., Shackleton, N. J., Laskar, J., & Wilson, D. (2004). The Neogeneperiod. In F. M.Gradstein, J. G.Ogg, & A. G.Smith (Eds.), A geologic time scale (pp. 409–440). Cambridge: Cambridge University Press.
    [Google Scholar]
  66. Lu, F. H., & Meyers, W. J. (2003). Sr, S and OSO4 isotopes and the depositional environments of the Upper Miocene evaporites, Spain. Journal of Sedimentary Research, 73, 444–450. https://doi.org/10.1306/093002730444
    [Google Scholar]
  67. Lu, F. H., Meyers, W. J., & Schoonen, M. A. (2001). S and O (SO4) isotopes, simultaneous modelling, and environmental significance of the Nijar messinian gypsum, Spain. Geochimica Et Cosmochimica Acta, 656, 3081–3092.
    [Google Scholar]
  68. Lugli, S., Bassetti, M. A., Manzi, V., Barbieri, M., Longinelli, A., Roveri, M., & Ricci Luchi, F. (2007). The Messinian ‘Vena del Gesso' evaporites revisited: isotopic and organic matter characterization. In B. C.Schreiber, S.Lugli, & M.Babel (Eds), Evaporites through space and time. Journal of Geological Society of London, 285, 143–154.
  69. Lukowski, P. (1988). Evolution tectosedimentaire du basin neogene de Fortuna. PhD Thesis. Université Paris Sud, 255 pp (unpublished, in French).
    [Google Scholar]
  70. Lukowski, P. H., & Poisson, A. (1990). Le basin de Fortuna. Documents Et Travails IGAL, 12–13, 301–311. (in French).
    [Google Scholar]
  71. Martín, J. M., Braga, J. C., Aguirre, J., & Puga‐Bernabéu, A. (2009). History and evolution of the North‐Betic Strait (Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal‐dominated, Atlantic‐Mediterranean marine passage. Sedimentary Geology, 216, 80–90. https://doi.org/10.1016/j.sedgeo.2009.01.005
    [Google Scholar]
  72. Martín, J. M., Braga, J., & Betzler, C. (2001). The Messinian Guadalhorce corridor: The last northern, Atlantic‐Mediterranean gateway. Terra Nova, 13, 418–424. https://doi.org/10.1046/j.1365-3121.2001.00376.x
    [Google Scholar]
  73. Martín, J. M., Puga‐Bernabéu, Á., Aguirre, J., & Braga, C. (2014). Miocene Atlantic‐Mediterranean seaways in the Betic Cordillera (Southern Spain). Revista De La Sociedad Geológica De España, 27, 175–186.
    [Google Scholar]
  74. McArthur, J. M., Howarth, R. J., & Bailey, T. R. (2001). Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr‐isotope curve for 0–509 Ma and accompanying look‐up table for deriving numerical age. The Journal of Geology, 109, 155–170. https://doi.org/10.1086/319243
    [Google Scholar]
  75. McCafrey, M. A., Lazar, B., & Holland, H. D. (1987). The evaporation path of seawater and the coprecipitation of Br‐ and K+ with halite. Journal of Sedimentary Petrology, 57, 928–937.
    [Google Scholar]
  76. Mein, P. (1975). Proposition du biozonation du Néogène Méditeranéen àpartir des mammifères. Trabajos Sobre Neógeno Y Cuaternario, 4, 112–113. (in French).
    [Google Scholar]
  77. Montenat, C. H. (1977). Les basins néogènes du levant d'Alicante et de Murcia (Cordillères bétiques orientales‐Espagna). Stratigraphie, paléogeograhie et evolution dynamique. Documents Des Laboratoires De GÉOLOGIE De La Faculté Des Sciences De Lyon. 69, 345. (in French).
    [Google Scholar]
  78. Montenat, C. H., Ott d'Estevou, P. H., & Delort, T. H. (1990). Le Bassin de Lorca. Documents Et Travails IGAL, 12–13, 261–280. (in French).
    [Google Scholar]
  79. Müller, D. W. (1986). Die Salinitätskrise im Messinian (spätes Miozän) der Becken von Fortuna und Sorbas (Súdost Spanien). PhD Thesis RTH Zürich, 183 pp. (unpublished, in German).
    [Google Scholar]
  80. Müller, D. W., & Hsü, K. J. (1987). Event stratigraphy and paleoceanography in the Fortuna Basin (southeast Spain): A scenario for the Messinian salinity crisis. Paleoceanography, 4, 75–86.
    [Google Scholar]
  81. Naiman, E. R., Bein, A., & Folck, R. L. (1983). Complex polyhedral crystals of limpid dolomite associated with halite, Permian Upper Clear Fork and Glorieta Formations, Texas. Journal of Sedimentary Petrology, 53, 549–555.
    [Google Scholar]
  82. Ochoa, D., Sierro, F. J., Lofi, J., Maillard, A., Flores, J. A., & Suárez, M. (2015). Synchronous onset of the Messinian evaporite precipitation: First Mediterranean offshore evidence. Earth and Planetary Science Letters, 427, 112–124. https://doi.org/10.1016/j.epsl.2015.06.059
    [Google Scholar]
  83. Opdyke, N., Mein, P., Lindsay, E., Pérez‐González, A., Moissenet, E., & Norton, V. L. (1997). Continental deposits, magnetostratigraphy and vertebrate paleontology, late Neogene of Eastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 133, 129–148. https://doi.org/10.1016/S0031-0182(97)00080-1
    [Google Scholar]
  84. Ortí, F., García‐Veigas, J., Rosell, L., Rouchy, J. M., Inglès, M., Gimeno, D., … Playà, E. (1993). Correlación litoestratigráfica de las evaporitas messinienses en las cuencas de Lorca y Fortuna (Murcia). Geogaceta, 14, 98–101. (in Spanish).
    [Google Scholar]
  85. Ortí, F., Pérez‐López, A., García‐Veigas, J., Rosell, L., Cendón, D. I., & Pérez Valera, F. (2014). Sulfate isotope compositions (δ34S, δ18O) and strontium isotopic ratios (87Sr/86Sr) of Triassic evaporites in the Betic Cordillera (SE Spain). Revista De La Sociedad Geológica De España, 27, 79–89.
    [Google Scholar]
  86. Ortí, F., & Rosell, L. (1990). Introducción a las evaporitas de la Cuenca de Lorca. In F.Ortí, & J. M.Salvany (Eds.), Formaciones evaporíticas de la Cuenca del Ebro y de la zona de Levante (pp. 257–266). Nuevas aportaciones y guía de superficie: ENRESA‐GGP, Universitat de Barcelona. (in Spanish).
    [Google Scholar]
  87. Palmer, M. R., & Edmond, J. M. (1989). The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92, 11–26. https://doi.org/10.1016/0012-821X(89)90017-4
    [Google Scholar]
  88. Palmer, M. R., & Edmond, J. M. (1992). Controls over the strontium isotope composition of river water. Geochimica Et Cosmochimica Acta, 56, 2099–2111. https://doi.org/10.1016/0016-7037(92)90332-D
    [Google Scholar]
  89. Palmer, M. R., & Elderfield, H. (1985). Sr isotope composition of sea water over the past 75 Myr. Nature, 314, 526–528. https://doi.org/10.1038/314526a0
    [Google Scholar]
  90. Paytan, A., Kastner, M., Campbell, D., & Thiemens, M. H. (1998). Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282, 1459–1462. https://doi.org/10.1126/science.282.5393.1459
    [Google Scholar]
  91. Pérez‐Valera, L. A., Rosenbaum, G., Sánchez‐Gómez, M., Azor, A., Fernández‐Soler, J. M., Pérez‐Valera, F., & Vasconcelos, P. M. (2013). Age distribution of lamproites along the Socovos Fault (southern Spain) and lithosperic scales tearing. Lithos, 180, 252–263.
    [Google Scholar]
  92. Pierre, C. (1982). Teneurs en isotopes stables (18O, 13C, 2H, 34S) et conditions de genèse des évaporites marines: application à quelques milieux actuels et au Messinien de la Méditerranée. PhD Thesis, Univ. Paris. (unpublished, in French).
    [Google Scholar]
  93. Pierre, C. (1988). Applications of stable isotope geochemistry to the study of evaporites. In B. C.Schreiber (Ed.), Evaporites and hydrocarbons. New York: Columbia University Press.
    [Google Scholar]
  94. Pierre, C. (1989). Sedimentation and diagenesis in restricted marine basins. In P.Fritz, & J. C.Fontes (Eds.), The marine environment. Handbook of environmental isotope geochemistry, Vol. 3. Amsterdam: Elsevier.
    [Google Scholar]
  95. Playà, E. (1998) Les evaporites de les conques bètiques marginals (Fortuna‐Lorca, Miocè Superior): Comparació amb alters conques mediterrànies. PhD. Thesis, Universitat de Barcelona, 248 pp (unpublished, in Catalan).
    [Google Scholar]
  96. Playà, E., Dinarès‐Turell, J., Ortí, F., Gomis, E., & Rosell, L. (1999). Datación magnetoestratigráfica de las evaporitas de la cuenca neógena de Fortuna (Murcia). Geogaceta, 25, 163–166. (in Spanish).
    [Google Scholar]
  97. Playà, E., & Gimeno, D. (2006). Evaporite deposition and coeval volcanism in Fortuna Basin (Neogene, Murcia, Spain). Sedimentary Geology, 188–189, 205–218.
    [Google Scholar]
  98. Playà, E., Ortí, F., & Rosell, L. (2000). Marine to non‐marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: Sedimentological and geochemical evidence. Sedimentary Geology, 133, 135–166. https://doi.org/10.1016/S0037-0738(00)00033-6
    [Google Scholar]
  99. Rees, C. E., Jenkins, W. J., & Monster, J. (1978). The sulphur isotopic composition of ocean water sulphate. Geochimica Et Cosmochimica Acta, 42, 377–381. https://doi.org/10.1016/0016-7037(78)90268-5
    [Google Scholar]
  100. Rodríguez‐Fernández, J., & Sanz de Galdeano, C. (1992). Onshore Neogene stratigraphy in the North of the Alboran Sea (Betic Internal Zones): Paleogeographic implications. Geo‐Marine Letters, 12, 123–128. https://doi.org/10.1007/BF02084922
    [Google Scholar]
  101. Rouchy, J. M. (1982). La genèse des évaporites messiniennes de Méditerranée. PhD Thesis. Mémoires du Muséum d`Histoire Naturelle 38. Paris, 265 pp. (In: French).
  102. Rouchy, J. M., & Caruso, A. (2006). The Messinian salinity crisis in the Mediterranean basins: A reassessment of the data and integrated scenario. Sedimentary Geology, 188–189, 35–67.
    [Google Scholar]
  103. Rouchy, J. M., Taberner, C., Blanc‐Valleron, M. M., Sprovieri, R., Rusell, M., Pierre, C., … Grimalt, J. O. (1998). Sedimentary and diagenetic markers of the restriction in a marine basin: The Lorca Basin (SE Spain) during the Messinian. Sedimentary Geology, 121, 23–55. https://doi.org/10.1016/S0037-0738(98)00071-2
    [Google Scholar]
  104. Roveri, M., Iaccarino, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–85.
    [Google Scholar]
  105. Santisteban, C.. (1981). Petrología y sedimentología de los materiales del Mioceno Superior de la Cuenca de Fortuna (Murcia), a la luz de la ‘teoría de la crisis de salinidad'. PhD Thesis, Universitat de Barcelona, unpublished, 425 pp. (unpublished, in Spanish).
    [Google Scholar]
  106. Santisteban, C., & Taberner, C. (1983). Shallow marine and continental conglomerates derived from coral reef complexes after dessication of a deep marine basin: The Tortonian‐Messinian deposits of the Fortuna Basin, SE Spain. Journal of the Geological Society, 140, 401–4211.
    [Google Scholar]
  107. Sanz de Galdeano, C. (2008). The Cadiz‐Alicante fault: An important discontinuity in the Betic Cordillera. Revista De La Sociedad Geológica De España, 21, 49–58.
    [Google Scholar]
  108. Sanz de Galdeano, C., & Rodríguez‐Fernández, J. (1996). Neogene palaeogeography of the Betic Cordillera: An attempt of reconstruction. In P. F.Friend, & C. J.Dabrio (Eds.), Tertiary basins of Spain: The stratigraphic record of the crustal kinematics (pp. 323–329). Cambridge: Cambridge University Press.
    [Google Scholar]
  109. Sanz de Galdeano, C., & Vera, J. A. (1992). Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Research, 4, 21–36. https://doi.org/10.1111/j.1365-2117.1992.tb00040.x
    [Google Scholar]
  110. Siemann, M. G., & Schramm, M. (2000). Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochimica Et Cosmochimica Acta, 64, 1681–1693. https://doi.org/10.1016/S0016-7037(99)00385-3
    [Google Scholar]
  111. Sierro, F. J. (1985). The replacement of the Globorotalia menardii group by the Globorotalia miotumida group ‐ an aid to recognizing the Tortonian‐Messinian boundary in the Mediterranean and adjacent Atlantic. Marine Micropaleontology, 9, 525–535. https://doi.org/10.1016/0377-8398(85)90016-7
    [Google Scholar]
  112. Soria, J. M. (1993). Sedimentación y tectónica durante el Mioceno en la región Sierra Arana‐Mencal y su relación con la evolución geodinámica de la Cordillera Bética. Revista De La Sociedad Geológica De España, 7, 199–213. (In Spanish).
    [Google Scholar]
  113. Soria, J. M. (1998). La cuenca de anteapaís norbética en la Cordillera Bética Central (sector del Mencal): evolución tectosedimentaria e historia de la subsidencia. Revista De La Sociedad Geológica De España, 11, 23–31. (in Spanish).
    [Google Scholar]
  114. Soria, J. M., Fernández, J., & Viseras, C. (1999). Late Miocene stratigraphy and paleogeographic evolution of the intramontane Guadix Basin (Central Betic Cordillera, Spain): Implications for an Atlantic‐Mediterranean connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 255–266.
    [Google Scholar]
  115. Soria, J. M., Tent‐Manclús, J. E., Caracuel, J. E., Yébenes, A., Lancis, A., & Estévez, A. (2005). La crisis de salinidad Tortoniense: Su registro en la zona de enlace entre las cuencas de Fortuna y del Bajo Segura. Geo‐Temas, 8, 113–118. (in Spanish).
    [Google Scholar]
  116. Steffahn, J., & Michalzik, D. (2000). Nature and timing of marine post‐crisis foraminiferal repopulation (Messinian event; Late Tertiary) in the Lorca Basin. Revista Española De Micropaleontología, 32, 371–383.
    [Google Scholar]
  117. Steininger, F. F. (1999). The continental European Miocene. Chronostratigraphy, geochronology and biochronology of the miocene ‘European land mammal mega‐zones' (ELMMZ) and the Miocene ‘mammal zones' (MN). In G. E.Rössner, & K.Heissig (Eds.), The Miocene Land Mammal of Europe (pp. 9–38). München, Germany: Verlag Dr. Friedrich Pfeil Publisher.
    [Google Scholar]
  118. Taberner, C., Rouchy, J. M., Rusell, M., Pueyo, J. J., Blanc‐Valleron, M. M., & Sprovieri,… Combourieu‐Nebout, N. (1998). Sedimentary and diagenetic processes related to organic‐rich and evaporite deposits in marine to restricted continental environments, Lorca Basin, SE Spain. 15th International Congress of Sedimentology IAS, Alicante. Excursion A‐4. Field trip guide book, 68–108.
    [Google Scholar]
  119. Tent‐Mancús, J. E., Soria, J. M., Estévez, A., Lancis, A., Caracuel, J. E., Dinarès‐Turell, J., & Yébenes, A. (2008). The Tortonian salinity crisis in the Fortuna Basin (southern Spain): Stratigraphic record, tectonic scenario and chronology. Comptes Rendus Geoscience, 340, 474–481.
    [Google Scholar]
  120. Thrana, C., & Talbot, M. R. (2006). High‐frequency carbonate‐siliciclastic cycles in the Miocene of the Lorca Basin (Western Mediterranean, SE Spain). Geologica Acta, 4, 343–354.
    [Google Scholar]
  121. Tulbure, M. A., Capella, W., Barhoun, N., Flores, J. A., Hilgen, F. J., Krijgsman, W., … Yousfi, M. Z. (2017). Age refinement and basin evolution of the North Rifian Corridor (Morocco): No evidence for a marine connection during the Messinian Salinity Crisis. Paleogeography, Palaeoclimatology, Palaeoecology, 485, 416–432. https://doi.org/10.1016/j.palaeo.2017.06.031
    [Google Scholar]
  122. Turchyn, A. V., & Schrag, D. P. (2004). Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science, 303, 2004–2007. https://doi.org/10.1126/science.1092296
    [Google Scholar]
  123. Valiayashko, M. G. (1956). Geochemistry of bromine in the processes of salt deposition and the use of bromine content as a genetic and prospecting criterion. Geochemistry, 6, 570–589.
    [Google Scholar]
  124. Van Dam, J. (1997). The small mammals from the Upper Miocene of the Teruel‐Alfambra region (Spain): Paleobiology and paleoclimatic reconstructions. Geologica Ultriectina, 156, 1–204.
    [Google Scholar]
  125. Van der Schee, M., van der Berg, B. C. J., Capella, W., Simon, D., Sierro, F. J., & Krijgsman, W. (2018). New age constraints on the western Betic intramontane basins: A late Tortonian closure of the Guadalhorce Corridor?Terra Nova, 30, 325–332. https://doi.org/10.1111/ter.12347
    [Google Scholar]
  126. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., … Strauss, H. (1999). 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88. https://doi.org/10.1016/S0009-2541(99)00081-9
    [Google Scholar]
  127. Wortmann, U. G., & Paytan, A. (2012). Rapid variability of seawater chemistry over the past 130 Million years. Science, 337, 334–336. https://doi.org/10.1126/science.1220656
    [Google Scholar]
  128. Wrobel, F., & Michalzik, D. (1999). Facies successions in the pre‐evaporitic Late Miocene of the Lorca Basin, SE Spain. Sedimentary Geology, 127, 171–191. https://doi.org/10.1016/S0037-0738(99)00048-2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12408
Loading
/content/journals/10.1111/bre.12408
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error