1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

This study implemented a source‐to‐sink approach for the Great Salt Lake (GSL) hydro‐geosystem of the calcium dynamics, highlighting the dissolved pool in both the waterbody and the watershed. Major and minor pathways of calcium inputs were evaluated in order to quantify calcium delivered to the GSL during the Holocene. The value resulting from the hydrologic data was compared to the amount of calcium stored in the water column and sediments of the lake during the same period. The similarity between these two estimates is consistent with the premise of the source‐to‐sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs. Alternative properties can be used to estimate the inputs in the fossil record when monitoring is unavailable.

, Abstract

Most source‐to‐sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non‐volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long‐term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium‐rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source‐to‐sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12412
2020-09-26
2024-03-29
Loading full text...

Full text loading...

References

  1. Abelha, M., & Petersohn, E. (2018). The State of the Art of the Brazilian Pre‐Salt Exploration. AAPG ACE (2018).Salt Lake City Utah: AAPG.
  2. Allen, P. A. (2008). From landscapes into geological history. Nature, 451, 274. https://doi.org/10.1038/nature06586
    [Google Scholar]
  3. Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., & Burch, I. W. (2006). Stromatolite reef from the early archaean era of Australia. Nature, 441, 714–718. https://doi.org/10.1038/nature04764
    [Google Scholar]
  4. Amiotte Suchet, P., Probst, A., & Probst, J. L. (1995). Influence of acid rain on CO2 consumption by rock weathering: local and global scales. Water, Air, and Soil Pollution, 85, 1563–1568. https://doi.org/10.1007/BF00477203
    [Google Scholar]
  5. Amiotte Suchet, P., Probst, J. L., & Ludwig, W. (2003). Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2), 1038.
    [Google Scholar]
  6. Anderson, R. B., Naftz, D. L., Day‐Lewis, F. D., Henderson, R. D., Rosenberry, D. O., Stolp, B. J., & Jewell, P. (2014). Quantity and quality of groundwater discharge in a hypersaline lake environment. Journal of Hydrology, 512, 177–194. https://doi.org/10.1016/j.jhydrol.2014.02.040
    [Google Scholar]
  7. Arnow, T. (1980). Water budget and water‐surface fluctuations, great salt Lake, Utah. InJ. W.Gwynn (Ed.), Great Salt Lake, a Scientific, Historical and Economic Overview (Vol. 116 pp. 255–264). Salt Lake City,Utah: Department of Natural Resources.
    [Google Scholar]
  8. Arnow, T., & Stephens, D. W. (1974). Hydrologic Characteristics of the Great Salt Lake, Utah, 1847–1986 (p. 40). Washington, DC: Water Supply Paper.
    [Google Scholar]
  9. Arnow, T., & Stephens, D. W. (1990). Hydrologic Characteristics of the Great Salt Lake, Utah, 1847–1986 (p. 40). Washington, DC: Water Supply Paper.
    [Google Scholar]
  10. Balch, D. P., Cohen, A. S., Schnurrenberger, D. W., Haskell, B. J., Valero Garces, B. L., Beck, J. W., … Edwards, R. L. (2005). Ecosystem and paleohydrological response to quaternary climate change in the bonneville Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 221, 99–122. https://doi.org/10.1016/j.palaeo.2005.01.013
    [Google Scholar]
  11. Barbarand, J., Quesnel, F., & Pagel, M. (2013). Lower paleogene denudation of upper cretaceous cover of the morvan massif and southeastern paris basin (France) revealed by aft thermochronology and constrained by stratigraphy and paleosurfaces. Tectonophysics, 608, 1310–1327. https://doi.org/10.1016/j.tecto.2013.06.011
    [Google Scholar]
  12. Baskin, R. L. (2014) Occurrence and Spatial Distribution of Microbial Bioherms in Great Salt Lake, Utah. Utah, Salt Lake City, PhD Thesis.
  13. Baskin, R. L., & Allen, D. V. (2005). Bathymetric Map of the South Part of Great Salt Lake, Utah. U.S. Geological Survey, Scientific Investigations Map 2894.
    [Google Scholar]
  14. Baskin, R. L., Driscoll, N., & Wright, V. P. (2011). Lacustrine Microbialites in Great Salt Lake: Life in a Dead Lake[abstract]. American Association of Petroleum Geologists Annual Convention Abstracts Volume. 13.
  15. Baskin, R. L., Driscoll, N., & Wright, V. P. (2013). Controls on Lacustrine Microbialite Distribution in Great Salt Lake, Utah. [Abstract.]. Microbial Carbonates in Space and Time: Implications for Global Exploration and Production, The Geological Society, London, Programme & Abstracts Volume, 70‐71.
  16. Baskin, R. L., & Turner, J. (2006). Bathymetric Map of the North Part of Great Salt Lake, Utah. U.S. Geological Survey, Scientific Investigations Map 2954.
    [Google Scholar]
  17. Baskin, R. L., Wright, V. P., Driscoll, N., Graham, K., & Hepner, G. (2012) Microbialite Bioherms in Great Salt Lake: Influence of Active Tectonics and Anthropogenic Effects, American Association of Petroleum Geologists, Tulsa, OK, Search & Discovery, article #90153.
  18. Baxter, B. K. (2018). Great Salt Lake microbiology: a historical perspective. International Microbiology, 21, 79–95. https://doi.org/10.1007/s10123-018-0008-z
    [Google Scholar]
  19. Bedinger, M. S., Sargent, K. A., & Brady, B. T. (1985). Geologic and Hydrologic Characterization and Evaluation of the Basin and Range Province Relative to the Disposal of High‐Level Radioactive Waste: Part III, Geologic and Hydrologic Evaluation (p. 34). Washington, D.C.
    [Google Scholar]
  20. Bekker, M. F., Justin DeRose, R., Buckley, B. M., Kjelgren, R. K., & Gill, N. S. (2014). A 576‐year weber river streamflow reconstruction from tree rings for water resource risk assessment in the wasatch front, Utah. JAWRA Journal of the American Water Resources Association, 50, 1338–1348. https://doi.org/10.1111/jawr.12191
    [Google Scholar]
  21. Belovsky, G. E., Stephens, D., Perschon, C., Birdsey, P., Paul, D., Naftz, D., … Allen, D. V. (2011) The great Salt Lake ecosystem (Utah, USA): long term data and a structural equation approach. Ecosphere, 2, art33. https://doi.org/10.1890/ES10-00091.1
    [Google Scholar]
  22. Benson, L. (1994). Carbonate deposition, pyramid lake subbbasin, nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas). Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 55–87.
    [Google Scholar]
  23. Benson, L. (2004). The Tufas of Pyramid Lake, Nevada. U.S. Geological Survey.
  24. Bertrand‐Sarfati, J., Freytet, P., & Plaziat, J. C. (1966). Les Calcaires Concretionnes De La Limite Oligocene‐Miocene Des Environs De Saint‐Pourcain‐Sur‐Sioule (Limagne D'allier); Role Des Algues Dans Leur Edification, Analogie Avec Les Stromatolites Et Rapports Avec La Sedimentation. Bulletin De La Société Géologique De France, S7‐VIII, 652–662.
    [Google Scholar]
  25. Beven, K. (2001). On hypothesis testing in hydrology. Hydrological Processes, 15, 1655–1657. https://doi.org/10.1002/hyp.436
    [Google Scholar]
  26. Blackett, R. E., & Wakefield, S. (2002). Geothermal Resources of Utah: A Digital Atlas of Utah's Geothermal Resources. Utah Geological Survey.
    [Google Scholar]
  27. Boettinger, J. L. (2009) Soils of Utah. In R. E.Banner, B. D.Baldwin, & E. I.Leydsman McGinty (Proj. Coord.), Rangeland Resources of Utah (pp. 46–48). Logan, Utah: Utah State University Cooperative Extension Service.
    [Google Scholar]
  28. Bougeault, C., Vennin, E., Durlet, C., Muller, E., Mercuzot, M., Chavez, M., … Gaucher, E. C. (2019). Biotic‐abiotic influences on modern ca–si‐rich hydrothermal spring mounds of the pastos grandes volcanic caldera (Bolivia). Minerals, 9, 380. https://doi.org/10.3390/min9060380
    [Google Scholar]
  29. Bouton, A. (2016). Facteurs De Contrôle Extrinsèques Des Dépôts Microbiens Récents En Domaine De Transition Continental‐Marin, Université de Bourgogne, Dijon. PhD Thesis.
  30. Bouton, A., Vennin, E., Boulle, J., Pace, A., Bourillot, R., Thomazo, C., … Visscher, P. T. (2016). Linking the distribution of microbial deposits from the great salt lake (Utah, USA) to tectonic and climatic processes. Biogeosciences, 13, 5511–5526. https://doi.org/10.5194/bg-13-5511-2016
    [Google Scholar]
  31. Bouton, A., Vennin, E., Mulder, T., Pace, A., Bourillot, R., Thomazo, C., … Visscher, P. T. (2016). Enhanced development of lacustrine microbialites on gravity flow deposits, great Salt Lake, Utah, USA. Sedimentary Geology, 341, 1–12. https://doi.org/10.1016/j.sedgeo.2016.05.004
    [Google Scholar]
  32. Bowman, V. C., Francis, J. E., Askin, R. A., Riding, J. B., & Swindles, G. T. (2014). Latest cretaceous‐earliest paleogene vegetation and climate change at the high southern latitudes: palynological evidence from seymour Island, antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 26–47. https://doi.org/10.1016/j.palaeo.2014.04.018
    [Google Scholar]
  33. Bradley, W. H. (1964). Geology of green river formation and associated eocene rocks in southwestern wyoming and adjacent parts of Colorado and Utah. U.S. Geological Survey Professional Paper. 496‐A, 86 p.
  34. Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate‐reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401–411. https://doi.org/10.1111/j.1472-4669.2007.00117.x
    [Google Scholar]
  35. Brito Neves, B., Santos, E. D., & Van Schmus, W. (2000). Tectonic History of the Borborema Province. Tectonic Evolution of South America, 31, 15.
    [Google Scholar]
  36. Budyko, M. I. (1958). The Heat Balance of the Earth's Surface. Washington DC: US Department of Commerce, Weather Bureau.
    [Google Scholar]
  37. Budyko, M. I. (1963) Evaporation under Natural Conditions. Israel Program for Scientific Translations, Jerusalem.
  38. Burke, R. B., & Gerhard, L. C. (2000). Aragonite Cementation and Related Sedimentary Structures in Quaternary Lacustrine Deposits, Great Salt Lake, Utah. In J. K.King, & G. C.Willis (Eds.), The Geology of Antelope Island (pp. 99–115). Utah Geological Survey: Salt Lake City.
    [Google Scholar]
  39. Byerly, G. R., Kröner, A., Lowe, D. R., Todt, W., & Walsh, M. M. (1996). Prolonged magmatism and time constraints for sediment deposition in the early archean barberton greenstone belt: evidence from the upper onverwacht and fig tree groups. Precambrian Research, 78, 125–138. https://doi.org/10.1016/0301-9268(95)00073-9
    [Google Scholar]
  40. Carozzi, A. V. (1962). Observations on algal biostromes in the Great Salt Lake, Utah. The Journal of Geology, 70, 246–252. https://doi.org/10.1086/626814
    [Google Scholar]
  41. Chabaud, L., Ducassou, E., Tournadour, E., Mulder, T., Reijmer, J. J. G., Conesa, G., … Ross, L. (2016). Sedimentary processes determining the modern carbonate periplatform drift of little bahama bank. Marine Geology, 378, 213–229. https://doi.org/10.1016/j.margeo.2015.11.006
    [Google Scholar]
  42. Chetel, L. M., Janecke, S. U., Carroll, A. R., Beard, B. L., Johnson, C. M., & Singer, B. S. (2011). Paleogeographic reconstruction of the eocene idaho river, North American Cordillera. Geological Society of America Bulletin, 123, 71–88. https://doi.org/10.1130/B30213.1
    [Google Scholar]
  43. Chidsey, T. C., Vanden Berg, M. D., & Eby, D. E. (2015). Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin's Eocene Green River Formation in Utah, USA. Geological Society, London, Special Publications, 418(1), 261–286. https://doi.org/10.1144/SP418.6.
    [Google Scholar]
  44. Choudhury, B. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216, 99–110. https://doi.org/10.1016/S0022-1694(98)00293-5
    [Google Scholar]
  45. Colman, S. M., Kelts, K. R., & Dinter, D. A. (2002). Depositional history and neotectonics in Great Salt Lake, Utah, from high‐resolution seismic stratigraphy. Sedimentary Geology, 148, 61–78. https://doi.org/10.1016/S0037-0738(01)00210-X
    [Google Scholar]
  46. Coolbaugh, M. F., Faulds, J. E., Kratt, C., Oppliger, G. L., Shevenell, L., Calvin, W., … Zehner, R. E. (2007). Geothermal potential of the pyramid lake paiute reservation, Nevada, USA: evidence of previously unrecognized moderate‐temperature (150–70 C) geothermal systems. Geothermal Resources Council Transactions, 30, 59–67.
    [Google Scholar]
  47. Currey, D. R. (1980). Coastal Geomorphology of Great Salt Lake and Vicinity. In J. W.Gwynn (Ed.), Great Salt Lake: A Scientific, Historical and Econonmic Overview. Salt Lake City, Utah: Utah Geological and Mineral Survey.
    [Google Scholar]
  48. Currey, D. R., Atwood, G., & Mabey, D. R. (1984). Major Levels of Great Salt Lake and Lake Bonneville, Utah Geological and Mineral Survey map 73.
  49. Currey, D. R., & James, S. R. (1982). Paleoenvironments of the Northeastern Great Basin and Northeastern Basin Rim Region: A Review of Geological and Biological Evidence. In D. B.Madsen, &J. F.O'Connel (Ed.), Man and environment in the Great Basin (Vol. 2, pp. 27–52). Soc. American Archaeology Papers.
    [Google Scholar]
  50. Della Porta, G. (2015). Carbonate build‐ups in lacustrine, hydrothermal and fluvial settings: Comparing depositional geometry, fabric types and geochemical signature. Geological Society, London, Special Publications, 418(1), 17–68. https://doi.org/10.1144/SP418.4
    [Google Scholar]
  51. DeRose, R. J., Bekker, M. F., Wang, S. Y., Buckley, B. M., Kjelgren, R. K., Bardsley, T., … Allen, E. B. (2015). A Millennium‐length reconstruction of bear river stream flow, Utah. Journal of Hydrology, 529, 524–534. https://doi.org/10.1016/j.jhydrol.2015.01.014
    [Google Scholar]
  52. DeRose, R. J., Wang, S.‐Y., Buckley, B. M., & Bekker, M. F. (2014). Tree‐ring reconstruction of the level of great Salt Lake, USA. The Holocene, 24, 805–813. https://doi.org/10.1177/0959683614530441
    [Google Scholar]
  53. Dupraz, C., & Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438. https://doi.org/10.1016/j.tim.2005.07.008
    [Google Scholar]
  54. Eardley, A. J. (1938). Sediments of Great Salt Lake, Utah. AAPG Bulletin, 22, 1305–1411.
    [Google Scholar]
  55. Eardley, A. J. (1962). Gypsum Dunes and Evaporite History of the Great Salt Lake Desert. Utah Geological and Mineralogical Survey, University of Utah, SAlt Lake City.
  56. Fauquembergue, K., Ducassou, E., Mulder, T., Hanquiez, V., Perello, M.‐C., & Poli, E. & Borgomano, J. (2018). Genesis and growth of a carbonate holocene wedge on the northern little Bahama Bank. Marine and Petroleum Geology, 96, 602–614. https://doi.org/10.1016/j.marpetgeo.2018.05.013
    [Google Scholar]
  57. Fauquette, S., Guiot, J., & Suc, J.‐P. (1998). A method for climatic reconstruction of the Mediterranean pliocene using pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 183–201. https://doi.org/10.1016/S0031-0182(98)00083-2
    [Google Scholar]
  58. Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5
    [Google Scholar]
  59. Gibbs, M. T., & Kump, L. R. (1994). Global chemical erosion during the Last Glacial Maximum and the present: Sensitivity to changes in lithology and hydrology. Paleoceanography, 9, 529–543. https://doi.org/10.1029/94PA01009
    [Google Scholar]
  60. Gilbert, G. K. (1890). Lake Bonneville. Washington: U.S. government printing office.
    [Google Scholar]
  61. Gilbert, G. K. (1917). Hydraulic‐Mining Debris in the Sierra Nevada. US Government Printing Office.
    [Google Scholar]
  62. Gore, P. J. W. (1989). Toward a Model for Open‐ and Closed‐Basin Deposition in Ancient Lacustrine Sequences: The Newark Supergroup (Triassic‐Jurassic), Eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 70, 29–51. https://doi.org/10.1016/0031-0182(89)90078-3
    [Google Scholar]
  63. Götz, A. E., Hancox, P. J., & Lloyd, A. (2017). Permian Climate Change Recorded in Palynomorph Assemblages of Mozambique (Moatize Basin, Eastern Tete Province). Acta Palaeobotanica, 57, 3–11. https://doi.org/10.1515/acpa-2017-0001
    [Google Scholar]
  64. Guiot, J. (1990). Methodology of the Last Climatic Cycle Reconstruction in France from Pollen Data. Palaeogeography, Palaeoclimatology, Palaeoecology, 80, 49–69. https://doi.org/10.1016/0031-0182(90)90033-4
    [Google Scholar]
  65. Gwynn, J. W. (1996). Commonly Asked Questions About Utah's Great Salt Lake and Ancient Lake Bonneville, Public Information Series 39, Utah: Geological Survey.
  66. Hahl, D. C., & Langford, R. H. (1964). Dissolved‐Mineral Inflow to Great Salt Lake and Chemical Characteristics of the Salt Lake Brine, Part II: Technical Report. Water‐resources bulletin. U. G. a. M. Survey. 3.
  67. Hahnenberger, M., & Nicoll, K. (2014). Geomorphic and land cover identification of dust sources in the eastern great basin of Utah, U.S.A. Geomorphology, 204, 657–672. https://doi.org/10.1016/j.geomorph.2013.09.013
    [Google Scholar]
  68. Halley, R. B., & Evans, C. C. (1983). The Miami Limestone: A Guide to Selected Outcrops and Their Interpretation( With a Discussion of Diagenesis in the Formation). Miami Geological Society Miami, Florida.
  69. Harris, P. T., Macmillan‐Lawler, M., Rupp, J., & Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4–24. https://doi.org/10.1016/j.margeo.2014.01.011
    [Google Scholar]
  70. Harris, P. T., & Whiteway, T. (2011). Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Marine Geology, 285, 69–86. https://doi.org/10.1016/j.margeo.2011.05.008
    [Google Scholar]
  71. Hawie, N., Deschamps, R., Granjeon, D., Nader, F. H., Gorini, C., Müller, C., … Baudin, F. (2017). Multi‐scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modelling case study of the levant region. Basin Research, 29, 418–445. https://doi.org/10.1111/bre.12156
    [Google Scholar]
  72. Hedberg, L. L., & Parry, W. (1971). Clay Mineralogy at the Brine‐Sediment Interface in the South Arm of Great Salt Lake. Utah: Utah Geological and Mineralogical Survey Special Studies, 35, 12.
    [Google Scholar]
  73. Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367–368. https://doi.org/10.1126/science.105.2727.367
    [Google Scholar]
  74. Homewood, P. W., Mettraux, M., Berg, M. V., Foubert, A., & Schaegis, J.‐C. (2018). Presalt Reservoir Analogs: Lacustrine Microbialites Fed by Shore Zone Hot Springs, Lakeside Ut. AAPG Datapages Search and Discovery.
  75. Horton, J. D., San Juan, C. A., & Stoeser, D. B. (2017). The State Geologic Map Compilation (Sgmc) Geodatabase of the Conterminous United States (p. 56). Reston, VA: Data Series.
    [Google Scholar]
  76. Hugueney, M., Berthet, D., Bodergat, A.‐M., Escuillié, F., Mourer‐Chauviré, C., & Wattinne, A. (2003). La limite Oligocène‐Miocène en Limagne : changements fauniques chez les mammifères, oiseaux et ostracodes des différents niveaux de billy‐créchy (Allier, France). Geobios, 36, 719–731. https://doi.org/10.1016/j.geobios.2003.01.002
    [Google Scholar]
  77. Hutchinson, M. F. (1988). Calculation of Hydrologically Sound Digital Elevation Models. Proceedings of the Third International Symposium on Spatial Data Handling, International Geographical Union Sydney.
  78. Hutchinson, M. F. (1989). A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106, 211–232. https://doi.org/10.1016/0022-1694(89)90073-5
    [Google Scholar]
  79. Janecke, S. U., & Evans, J. P. (2017). Revised Structure and Correlation of the East Great Salt Lake, North Promontory, Rozel and Hansel Valley Fault Zones Revealed by the 2015‐2016 Low Stand of Great Salt Lake. In W. L.Lund, S. H.Emerman, W.Wang, & A.Zanazzi (Eds.), Geology and Resources of the Wasatch: Back to Front (Vol. 46, pp. 295‐360). Salt Lake City: Utah Geological Association.
    [Google Scholar]
  80. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole‐Filled Srtm for the Globe Version 4, International Centre for Tropical Agriculture (Ciat). Rerived from http://Srtm.Csi.Cgiar.Org
  81. Jiang, L.‐Q., Feely, R. A., Carter, B. R., Greeley, D. J., Gledhill, D. K., & Arzayus, K. M. (2015). Climatological distribution of aragonite saturation state in the global oceans. Global Biogeochemical Cycles, 29, 1656–1673. https://doi.org/10.1002/2015GB005198
    [Google Scholar]
  82. Jones, B. F., Naftz, D. L., Spencer, R. J., & Oviatt, C. G. (2009). Geochemical evolution of great Salt Lake, Utah, USA. Aquatic Geochemistry, 15, 95–121. https://doi.org/10.1007/s10498-008-9047-y
    [Google Scholar]
  83. Jones, D. J. (1953). Gypsum‐oolite dunes, great Salt Lake Desert, Utah. AAPG Bulletin, 37, 2530–2538.
    [Google Scholar]
  84. Jorry, S., Courgeon, S., Gwenael, J., Toucanne, S., Roy, L., Axel, E., … Poli, E. (2016). A Late Quaternary Carbonate Source‐to‐Sink Model: The Glorieuses Platform to Basin (Sw Indian Ocean). 25e Réunion des Sciences de la Terre. Caen, France.
    [Google Scholar]
  85. Jorry, S., Gwenael, J., Prat, S., Courgeon, S., Roy, P., Camoin, G., & Caline, B. (2014). A Modern Analog for Carbonate Source to Sink Sedimentary Systems: The Glorieuses Archipelago and Adjacent Basin (Sw Indian Ocean).AGU Fall Meeting. San Francisco, California.
    [Google Scholar]
  86. Junge, C. E., & Werby, R. T. (1958). The concentration of chloride, sodium, potassium, calcium, and sulfate in rain water over the United States. Journal of Meteorology, 15, 417–425. https://doi.org/10.1175/1520-0469(1958)015<0417:TCOCSP>2.0.CO;2
    [Google Scholar]
  87. Kiessling, W., Flügel, E., & Golonka, J. (2003). Patterns of phanerozoic carbonate platform sedimentation. Lethaia, 36, 195–226. https://doi.org/10.1080/00241160310004648
    [Google Scholar]
  88. Kirby, S. M., Inkenbrandt, P. C., & Rupke, A. (2019). Mapping Groundwater Quality and Chemistry Adjoining the Great Salt Lake, Utah. Utah Geological Survey Open‐File Report. 699.
  89. Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.‐P., Langdon, C., & Opdyke, B. N. (1999b). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284, 118–120. https://doi.org/10.1126/science.284.5411.118
    [Google Scholar]
  90. Kleypas, J. A., McManus, J. W., & Meñez, L. A. B. (1999a). Environmental limits to coral reef development: where do we draw the line?American Zoologist, 39, 146–159. https://doi.org/10.1093/icb/39.1.146
    [Google Scholar]
  91. Krumgalz, B. (1982). Calcium Distribution in the World Ocean Waters. Oceanologica Acta, 5, 121–128.
    [Google Scholar]
  92. Leemans, R. (1992). Global holdridge life zone classifications. global ecosystems database Version 2. UNEP‐WCMC.
  93. Lehner, B., Verdin, K., & Jarvis, A. (2008). New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union, 89, 93–94. https://doi.org/10.1029/2008EO100001
    [Google Scholar]
  94. Lindsay, M. R., Anderson, C., Fox, N., Scofield, G., Allen, J., Anderson, E., … Boyd, E. S. (2017). Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah. Geobiology, 15, 131–145. https://doi.org/10.1111/gbi.12201
    [Google Scholar]
  95. Liu, Z., Dreybrodt, W., & Liu, H. (2011). Atmospheric Co2 Sink: Silicate Weathering or Carbonate Weathering?Applied Geochemistry, 26, S292–S294. https://doi.org/10.1016/j.apgeochem.2011.03.085
    [Google Scholar]
  96. Loving, B. L., Miller, C. W., & Waddell, K. M. (2000). Water and Salt Balance of Great Salt Lake, Utah, and Simulation of Water and Salt Movement through the Causeway, 1987‐98. Water‐Resources Investigations Report. Salt Lake City, UT, 111.
  97. Lugo, A. E., Brown, S. L., Dodson, R., Smith, T. S., & Shugart, H. H. (1999). The holdridge life zones of the conterminous united states in relation to ecosystem mapping. Journal of Biogeography, 26, 1025–1038. https://doi.org/10.1046/j.1365-2699.1999.00329.x
    [Google Scholar]
  98. Madsen, D. B. (2000) Late Quaternary Paleoecology in the Bonneville Basin. Utah Geological Survey Bulletin, 130, Salt Lake City, Utah.
  99. McKenzie, J. A., & Eberli, G. P. (1985). Late holocene lake-level fluctuations of the Great Salt Lake (Utah) as deduced form oxygen-isotope and carbonate contents of cored sediments. In P. A.Kay, & H. F.Diaz (Eds.), Problems of and prospects for predicting Great Salt Lake levels (pp. 25–39). Salt Lake City, UT: University of Utah.
    [Google Scholar]
  100. Meade, R. H. (1982). Sources, Sinks, and Storage of River Sediment in the Atlantic Drainage of the United States. The Journal of Geology, 90, 235–252. https://doi.org/10.1086/628677
    [Google Scholar]
  101. Meybeck, M. (1986). Composition chimique des ruisseaux non pollués en France. Chemical composition of headwater streams in France. Sciences Géologiques, Bulletins Et Mémoires, 39, 3–77. https://doi.org/10.3406/sgeol.1986.1719
    [Google Scholar]
  102. Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.
    [Google Scholar]
  103. Miller, R. M. G., Pickford, M., & Senut, B. (2010). The geology, palaeontology and evolution of the etosha pan, namibia : implications for terminal kalahari deposition. South African Journal of Geology, 113, 307–334. https://doi.org/10.2113/gssajg.113.3.307
    [Google Scholar]
  104. Milliman, J. D., & Farnsworth, K. L. (2013). River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  105. Mohammed, I. N., & Tarboton, D. G. (2012). An examination of the sensitivity of the great salt lake to changes in inputs. Water Resources Research, 48, 17. https://doi.org/10.1029/2012WR011908
    [Google Scholar]
  106. Mulder, T., Joumes, M., Hanquiez, V., Gillet, H., Reijmer, J. J. G., Tournadour, E., … Busson, J. (2017). Carbonate slope morphology revealing sediment transfer from bank‐to‐slope (Little Bahama Bank, Bahamas). Marine and Petroleum Geology, 83, 26–34. https://doi.org/10.1016/j.marpetgeo.2017.03.002
    [Google Scholar]
  107. Munroe, J. S. (2014). Properties of modern dust accumulating in the Uinta Mountains, Utah, USA, and implications for the regional dust system of the Rocky Mountains. Earth Surface Processes and Landforms, 39, 1979–1988. https://doi.org/10.1002/esp.3608
    [Google Scholar]
  108. Murchison, S. B. (1989) Fluctuation History of Great Salt Lake, Utah, During the Last 13,000 Years. University of Utah, Salt Lake City, PhD Thesis.
  109. Naftz, D. L., Carling, G. T., Angeroth, C., Freeman, M., Rowland, R., & Pazmiño, E. (2014). Density‐stratified flow events in Great Salt Lake, Utah, USA: implications for mercury and salinity cycling. Aquatic Geochemistry, 20, 547–571. https://doi.org/10.1007/s10498-014-9237-8
    [Google Scholar]
  110. Neff, J. C., Ballantyne, A. P., Farmer, G. L., Mahowald, N. M., Conroy, J. L., Landry, C. C., … Reynolds, R. L. (2008). Increasing eolian dust deposition in the Western United States linked to human activity. Nature Geoscience, 1, 189. https://doi.org/10.1038/ngeo133
    [Google Scholar]
  111. Newell, D. L., Jensen, J. L., Frantz, C. M., & Vanden Berg, M. D. (2017). Great Salt Lake (Utah) Microbialite δ13c, δ18o, and δ15n Record Fluctuations in Lake Biogeochemistry since the Late Pleistocene. Geochemistry, Geophysics, Geosystems, 18, 3631–3645.
    [Google Scholar]
  112. Nyberg, B., & Howell, J. A. (2015). Is the present the key to the past? A global characterization of modern sedimentary basins. Geology, 43, 643–646. https://doi.org/10.1130/G36669.1
    [Google Scholar]
  113. O'Connor, J. E. (1993). Hydrology, hydraulics, and geomorphology of the bonneville flood. Geological Society of America Special Papers, 274, 1–84.
    [Google Scholar]
  114. Oviatt, C. G. (2014). The Gilbert Episode in the Great Salt Lake Basin, Utah. Utah Geological Survey.
  115. Oviatt, C. G. (2015). Chronology of lake bonneville, 30,000 to 10,000 yr b.P. Quaternary Science Reviews, 110, 166–171. https://doi.org/10.1016/j.quascirev.2014.12.016
    [Google Scholar]
  116. Oviatt, C. G., Madsen, D. B., Miller, D. M., Thompson, R. S., & McGeehin, J. P. (2015). Early holocene Great Salt Lake, USA. Quaternary Research, 84, 57–68. https://doi.org/10.1016/j.yqres.2015.05.001
    [Google Scholar]
  117. Oviatt, C. G., Miller, D. M., McGeehin, J. P., Zachary, C., & Mahan, S. (2005). The younger dryas phase of Great Salt Lake, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 263–284. https://doi.org/10.1016/j.palaeo.2004.12.029
    [Google Scholar]
  118. Oviatt, C. G., Thompson, R. S., Kaufman, D. S., Bright, J., & Forester, R. M. (1999). Reinterpretation of the burmester core, bonneville basin, Utah. Quaternary Research, 52, 180–184. https://doi.org/10.1006/qres.1999.2058
    [Google Scholar]
  119. Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I., … Visscher, P. T. (2016). Microbial and Diagenetic Steps Leading to the Mineralisation of Great Salt Lake Microbialites. Scientific Reports, 6, 31495. https://doi.org/10.1038/srep31495
    [Google Scholar]
  120. Poole, I., Weyers, J. D. B., Lawson, T., & Raven, J. A. (1996). Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell & Environment, 19, 705–712. https://doi.org/10.1111/j.1365-3040.1996.tb00405.x
    [Google Scholar]
  121. Porporato, A., Daly, E., & Rodriguez‐Iturbe, I. (2004). Soil water balance and ecosystem response to climate change. American Naturalist, 164, 625–632. https://doi.org/10.1086/424970
    [Google Scholar]
  122. Principaud, M., Mulder, T., Hanquiez, V., Ducassou, E., Eberli, G. P., Chabaud, L., & Borgomano, J. (2018). Recent morphology and sedimentary processes along the western slope of great bahama bank (Bahamas). Sedimentology, 65, 2088–2116. https://doi.org/10.1111/sed.12458
    [Google Scholar]
  123. Quesnel, F., Dupuis, C., Yans, J., Ricordel‐Prognon, C., Rad, S., Storme, J.‐Y., … Iacumin, P. (2009). Reconstructing the late paleocene‐early eocene continental paleosurface in and around the paris and adjacent basins: new insights for paleogeographic, geodynamic and climatic studies. GNS Miscellanous Series, 18, 102–106.
    [Google Scholar]
  124. Ramsey, R. D., & West, N. E. (2009) Vegetation of Utah. InR. E.Banner, B. D.Baldwin, & E. I.Leydsman McGinty (Proj. Coord.), Rangeland Resources of Utah (pp. 49–94). Logan, Utah: Utah State University Cooperative Extension Service.
    [Google Scholar]
  125. Reynolds, R. L., Goldstein, H. L., Moskowitz, B. M., Bryant, A. C., Skiles, S. M., Kokaly, R. F., … Painter, T. H. (2014). Composition of dust deposited to snow cover in the wasatch range (Utah, USA): controls on radiative properties of snow cover and comparison to some dust‐source sediments. Aeolian Research, 15, 73–90. https://doi.org/10.1016/j.aeolia.2013.08.001
    [Google Scholar]
  126. Reynolds, R. L., Mordecai, J. S., Rosenbaum, J. G., Ketterer, M. E., Walsh, M. K., & Moser, K. A. (2010). Compositional changes in sediments of Subalpine Lakes, Uinta Mountains (Utah): evidence for the effects of human activity on atmospheric dust inputs. Journal of Paleolimnology, 44, 161–175. https://doi.org/10.1007/s10933-009-9394-8
    [Google Scholar]
  127. Rhode, D. (2000). Middle and Late Wisconsin Vegetation in the Bonneville Basin. In D. B.Madsen (Ed.), Late Quaternary Paleoecology in the Bonneville Basin (Vol. 130, pp. 137‐148). Salt Lake City: Utah Geological Survey.
    [Google Scholar]
  128. Richardson, G. B. (1906). Underground Water in the Valleys of Utah Lake and Jordan River, Utah. Washington, DC: Water Supply Paper, 93.
    [Google Scholar]
  129. Riding, R., & Liang, L. (2005a). Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 101–115.
    [Google Scholar]
  130. Riding, R., & Liang, L. (2005b). Seawater chemistry control of marine limestone accumulation over the past 550 million years. Revista Española De Micropaleontología, 37, 1–11.
    [Google Scholar]
  131. RILEM‐UNESCO
    RILEM‐UNESCO (1978). Altération Et Protection Des Monuments En Pierre, Méthodes Expérimentales. In Deterioration and Protection of Stone Monuments, Actes Du Congrès International (pp. 177‐178). Paris: Unesco‐Rilem.
    [Google Scholar]
  132. Roche, A., Vennin, E., Bouton, A., Olivier, N., Wattinne, A., Bundeleva, I., … Visscher, P. T. (2018). Oligo‐miocene lacustrine microbial and metazoan buildups from the limagne basin (French Massif Central). Palaeogeography, Palaeoclimatology, Palaeoecology, 504, 34–59. https://doi.org/10.1016/j.palaeo.2018.05.001
    [Google Scholar]
  133. Roche, A., Vennin, E., Bundeleva, I., Bouton, A., Payandi‐Rolland, D., Amiotte‐Suchet, P., … Visscher, P. T. (2019). The role of the substrate on the mineralization potential of microbial mats in a modern freshwater river (Paris Basin, France). Minerals, 9, 359. https://doi.org/10.3390/min9060359
    [Google Scholar]
  134. Romero‐Mujalli, G., Hartmann, J., & Börker, J. (2018). Temperature and Co2 dependency of global carbonate weathering fluxes – implications for future carbonate weathering research. Chemical Geology, in press. https://doi.org/10.1016/j.chemgeo.2018.08.010
    [Google Scholar]
  135. Ross, D. S. (1973) Holocene Fluctuations of Great Salt Lake, with Special Reference to Evidence from the Eastern Shore, University of Utah. MsC Thesis.
  136. Rudy, R. C.Jr. (1973) Holocene Fluctuations of Great Salt Lake, with Special Reference to Evidence from the Western Shore, University of Utah. MsC Thesis.
  137. Rupke, A., & McDonald, A. (2012). Great Salt Lake Brine Chemistry Database, 1966–2011. Utah Geological Survey Open‐File Report 596. 596.
  138. Rust, U. (1984). Geomorphic Evidence of Quaternary Environmental Changes in Etosha, South West Africa/Namibia. In J. C.Vogel (Ed.), Late Cainozoic Palaeoclimates of the Southern Hemisphere (pp. 279–286). Rotterdam: Balkema.
    [Google Scholar]
  139. Ryan‐Mishkin, K., Walsh, J., Corbett, D., Dail, M., & Nittrouer, J. (2009). Modern Sedimentation in a Mixed Siliciclastic‐Carbonate Coral Reel Environment, La Parguera, Puerto Rico. Caribbean Journal of Science, 45, 151–168. https://doi.org/10.18475/cjos.v45i2.a4
    [Google Scholar]
  140. Sanders, J. E., & Friedman, G. M. (1967). Chapter 5 Origin and Occurrence of Limestones11work on This Chapter Commenced in the Department of Geology, Yale University, but Was Completed after the Senior Author Became a Senior Research Associate, Columbia University. Contribution No.66‐5 of the Department of Geology, Rensselaer Polytechnic Institute. In G. V.Chilingar, H. J.Bissell, & R. W.Fairbridge (Eds.), Developments in Sedimentology (Vol. 9, pp. 169–265. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  141. Shukla, T., Sundriyal, S., Stachnik, L., & Mehta, M. (2018). Carbonate and Silicate Weathering in Glacial Environments and Its Relation to Atmospheric Co2 Cycling in the Himalaya. Annals of Glaciology, 59, 159–170.
    [Google Scholar]
  142. Skiles, S. M., Mallia, D. V., Hallar, A. G., Lin, J. C., Lambert, A., Petersen, R., & Clark, S. (2018). Implications of a shrinking great salt lake for dust on snow deposition in the wasatch mountains, ut, as informed by a source to sink case study from the 13–14 april 2017 dust event. Environmental Research Letters, 13, 124031. https://doi.org/10.1088/1748-9326/aaefd8
    [Google Scholar]
  143. Smith, A. M., & Mason, T. R. (1991). Pleistocene, multiple‐growth, lacustrine oncoids from the Poacher's Point Formation, Etosha Pan, Northern Namibia. Sedimentology, 38, 591–599. https://doi.org/10.1111/j.1365-3091.1991.tb01010.x
    [Google Scholar]
  144. Smith, M. E., Carroll, A. R., & Singer, B. S. (2008). Synoptic reconstruction of a major ancient lake system: eocene green river formation, Western United States. GSA Bulletin, 120, 54–84. https://doi.org/10.1130/B26073.1
    [Google Scholar]
  145. Smith, R. E., Perdrix, J. L., & Parks, T. C. (1982). Burial metamorphism in the hamersley basin, Western Australia. Journal of Petrology, 23, 75–102. https://doi.org/10.1093/petrology/23.1.75
    [Google Scholar]
  146. Smoot, J. P. (1985). The closed‐basin hypothesis and its use in facies analysis of the newark supergroup. United States Geological Survey Journal of Research, 1176, 4–10.
    [Google Scholar]
  147. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between Morphological and Sedimentological Parameters in Source‐to‐Sink Systems: A Basis for Predicting Semi‐Quantitative Characteristics in Subsurface Systems. Basin Research, 21, 361–387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
    [Google Scholar]
  148. Spencer, R. J., Baedecker, M. J., Eugster, H. P., Forester, R. M., Goldhaber, M. B., Jones, B. F., … Bowser, C. J. (1984). Great Salt Lake, and Precursors, Utah: The Last 30,000 Years. Contributions to Mineralogy and Petrology, 86, 321–334. https://doi.org/10.1007/BF01187137
    [Google Scholar]
  149. Spencer, R. J., Eugster, H. P., Jones, B. F., & Rettig, S. L. (1985). Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850. Geochimica Et Cosmochimica Acta, 49, 727–737. https://doi.org/10.1016/0016-7037(85)90167-X
    [Google Scholar]
  150. Steenburgh, W. J., Massey, J. D., & Painter, T. H. (2012). Episodic dust events of utah's wasatch front and adjoining region. Journal of Applied Meteorology and Climatology, 51, 1654–1669. https://doi.org/10.1175/JAMC-D-12-07.1
    [Google Scholar]
  151. Stewart, J. Q., Whiteman, C. D., Steenburgh, W. J., & Bian, X. (2002). A climatological study of thermally driven wind systems of the U.S. Intermountain west. Bulletin of the American Meteorological Society, 83, 699–708. https://doi.org/10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2
    [Google Scholar]
  152. Stock, G. M., Frankel, K. L., Ehlers, T. A., Schaller, M., Briggs, S. M., & Finkel, R. C. (2009). Spatial and temporal variations in denudation of the wasatch mountains, Utah, USA. Lithosphere, 1, 34–40. https://doi.org/10.1130/L15.1
    [Google Scholar]
  153. Stüeken, E. E., Buick, R., & Schauer, A. J. (2015). Nitrogen isotope evidence for alkaline lakes on late archean continents. Earth and Planetary Science Letters, 411, 1–10. https://doi.org/10.1016/j.epsl.2014.11.037
    [Google Scholar]
  154. Suc, J.‐P., Popescu, S.‐M., Fauquette, S., Bessedik, M., Jiménez‐Moreno, G., Taoufiq, N. B., … Klotz, S. (2018). Reconstruction of mediterranean flora, vegetation and climate for the last 23 million years based on an extensive pollen dataset. Ecologia Mediterranea, 44, 53–85.
    [Google Scholar]
  155. Surdam, R. C., & Stanley, K. (1980). Effects of changes in drainage‐basin boundaries on sedimentation in eocene lakes gosiute and uinta of wyoming, Utah, and Colorado. Geology, 8, 135–139. https://doi.org/10.1130/0091-7613(1980)8<135:EOCIDB>2.0.CO;2
    [Google Scholar]
  156. Thomazo, C., Ader, M., Farquhar, J., & Philippot, P. (2009). Methanotrophs regulated atmospheric sulfur isotope anomalies during the mesoarchean (Tumbiana Formation, Western Australia). Earth and Planetary Science Letters, 279, 65–75. https://doi.org/10.1016/j.epsl.2008.12.036
    [Google Scholar]
  157. Thomazo, C., Ader, M., & Philippot, P. (2011). Extreme 15n‐enrichments in 2.72‐Gyr‐old sediments: evidence for a turning point in the nitrogen cycle. Geobiology, 9, 107–120. https://doi.org/10.1111/j.1472-4669.2011.00271.x
    [Google Scholar]
  158. Thomazo, C., Buoncristiani, J.‐F., Vennin, E., Pellenard, P., Cocquerez, T., Mugnier, J. L., & Gérard, E. (2017). Geochemical processes leading to the precipitation of subglacial carbonate crusts at bossons glacier, mont blanc massif (French Alps). Frontiers in Earth Science, 5, 1–16. https://doi.org/10.3389/feart.2017.00070
    [Google Scholar]
  159. Thompson, D. L., Stilwell, J. D., & Hall, M. (2015). Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: pre‐salt coquinas of Brazil and West Africa. Gondwana Research, 28, 26–51. https://doi.org/10.1016/j.gr.2014.12.005
    [Google Scholar]
  160. Thompson, R. S., Oviatt, C. G., Honke, J. S., & McGeehin, J. P. (2016) Chapter 11 ‐ Late Quaternary Changes in Lakes, Vegetation, and Climate in the Bonneville Basin Reconstructed from Sediment Cores from Great Salt Lake. In C. G.Oviatt, & J. F.Shroder (Eds.), Developments in Earth Surface Processes (Vol. 20, pp. 221‐291). Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  161. Tikalsky, B. P. (2007) An 828 Year Streamflow Reconstruction for the Jordan River Drainage Basin of Northern Utah. Brigham Young University, Provo, Utah, MsC Thesis.
  162. Tipper, E. T., Gaillardet, J., Galy, A., Louvat, P., Bickle, M. J., & Capmas, F. (2010). Calcium isotope ratios in the world's largest rivers: a constraint on the maximum imbalance of oceanic calcium fluxes. Global Biogeochemical Cycles, 24, GB3019. https://doi.org/10.1029/2009GB003574
    [Google Scholar]
  163. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the northwest slope of Little Bahama Bank (Bahamas): relations between off‐bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317, 9–26. https://doi.org/10.1016/j.sedgeo.2014.10.003
    [Google Scholar]
  164. Traverse, A. (1988). Paleopalynology. Unwin Hyman, Boston: London; Sydney.
    [Google Scholar]
  165. U. S. Geological Survey
    U. S. Geological Survey . (2018) National Water Information System Data Available on the World Wide Web (Usgs Water Data for the Nation). USGS 10010100 GREAT SALT LAKE NEAR SALINE, UT. Retrieved from https://waterdata.usgs.gov/ut/nwis/uv?site_no=10010100
  166. Utah Division of Natural Ressources
    Utah Division of Natural Ressources (1992). The Bear River System ‐ Average Stream Flow and Depletions Schematic Map, 1941–1990. Salt Lake City: Utah Department of Natural Resources.
    [Google Scholar]
  167. Utah Division of Natural Ressources
    Utah Division of Natural Ressources (1997a). The Weber River System ‐ Average Stream Flow and Depletions Schematic Map, 1961–1990. Salt Lake City: Utah Department Of Natural Resources.
    [Google Scholar]
  168. Utah Division of Natural Ressources
    Utah Division of Natural Ressources (1997b). The Utah Lake‐Jordan River System ‐ Average Stream Flow and Depletions Schematic Map, 1941–1990. Salt Lake City: Utah Department Of Natural Resources.
    [Google Scholar]
  169. Van Kranendonk, M. J., Philippot, P., & Lepot, K. (2006) The Pilbara Drilling Project: C. 2.72 Ga Tumbiana Formation and C. 3.49 Ga Dresser Formation Pilbara Craton, Western Australia. Geological Survey of Western Australia.
  170. Vanden Berg, M. D. (2019). Domes, rings, ridges, and polygons: characteristics of microbialites from Utah's Great Salt Lake. The Sedimentary Record, 17, 4–10. https://doi.org/10.2110/sedred.2019.1.4
    [Google Scholar]
  171. Vennin, E., Bouton, A., Bourillot, R., Pace, A., Roche, A., Brayard, A., … Visscher, P. T. (2019). The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology, 66, 165–204. https://doi.org/10.1111/sed.12499
    [Google Scholar]
  172. Waddell, K. M., & Fields, F. K. (1977). Model for Evaluating the Effects of Dikes on the Water and Salt Balance of Great Salt Lake (p. 63). Salt Lake City, Utah: Utah Geological and Mineralogical Survey Water‐Resources Bulletin. UT, 63.
    [Google Scholar]
  173. Walsh, J. P., Wiberg, P. L., Aalto, R., Nittrouer, C. A., & Kuehl, S. A. (2016). Source‐to‐sink research: economy of the earth's surface and its Strata. Earth‐Science Reviews, 153, 1–6. https://doi.org/10.1016/j.earscirev.2015.11.010
    [Google Scholar]
  174. Wang, K., & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50, 1–54.
    [Google Scholar]
  175. Warren, J. K. (2006). Evaporites: Sediments, Resources and Hydrocarbons. New York: Springer.
    [Google Scholar]
  176. Warren, J. K. (2016). Evaporites : A Geological Compendium, p. 1813. Springer.
    [Google Scholar]
  177. Wattinne, A., Lécuyer, C., Vennin, E., Chateauneuf, J.‐J., & Martineau, F. (2018). Environmental changes around the oligocene/miocene boundary in the limagne graben, massif central, France. Bulletin of the Geological Society of France, 189, 19.
    [Google Scholar]
  178. Wattinne, A., Vnnin, E., & Wever, P. D.(2003). Evolution D'un Environnement Carbonaté Lacustre À Stromatolithes, Par L‘Approche Paléo‐Écologique (Carrière De Montaigu‐Le‐Blin, Bassin Des Limagnes, Allier, France). Bulletin De La Societe Geologique De France, 174, 243–260.
    [Google Scholar]
  179. Wetzel, A. (1993). The transfer of river load to deep‐sea fans: a quantitative approach. AAPG Bulletin, 77, 1679–1692.
    [Google Scholar]
  180. Weyhenmeyer, G. A., Hartmann, J., Hessen, D. O., Kopáček, J., Hejzlar, J., Jacquet, S., … Zechmeister, T. (2019). Widespread diminishing anthropogenic effects on calcium in freshwaters. Scientific Reports, 9, 10450. https://doi.org/10.1038/s41598-019-46838-w
    [Google Scholar]
  181. White, A. F., & Blum, A. E. (1995). Effects of Climate on Chemical Weathering in Watersheds. Geochimica Et Cosmochimica Acta, 59, 1729–1747.
    [Google Scholar]
  182. Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., … Moore, J. (2017). Decline of the World's Saline Lakes. Nature Geoscience, 10, 816. https://doi.org/10.1038/ngeo3052
    [Google Scholar]
  183. Wurtsbaugh, W., Miller, C., Null, S., Wilcock, P., Hahnenberger, M., & Howe, F. (2016). Impacts of water development on great salt lake and the wasatch front. Watershed Sciences Faculty Publications, 875, 9.
    [Google Scholar]
  184. Zhuravlev, A. Y., & Wood, R. A. (2009). Controls on carbonate skeletal mineralogy: global co2 evolution and mass extinctions. Geology, 37, 1123–1126. https://doi.org/10.1130/G30204A.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12412
Loading
/content/journals/10.1111/bre.12412
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basin; calcium; carbonates; Great Salt Lake; holocene; source‐to‐sink

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error