1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

Sediment provenance analysis of the sand and silt size fractions of ODP site 861 (46ºS, offshore Patagonia) provides insights into erosion and ice drainage of the Patagonian Ice Sheet during the Middle to Late Pleistocene. Focus of erosion during this time period is related to a combined climatic and structural influence on glacial erosion. Temporal variations in sediment provenance contemporaneous with a change in the stratigraphy of this site suggest a re‐organization of ice extent and drainage towards the ocean around 240 kyr ago. These results contribute to constrain ice dynamics of the western side of the Patagonian Ice Sheet during the Pleistocene.

, Abstract

Pleistocene glaciations have promoted important landscape transformations as a result of high rates of erosion and rapid sediment evacuation to adjacent marine basins. In the Patagonian Andes the role of the Patagonian Ice Sheet on landscape evolution, in particular the spatial patterns of glacial erosion and its influence on sediment fluxes, is poorly documented. Here, we investigate the Middle and Late Pleistocene sedimentary record of the continental slope from Ocean Drilling Program (ODP) Site 861, offshore Patagonia (46°S), to evaluate the link between glaciations, mountain range erosion and continental margin strata formation. Petrographic analysis of the sand‐size fraction (0.063–2 mm) and ɛNd and 87Sr/86Sr measurements in the silt‐size fraction (10–63 µm) indicate that glacial erosion over the last 350,000 years has focused within the Patagonian Batholith, with a minor influence of a proximal source to the drilling site, the Chonos Metamorphic Complex. This shows that erosion has focused in the core of the northern Patagonian Andes, coinciding roughly with the location of the Liquiñe‐Ofqui Fault Zone and the zone of concentrated precipitation during glaciations, suggesting a combined climatic and structural control on glacial erosion. Temporal variation in the provenance signal is contemporaneous with a marked change in the stratigraphy of ODP Site 861 that occurred after the glaciation of MIS 8 (~240 kyr ago). Before MIS 8, a restricted provenance signal and coarse lithofacies accumulated on the continental slope indicates spatially restricted erosion and efficient transfer of sediment towards the ocean. In contrast, very high provenance variability and finer continental slope lithofacies accumulation after MIS 8 suggest a disorganized expansion of the areas under erosion and a more distal influence of ice sediment discharge to this site. We argue that this change may have been related to a re‐organization of the drainage patterns of the Patagonian Ice Sheet and flow of outlet glaciers to the continental margin during the last two glaciations.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12413
2020-09-26
2024-04-25
Loading full text...

Full text loading...

References

  1. Anderson, R. S., Dühnforth, M., Colgan, W., & Anderson, L. (2012). Far‐flung moraines: Exploring the feedback of glacial erosion on the evolution of glacier length. Geomorphology, 179, 269–285. https://doi.org/10.1016/j.geomorph.2012.08.018
    [Google Scholar]
  2. Behrmann, J. H., Lewis, S. D., Musgrave, R. J., Arqueros, R., Bangs, N. L., Boden, P., … Forsythe, R. (1992). Site 861. Proceedings of the ocean drilling program, initial reports (Vol. 141, pp. 239–299). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  3. Bertrand, S. B., Hughen, K. A., Sepúlveda, J., & Pantoja, S. (2012). Geochemistry of surface sediments from the fjords of Northern Chilean Patagonia (44–47°S): Spatial variability and implications for paleoclimate reconstructions. Geochimica Et Cosmochimica Acta, 76, 125–146. https://doi.org/10.1016/j.gca.2011.10.028
    [Google Scholar]
  4. Bertrand, S., Hughen, K., Sepúlveda, J., & Pantoja, S. (2014). Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia. Quaternary Science Reviews, 105, 195–208. https://doi.org/10.1016/j.quascirev.2014.09.021
    [Google Scholar]
  5. Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Zeitler, P. K., Ramos, V. A., Sobel, E. R., … Warkus, F. (2006). Links between mountain uplift, climate, and surface processes in the southern Patagonian Andes. Frontiers in Earth Sciences, 20, 429–440. https://doi.org/10.1007/978-3-540-48684-8_20
    [Google Scholar]
  6. Boulton, G. S., & Clark, C. D. (1990). The Laurentide ice sheet through the last glacial cycle: The topology of drift lineations as a key to the dynamic behaviour of former ice sheets. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 81(4), 327–347. https://doi.org/10.1017/S0263593300020836
    [Google Scholar]
  7. Briner, J. P., Miller, G. H., Davis, P. T., & Finkel, R. C. (2006). Cosmogenic radionuclides from fiord landscapes support differential erosion by overriding ice sheets. Geological Society of America Bulletin, 118, 406–420. https://doi.org/10.1130/B25716.1
    [Google Scholar]
  8. Briner, J. P., Miller, G. H., Finkel, R., & Hess, D. P. (2008). Glacial erosion at the fjord onset zone and implications for the organization of ice flow on Baffin Island, Arctic Canada. Geomorphology, 97, 126–134. https://doi.org/10.1016/j.geomorph.2007.02.039
    [Google Scholar]
  9. Cande, S. C., & Leslie, R. B. (1986). Late Cenozoic tectonics of the southern Chile trench. Journal of Geophysical Research, 91, 471–496. https://doi.org/10.1029/JB091iB01p00471
    [Google Scholar]
  10. Carel, M., Siani, G., & Delpech, G. (2011). Tephrostratigraphy of a deep‐sea sediment sequence off the south Chilean margin: New insight into the Hudson volcanic activity since the last glacial period. Journal of Volcanology and Geothermal Research, 208, 99–111. https://doi.org/10.1016/j.jvolgeores.2011.09.011
    [Google Scholar]
  11. Catuneanu, O. (2006). Principles of sequence stratigraphy. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  12. Cembrano, J., Lavenu, A., Reynolds, P., Arancibia, G., López, G., & Sanhueza, A. (2002). Late Cenozoic transpressional ductile deformation north of the Nazca‐South America–Antarctica triple junction. Tectonophysics, 354, 289–314. https://doi.org/10.1016/S0040-1951(02)00388-8
    [Google Scholar]
  13. Champagnac, J. D., Molnar, P., Sue, C., & Herman, F. (2012). Tectonics, climate, and mountain topography. Journal of Geology, 117, https://doi.org/10.1029/2011JB008348
    [Google Scholar]
  14. Champagnac, J. D., Valla, P. G., & Herman, F. (2014). Late‐Cenozoic relief evolution under evolving climate: A review. Tectonophysics, 614, 44–65. https://doi.org/10.1016/j.tecto.2013.11.037
    [Google Scholar]
  15. Christeleit, E. C., Brandon, M. T., & Shuster, D. L. (2017). Miocene development of alpine glacial relief in the Patagonian Andes, as revealed by low‐temperature thermochronometry. Earth and Planetary Science Letters, 460, 152–163. https://doi.org/10.1016/j.epsl.2016.12.019
    [Google Scholar]
  16. DaSilva, J. L., Anderson, J. B., & Stravers, J. (1997). Seismic facies changes along a nearly continuous 24 latitudinal transect: The fjords of Chile and the northern Antarctic Peninsula. Marine Geology, 143, 103–123. https://doi.org/10.1016/S0025-3227(97)00092-3
    [Google Scholar]
  17. Diemer, J. A., & Forsythe, R. (1995). Grain size variations within slope facies recovered from the Chile Margin Triple Junction. In S. D.Lewis, J. H.Behrmann, R. J.Musgrave, & S. C.Cande (Eds.), Proceedings of ODP scientific results (Vol. 141, pp. 79–94). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  18. Dietrich, R., Ivins, E. R., Casassa, G., Lange, H., Wendt, J., & Fritsche, M. (2010). Rapid crustal uplift in Patagonia due to enhanced ice loss. Earth and Planetary Science Letters, 289, 22–29. https://doi.org/10.1016/j.epsl.2009.10.021
    [Google Scholar]
  19. D'Orazio, M., Innocenti, F., Manetti, P., Tamponi, M., Tonarini, S., González‐Ferrán, O., … Omarini, R. (2003). The Quaternary calc‐alkaline volcanism of the Patagonian Andes close to the Chile triple junction: Geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (∼45°S, Chile). Journal of South American Earth Sciences, 16, 219–242. https://doi.org/10.1016/S0895-9811(03)00063-4
    [Google Scholar]
  20. Egholm, D. L., Nielsen, S. B., Pedersen, V. K., & Lesemann, J. E. (2009). Glacial effects limiting mountain height. Nature, 460, 884–887. https://doi.org/10.1038/nature08263
    [Google Scholar]
  21. Encinas, A., Folguera, A., Oliveros, V., De Girolamo Del Mauro, L., Tapia, F., Riffo, R., … Álvarez, O. (2016). Late Oligocene–Early Miocene submarine volcanism and deep‐marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes. Geological Society of America Bulletin, 128, 807–823. https://doi.org/10.1130/B31303.1
    [Google Scholar]
  22. Fernandez, R. A., Anderson, J. B., Wellner, J. S., Minzoni, R. L., Hallet, B., & Smith, R. T. (2016). Latitudinal variation in glacial erosion rates from Patagonia and the Antarctic Peninsula (46°S−65°S). Geological Society of America Bulletin, 128, 1000–1023. https://doi.org/10.1130/B31321.1
    [Google Scholar]
  23. Garreaud, R., Lopez, P., Minvielle, M., & Rojas, M. (2013). Large‐Scale Control on the Patagonian Climate. Journal of Climate, 26, 215–230. https://doi.org/10.1175/JCLI-D-12-00001.1
    [Google Scholar]
  24. Garzanti, E., Andò, S., & Vezzoli, G. (2009). Grain‐size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277, 422–432. https://doi.org/10.1016/j.epsl.2008.11.007
    [Google Scholar]
  25. Garzanti, E., & Vezzoli, G. (2003). A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73, 830–837. https://doi.org/10.1306/012203730830
    [Google Scholar]
  26. Glasser, N. F., & Ghiglione, M. C. (2009). Structural, tectonic and glaciological controls on the evolution of fjord landscapes. Geomorphology, 105, 291–302. https://doi.org/10.1016/j.geomorph.2008.10.007
    [Google Scholar]
  27. Glasser, N. F., & Jansson, K. N. (2005). Fast‐flowing outlet glaciers of the Last Glacial Maximum Patagonian Icefield. Quaternary Research, 63, 206–211. https://doi.org/10.1016/j.yqres.2004.11.002
    [Google Scholar]
  28. Glasser, N. F., Jansson, K. N., Harrison, S., & Kleman, J. (2008). The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews, 27, 365–390. https://doi.org/10.1016/j.quascirev.2007.11.011
    [Google Scholar]
  29. Gulick, S. P. S., Jaeger, J. M., Mix, A. C., Asahi, H., Bahlburg, H., Belanger, C. L., … Swartz, J. M. (2015). Mid‐Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. Proceedings of the National Academy of Sciences of the United States of America, 112, 15042–15047. https://doi.org/10.1073/pnas.1512549112
    [Google Scholar]
  30. Heberer, B., Behrmann, J. H., & Rahn, M. K. (2011). Source‐to‐sink relationships along the South‐Central Chilean margin: Evidence from detrital apatite fission‐track analysis. Basin Research, 23, 551–570. https://doi.org/10.1111/j.1365-2117.2011.00504.x
    [Google Scholar]
  31. Heberer, B., Roser, G., Behrmann, J. H., Rahn, M., & Kopf, A. (2010). Holocene sediments from the Southern Chile Trench: A record of active margin magmatism, tectonics and palaeoseismicity. Journal of the Geological Society, 167, 539–553. https://doi.org/10.1144/0016-76492009-015
    [Google Scholar]
  32. Hein, A. S., Cogez, A., Darvill, C. M., Mendelova, M., Kaplan, M. R., Herman, F., … Rodés, Á. (2017). Regional mid‐Pleistocene glaciation in central Patagonia. Quaternary Science Reviews, 164, 77–94. https://doi.org/10.1016/j.quascirev.2017.03.023
    [Google Scholar]
  33. Herman, F., & Brandon, M. (2015). Mid‐latitude glacial erosion hotspot related to equatorial shifts in southern Westerlies. Geology, 43, 987–990. https://doi.org/10.1130/G37008.1
    [Google Scholar]
  34. Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., & Ehlers, T. A. (2013). Worldwide acceleration of mountain erosion under a cooling climate. Nature, 504, 423–426. https://doi.org/10.1038/nature12877
    [Google Scholar]
  35. Hervé, F., Fanning, C. M., & Pankhurst, R. J. (2003). Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. Journal of South American Earth Sciences, 16, 107–123. https://doi.org/10.1016/S0895-9811(03)00022-1
    [Google Scholar]
  36. Hervé, F., Mpodozis, C., Davidson, J. P., & Godoy, E. (1981). Observaciones estructurales y petrográficas en el basamenro metamorfico del archiìelago de Los Chonos, entre el Canal King y el Canal Ninualac, Aysen. Andean Geology, 3–16.
    [Google Scholar]
  37. Ho, S. L., Mollenhauer, G., Lamy, F., Martínez‐Garcia, A., Mohtadi, M., Gersonde, R., … Tiedemann, R. (2012). Sea surface temperature variability in the Pacific sector of the Southern Ocean over the past 700 kyr. Paleoceanography, 27, 380–416. https://doi.org/10.1029/2012PA002317
    [Google Scholar]
  38. Hubbard, A., Hein, A. S., Kaplan, M. R., Hulton, N. R. J., & Glasser, N. (2005). A modelling reconstruction of the Last Glacial Maximum ice sheert and its deglaciation in the vicinity of the northern Patagonian Icefield, South America. Geografiska Annaler: Series A, Physical Geography, 87, 375–391. https://doi.org/10.1111/j.0435-3676.2005.00264.x
    [Google Scholar]
  39. Hulton, N., Purves, R. S., McCulloch, R. D., Sugden, D. E., & Bentley, M. J. (2002). The last glacial maximum and deglaciation in southern South America. Quaternary Science Reviews, 21, 233–241. https://doi.org/10.1016/S0277-3791(01)00103-2
    [Google Scholar]
  40. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54, 103–116. https://doi.org/10.1306/212F83B9-2B24-11D7-8648000102C1865D
    [Google Scholar]
  41. Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm‐Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139–155. https://doi.org/10.1016/0012-821X(80)90125-9
    [Google Scholar]
  42. Jaeger, J. M., & Koppes, M. N. (2016). The role of the cryosphere in source‐to‐sink systems. Earth‐Science Reviews, 153, 43–76. https://doi.org/10.1016/j.earscirev.2015.09.011
    [Google Scholar]
  43. Jamieson, S. S. R., Sugden, D. E., & Hulton, N. R. J. (2010). The evolution of the subglacial landscape of Antarctica. Earth and Planetary Science Letters, 293, 1–27. https://doi.org/10.1016/j.epsl.2010.02.012
    [Google Scholar]
  44. Jouzel, J., Masson‐Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., … Wolff, E. W. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317, 793–796. https://doi.org/10.1126/science.1141038
    [Google Scholar]
  45. Kamenov, G. D., Perfit, M. R., Mueller, P. A., & Jonasson, I. R. (2008). Controls on magmatism in an island arc environment: Study of lavas and sub‐arc xenoliths from the Tabar‐Lihir‐Tanga‐Feni island chain, Papua New Guinea. Contributions to Mineralogy and Petrology, 155, 635–656. https://doi.org/10.1007/s00410-007-0262-0
    [Google Scholar]
  46. Kaplan, M. R., Douglass, D. C., Singer, B. S., Ackert, R. P., & Caffee, M. W. (2005). Cosmogenic nuclide chronology of pre‐last glacial maximum moraines at Lago Buenos Aires, 46°S, Argentina. Quaternary Research, 63, 301–315.
    [Google Scholar]
  47. Kaplan, M. R., Hein, A. S., Hubbard, A., & Lax, S. M. (2009). Can glacial erosion limit the extent of glaciation?Geomorphology, 103, 172–179. https://doi.org/10.1016/j.geomorph.2008.04.020
    [Google Scholar]
  48. Kilian, R., & Behrmann, J. H. (2003). Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes. Journal of the Geological Society, 160, 57–70. https://doi.org/10.1144/0016-764901-143
    [Google Scholar]
  49. Lamy, F., Hebbeln, D., & Wefer, G. (1999). High‐resolution marine record of climatic change in mid‐latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research, 51, 83–93. https://doi.org/10.1006/qres.1998.2010
    [Google Scholar]
  50. Lamy, F., Kilian, R., Arz, H. W., Francois, J.‐P., Kaiser, J., Prange, M., & Steinke, T. (2010). Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience, 3, 695–699. https://doi.org/10.1038/ngeo959
    [Google Scholar]
  51. Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., & Bataille, K. (2008). First seismic record for intra‐arc strike‐slip tectonics along the Liquiñe‐Ofqui fault zone at the obliquely convergent plate margin of the southern Andes. Tectonophysics, 455, 14–24. https://doi.org/10.1016/j.tecto.2008.04.014
    [Google Scholar]
  52. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1), https://doi.org/10.1029/2004PA001071
    [Google Scholar]
  53. Lopez‐Escobar, L., Kilian, R., Kempton, P. D., & Tagiri, M. (1993). Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41 30’and 46 00’S, Chile. Andean Geology, 20, 33–55.
    [Google Scholar]
  54. Lougheed, B. C., & Obrochta, S. P. (2016). MatCal: Open source Bayesian 14C age calibration in MatLab. Journal of Open Research Software, 4(1), e42. https://doi.org/10.5334/jors.130
    [Google Scholar]
  55. Marsaglia, K. M., & Tazaki, K. (1992). Diagenetic trends in ODP Leg 126 sandstone. In F.Kantaro, Y.Matsuo, A.Nishimura, M.Koyama, & K. S.Rodolfo (Eds.), Proceedings of the ocean drilling program, scientific results (Vol. 126, pp. 125–138). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  56. Marsaglia, K. M., Torrez, X. V., Padilla, I., & Rimkus, K. C. (1995). Provenance of Pleistocene and Pliocene sand and sandstone, ODP Leg 141, Chile Margin. In S. D.Lewis, J. H.Behrmann, R. J.Musgrave, & S. C.Cande (Eds.), Proceedings of ODP scientific results (Vol. 141, pp. 133–151). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  57. Mercer, J. H., & Sutter, J. F. (1982). Late Miocene‐Earliest Pliocene glaciation in southern Argentina: Implications for global ice‐sheet. Palaeogeography, Palaeoclimatology, Palaeoecology, 38, 185–206.
    [Google Scholar]
  58. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., & Mountain, G. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  59. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?Nature, 346, 29–34. https://doi.org/10.1038/346029a0
    [Google Scholar]
  60. Montade, V., Combourieu Nebout, N., Kissel, C., Haberle, S. G., Siani, G., & Michel, E. (2013). Vegetation and climate changes during the last 22,000 yr from a marine core near Taitao Peninsula, southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 335–348. https://doi.org/10.1016/j.palaeo.2012.11.001
    [Google Scholar]
  61. Montelli, A., Dowdeswell, J. A., Ottesen, D., & Johansen, S. E. (2017). Ice‐sheet dynamics through the Quaternary on the mid‐Norwegian continental margin inferred from 3D seismic data. Marine and Petroleum Geology, 80, 228–242. https://doi.org/10.1016/j.marpetgeo.2016.12.002
    [Google Scholar]
  62. Montgomery, D. R., Balco, G., & Willett, S. D. (2001). Climate, tectonics, and the morphology of the Andes. Geology, 29, 579–582. https://doi.org/10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2
    [Google Scholar]
  63. Moreno, P. I., & León, A. L. (2003). Abrupt vegetation changes during the last glacial to Holocene transition in mid‐latitude South America. Journal of Quaternary Science, 18, 787–800. https://doi.org/10.1002/jqs.801
    [Google Scholar]
  64. Naranjo, J. A., & Stern, C. R. (1998). Holocene explosive activity of Hudson Volcano, southern Andes. Bulletin of Volcanology, 59(4), 291–306. https://doi.org/10.1007/s004450050193
    [Google Scholar]
  65. Ó Cofaigh, C., Andrews, J. T., Jennings, A. E., Dowdeswell, J. A., Hogan, K. A., Kilfeather, A. A., & Sheldon, C. (2012). Glacimarine lithofacies, provenance and depositional processes on a West Greenland trough‐mouth fan. Journal of Quaternary Science, 28, 13–26. https://doi.org/10.1002/jqs.2569
    [Google Scholar]
  66. Orihashi, Y., Naranjo, J. A., Motoki, A., Sumino, H., Hirata, D., Anma, R., & Nagao, K. (2004). Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: New constraints from K‐Ar ages. Revista Geológica De Chile, 31, 1–19. https://doi.org/10.4067/S0716-02082004000200002
    [Google Scholar]
  67. Pankhurst, R. J., Weaver, S. D., Hervé, F., & Larrondo, P. (1999). Mesozoic‐Cenozoic evolution of the North Patagonian batholith in Aysen, southern Chile. Journal of the Geological Society, 156, 673–694. https://doi.org/10.1144/gsjgs.156.4.0673
    [Google Scholar]
  68. Pardo‐Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American Plates since late Cretaceous time. Tectonics, 6, 233–248. https://doi.org/10.1029/TC006i003p00233
    [Google Scholar]
  69. Powell, R. D., & Cooper, J. M. (2002). A glacial sequence stratigraphic model for temperate, glaciated continental shelves. Geological Society, London, Special Publications, 203, 215–244. https://doi.org/10.1144/GSL.SP.2002.203.01.12
    [Google Scholar]
  70. Rabassa, J., Coronato, A., & Martinez, O. (2011). Late Cenozoic glaciations in Patagonia and Tierra del Fuego: An updated review. Biological Journal of the Linnean Society, 103, 316–335. https://doi.org/10.1111/j.1095-8312.2011.01681.x
    [Google Scholar]
  71. Ramos, V. A., & Ghiglione, M. C. (2008). Tectonic evolution of the Patagonian Andes. Developments in Quaternary Sciences, 11, 57–71.
    [Google Scholar]
  72. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., … van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55, 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
    [Google Scholar]
  73. Richard, P., Shimazu, N., & Allegre, C. J. (1976). 143Nd/144Nd, a natural tracer: An application to oceanic basalt. Earth and Planetary Science Letters, 31, 269–278.
    [Google Scholar]
  74. Rodrigo, C. (2008). Submarine topography in the Chilean North Patagonian channels. In N.Silva & S.Palma (Eds.), Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn (pp. 19–23). Valparaiso, Chile: Comité Oceanográfico Nacional - Pontificia Universidad Católica de Valparaíso.
    [Google Scholar]
  75. Schönfeld, J., Spiegler, D., & Erlenkeuser, H. (1995). Late Quaternary stable isotope record of planktonic and benthic foraminifers: Site 861, Chile Triple Junction. In S. D.Lewis, J. H.Behrmann, R. J.Musgrave, & S. C.Cande (Eds.), Proceedings of ODP scientific results (Vol. 141, pp. 235–240). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  76. Sernageomin
    Sernageomin . (2003). Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (CD‐ROM, versión1.0, 2003). Santiago.
  77. Siani, G., Colin, C., Michel, E., Carel, M., Richter, T., Kissel, C., & Dewilde, F. (2010). Late Glacial to Holocene terrigenous sediment record in the Northern Patagonian margin: Paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 26–36. https://doi.org/10.1016/j.palaeo.2010.07.011
    [Google Scholar]
  78. Siani, G., Michel, E., De Pol‐Hoz, R., DeVries, T., Lamy, F., Carel, M., … Lourantou, A. (2013). Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nature Communications, 4, 1–9. https://doi.org/10.1038/ncomms3758
    [Google Scholar]
  79. Sievers, H., & Silva, N. (2008). Water masses and circulation in austral Chilean channels and fjords. In N.Silva & S.Palma (Eds.), Progress in the oceanographic knowledge of Chilean interior waters, from Puerto Montt to Cape Horn (pp. 53–58). Valparaíso, Chile: Comité Oceanográfico Nacional – Pontificia Universidad Católica de Valparaíso.
    [Google Scholar]
  80. Silva, N., & Guzmán, D. (2006). Condiciones oceanográficas, físicas y químicas, entre boca del Guafo y fiordo Aysén (Crucero Cimar 7 Fiordos). Ciencia Y Tecnología Del Mar, 29, 25–44.
    [Google Scholar]
  81. Singer, B. S., Ackert, R. P., & Guillou, H. (2004). 40Ar/39Ar and K‐Ar chronology of Pleistocene glaciations in Patagonia. Geological Society of America Bulletin, 116, 434–517. https://doi.org/10.1130/B25177.1
    [Google Scholar]
  82. Stokes, C. R., Margold, M., Clark, C. D., & Tarasov, L. (2016). Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation. Nature, 530, 322–326. https://doi.org/10.1038/nature16947
    [Google Scholar]
  83. Strand, K., Marsaglia, K., & Forsythe, R. (1995). Outer margin depositional systems near the Chile Margin Triple Junction. In S. D.Lewis, J. H.Behrmann, R. J.Musgrave, & S. C.Cande (Eds.), Proceedings of ODP scientific results (Vol. 141, pp. 379–397). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  84. Strub, P. T., James, C., Montecino, V., Rutllant, J. A., & Blanco, J. L. (2019). Ocean circulation along the southern Chile transition region (38°–46°S): Mean, seasonal and interannual variability, with a focus on 2014–2016. Progress in Oceanography, 172, 159–198. https://doi.org/10.1016/j.pocean.2019.01.004
    [Google Scholar]
  85. Strub, P. T., Mesias, J. M., Montecino, V., Rutllant, J., & Salinas, S. (1998). Coastal ocean circulation off western South America. The Sea, 11, 273–313.
    [Google Scholar]
  86. Suárez, M., De La Cruz, R., & Bell, C. M. (2000). Timing and origin of deformation along the Patagonian fold and thrust belt. Geological Magazine, 137(4), 345–353. https://doi.org/10.1017/S0016756800004192
    [Google Scholar]
  87. Thomson, S. N. (2002). Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42˚S and 46˚S: An appraisal based on fission‐track results from the transpressional intra‐arc Liquiñe‐Ofqui fault zone. Geolological Society of America Bulletin, 114, 1159–1173.
    [Google Scholar]
  88. Thomson, S. N., Brandon, M. T., Tomkin, J. H., Reiners, P. W., Vásquez, C., & Wilson, N. J. (2010). Glaciation as a destructive and constructive control on mountain building. Nature, 467, 313–317. https://doi.org/10.1038/nature09365
    [Google Scholar]
  89. Thomson, S. N., Hervé, F., & Stöckhert, B. (2001). Mesozoic‐Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics, 20, 693–711. https://doi.org/10.1029/2001TC900013
    [Google Scholar]
  90. Thornburg, T. M., & Kulm, L. D. (1987). Sedimentation in the Chile Trench; petrofacies and provenance. Journal of Sedimentary Research, 57, 55–74. https://doi.org/10.1306/212F8AA3-2B24-11D7-8648000102C1865D
    [Google Scholar]
  91. Tsuchiya, M., & Talley, L. D. (1998). A Pacific hydrographic section at 88°W: Water‐property distribution. Journal of Geophysical Research, 12, 899–918. https://doi.org/10.1029/97JC03415
    [Google Scholar]
  92. Tzedakis, P. C., Raynaud, D., McManus, J. F., Berger, A., Brovkin, V., & Kiefer, T. (2009). Interglacial diversity. Nature Geoscience, 2, 751–755. https://doi.org/10.1038/ngeo660
    [Google Scholar]
  93. VanLaningham, S., Pisias, N. G., Duncan, R. A., & Clift, P. D. (2009). Glacial–interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing. Earth and Planetary Science Letters, 277, 64–72. https://doi.org/10.1016/j.epsl.2008.09.033
    [Google Scholar]
  94. Villaseñor, T., Jaeger, J. M., & Foster, D. A. (2016). Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt‐sized sediment, Canterbury Basin, New Zealand. Earth and Planetary Science Letters, 433, 303–316. https://doi.org/10.1016/j.epsl.2015.11.008
    [Google Scholar]
  95. Völker, D., Geersen, J., Contreras‐Reyes, E., & Reichert, C. (2013). Sedimentary fill of the Chile Trench (32–46°S): Volumetric distribution and causal factors. Journal of the Geological Society, 170, 723–736. https://doi.org/10.1144/jgs2012-119
    [Google Scholar]
  96. Weaver, S. G., Bruce, R., Nelson, E. P., Brueckner, H. K., & LeHuray, A. P. (1990). The Patagonian batholith at 48°S latitude, Chile; Geochemical and isotopic variations. Geological Society of America Special Paper, 241, 33–50.
    [Google Scholar]
  97. Willner, A. P., Hervé, F., & Massonne, H.‐J. (2000). Mineral chemistry and pressure‐temperature evolution of two contrasting high‐pressure–low‐temperature belts in the Chonos Archipelago, Southern Chile. Journal of Petrology, 41, 309–330. https://doi.org/10.1093/petrology/41.3.309
    [Google Scholar]
  98. Yanites, B. J., & Ehlers, T. A. (2012). Earth and planetary science letters. Earth and Planetary Science Letters, 325–326, 63–75. https://doi.org/10.1016/j.epsl.2012.01.030
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12413
Loading
/content/journals/10.1111/bre.12413
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error