1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

[

Deep‐water syn‐rift depocentres are characterised by short transport distances, coarse grain sizes and variety of sedimentary processes, all of which interact with complex intra‐basinal topography and structural evolution (a). This axial depositional system interacts with coeaval, mass‐transport dominated transverse systems sourced from the growing West Xylokastro Fault to shift the locus of sedimentation in the axial system far from the immediate hangingwall region in what is ultimately a relatively narrow (5‐6 km) fault terrace. Abrupt changes in stratigraphic architecture across the axial system record relative base‐level, sediment supply and subsidence variability which is complicated by local depositional topography and intra‐basinal structures (b). Exhumed systems can help constrain the tectono‐stratigraphic evolution of such systems, however these are rare or often complicated by inversion tectonics. However, the West Xylokastro Fault Block (Gulf of Corinth, Greece) offers superb exposures of an Early‐Mid Pleistocene Gilbert‐type fan delta and downdip, axial deep‐water depositional system in the hangingwall of a rift margin fault (c). Here we provide new conceptual models for the evolution of multi‐input, deep‐water syn‐rift depocentres and characterise the scale and nature of the variability of depositional systems within them.

, Abstract

Deep‐water syn‐rift systems develop in partially‐ or transiently‐linked depocentres to form complicated depositional architectures, which are characterised by short transport distances, coarse grain sizes and a wide range of sedimentary processes. Exhumed systems that can help to constrain the tectono‐stratigraphic evolution of such systems are rare or complicated by inversion tectonics. Here, we document a mid‐Pleistocene deep‐water syn‐rift system fed by Gilbert‐type fan deltas in the hangingwall of a rift margin fault bounding the West Xylokastro Horst block, on the southern margin of the Gulf of Corinth, Greece. Structural and stratigraphic mapping combined with digital outcrop models permit observations along this syn‐rift depositional system from hinterland source to deep‐water sink. The West Xylokastro Fault hangingwall is filled by two distinct sediment systems; an axial system fed by coarse‐grained sediment gravity flows derived from fault‐tip Gilbert‐type fan deltas and a lateral system dominated by mass transport deposits fed from an evolving fault‐scarp apron. Abrupt changes in stratigraphic architecture across the axial system are interpreted to record changes in relative base level, sediment supply and tectonics. Locally, depositional topography and intra‐basinal structures controlled sediment dispersal patterns, from bed‐scale infilling of local rugose topography above mass transport complexes, to basin‐scale confinement from the fault scarp apron. These acted to generate a temporally and spatially variable, heterogeneous stratigraphic architecture throughout the basin‐fill. The transition of the locus of sedimentation from a rift margin to a fault terrace through the syn‐sedimentary growth of a basinward fault produced regressive surfaces updip, which manifest themselves as channels in the deep‐water realm and acted to prograde the system. We present a new conceptual model that recognises coeval axial and transverse systems based on the stratigraphic architecture around the West Xylokastro fault block that emphasizes the lateral and vertical heterogeneity of rift basin‐fills with multiple entry points.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12416
2020-09-26
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/5/bre12416.html?itemId=/content/journals/10.1111/bre.12416&mimeType=html&fmt=ahah

References

  1. Al Ja’Aidi, O. S. (2000). The influence of topography and flow efficiency on the deposition of turbidites. University of Leeds. PhD Thesis.
  2. Al Ja’Aidi, O. S., McCaffrey, W. D., & Kneller, B. C. (2004). Factors influencing the deposit geometry of experimental turbidity currents: Implications for sand‐body architecture in confined basins. In S.Lomas & P.Joseph (Eds.), Geological society (pp. 45–58). London, UK: Special Publications No. 222.
    [Google Scholar]
  3. Armijo, R., Meyer, B., King, G. C. P., Rigo, A., & Papanastassiou, D. (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International, 126, 11–53.
    [Google Scholar]
  4. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4, 231–235.
    [Google Scholar]
  5. Athmer, W., Groenenberg, R. M., Luthi, S. M., Donselaar, M. E., Sokoutis, D., & Willingshofer, E. (2010). Relay ramps as pathways for turbidity currents: A study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57, 806–823.
    [Google Scholar]
  6. Backert, N., Ford, M. A., & Malartre, F. (2010). Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57, 543–586.
    [Google Scholar]
  7. Bakke, K., Kane, I. A., Martinsen, O. J., Petersen, S. A., Johansen, T. A., Hustoft, S., … Groth, A. (2013). Seismic modeling in the analysis of deep‐water sandstone termination styles. AAPG Bulletin, 97, 1395–1419.
    [Google Scholar]
  8. Barrett, B. J., Collier, R. E. L., Hodgson, D. M., Gawthorpe, R. L., Dorrell, R., & Cullen, T. M. (2019). Quantifying faulting and base level controls on syn‐rift sedimentation using stratigraphic architectures of coeval, adjacent Early‐Middle Pleistocene fan deltas in Lake Corinth, Greece. Basin Research, 1–26. https://doi.org/10.1111/bre.12356
    [Google Scholar]
  9. Barrett, B. J., Hodgson, D. M., Collier, R. E. L., & Dorrell, R. M. (2018). Novel 3D sequence stratigraphic numerical model for syn‐rift basins: Analysing architectural responses to eustasy, sedimentation and tectonics. Marine and Petroleum Geology, 92, 270–284.
    [Google Scholar]
  10. Beckers, A., Hubert‐Ferrari, A., Beck, C., Bodeux, S., Tripsanas, E., Sakellariou, D., & De Batist, M. (2015). Active faulting at the western tip of the Gulf of Corinth, Greece, from high‐resolution seismic data. Marine Geology, 360, 55–69.
    [Google Scholar]
  11. Beckers, A., Hubert‐Ferrari, A., Beck, C., Papatheodorou, G., De Batist, M., Sakellariou, D., … Demoulin, A. (2018). Characteristics and frequency of large submarine landslides at the western tip of the Gulf of Corinth. Natural Hazards and Earth System Sciences, 18, 1411–1425.
    [Google Scholar]
  12. Bell, R. E., McNeill, L. C., Bull, J. M., Henstock, T. J., Collier, R. E. L., & Leeder, M. R. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth rift, central Greece. Basin Research, 21, 824–855.
    [Google Scholar]
  13. Bilal, A., McClay, K., & Scarselli, N. (2018). Fault‐scarp degradation in the central Exmouth Plateau, North West Shelf, Australia. In K. R.McClay & J. A.Hammerstein (Eds.), Passive margins: Tectonics sedimentation and magmatism (p. 476). London, UK: The Geological Society of London. https://doi.org/10.1144/SP476.11
    [Google Scholar]
  14. Bozetti, G., Cronin, B. T., Kneller, B. C., & Mark, J. (2018). Deep‐water conglomeratic megabeds: Analogues for event beds of the brae formation of the south Viking Graben, North Sea. In C. C.Turner & B. T.Cronin (Eds.), Rift‐related coarse‐grained submarine fan reservoirs; The Brae Play, South Viking Graben, North Sea: AAPG Memoir (Vol. 115, pp. 119–154). Tulsa, Oklahoma: American Association of Petroleum Geologists.
    [Google Scholar]
  15. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J. C., Papazissi, K., Mitsakaki, C., … Deschamps, A. (2000). Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995. Journal of Geophysical Research, 105, 605–625.
    [Google Scholar]
  16. Burgess, P. M., & Hovius, N. (1998). Rates of delta progradation during highstands: Consequences for timing of deposition in deep‐marine systems. Journal of the Geological Society, 155, 217–222.
    [Google Scholar]
  17. Carvajal, C. R., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668.
    [Google Scholar]
  18. Causse, C., Moretti, I., Eschard, R., & Micarelli, L. (2004). Kinematics of the Corinth Gulf inferred from calcite dating and syntectonic sedimentary characteristics. Comptes Rendus Geoscience, 336(4–5), 281–290.
    [Google Scholar]
  19. Collier, R. E. L., & Dart, C. J. (1991). Neogene to Quaternary rifting, sedimentation and uplift in the Corinth Basin. Greece. Journal of the Geological Society, 148, 1049–1065.
    [Google Scholar]
  20. Collier, R. E. L., & Gawthorpe, R. L. (1995). Neotectonics, drainage and sedimentation in central Greece: Insights into coastal reservoir geometries in syn‐rift sequences. In J. J.Lambiase (Ed.), Hydrocarbon habitat in rift basins (Vol. 80, pp. 165–181), London, UK: Geological Society of London.
    [Google Scholar]
  21. Collier, R. E. L., Leeder, M. R., Trout, M., Ferentinos, G., Lyberis, E., & Papatheodorou, G. (2000). High sediment yields and cool, wet winters: Test of last glacial paleoclimates in the northern Mediterranean. Geology, 28, 999–1002.
    [Google Scholar]
  22. Cronin, B. T. (2018). Lithofabric classification and distribution of coarse‐grained deep‐water clastic depositional systems. In C.Turner, & B. T.Cronin (Eds.), Rift‐related coarse‐grained submarine fan reservoirs; The Brae Play, South Viking Graben, North Sea: AAPG Memoir (Vol. 115, pp. 39–96). Tulsa, Oklahoma: American Association of Petroleum Geologists.
    [Google Scholar]
  23. Dart, C. J., Collier, R. E. L., Gawthorpe, R. L., Keller, J. V. A., & Nichols, G. (1994). Sequence stratigraphy of (?)Pliocene‐Quaternary synrift, Gilbert‐type fan deltas, northern Peloponnesos, Greece. Marine and Petroleum Geology, 11, 545–560.
    [Google Scholar]
  24. Dorsey, R. J., Umhoefer, P. J., & Falk, P. D. (1997). Earthquake clustering inferred from Pliocene Gilbert‐type fan deltas in the Loreto Basin, Baja California Sur, Mexico. Geology, 25, 679–682.
    [Google Scholar]
  25. Doutsos, T., & Piper, D. J. W. (1990). Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: First stages of continental rifting. Bulletin of the Geological Society of America, 102, 812–829.
    [Google Scholar]
  26. Doutsos, T., & Poulimenos, G. (1992). Geometry and kinematics of active faults and their seismotectonic significance in the western Corinth‐Patras rift (Greece). Journal of Structural Geology, 14, 689–699.
    [Google Scholar]
  27. Elliott, T. (2000). Megaflute erosion surfaces and initiation of turbidite channels. Geology, 28, 119–122.
    [Google Scholar]
  28. Fernández-Blanco, D., de Gelder, G., Lacassin, R., & Armijo, R. (2019). Geometry of flexural uplift by continental rifting. Tectonics.
  29. Flotté, N., & Sorel, D. (2001). Structural Cross Sections through the Corinth‐Patras Detachment Fault‐System in Northern Peleoponnesus (Aegean Arc, Greece). Bulletin of the Geological Society of Greece, 34, 235–241.
    [Google Scholar]
  30. Ford, M., Hemelsdaël, R., Mancini, M., & Palyvos, N. (2016). Rift migration and lateral propagation: evolution of normal faults and sediment‐routing systems of the western Corinth rift (Greece). In C.Childs, R.Holdsworth, C.‐A.‐L.Jackson, T.Manzocchi, J.Walsh, & G.Yielding (Eds.), The geometry and growth of normal faults (pp. 131–168). London, UK: Geological Society of London.
    [Google Scholar]
  31. Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malartre, F. (2013). Tectono‐sedimentary evolution of the western Corinth rift (Central Greece). Basin Research, 25, 3–25.
    [Google Scholar]
  32. Ford, M., Williams, E.A., Malartre, F. & Popescu, S.-M. (2007). Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert-type delta, Gulf of Corinth, Greece. In: G.J.Nichols, E.A.Williams & C.Paola (Eds.), Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend, (Vol 38, pp. 49–90). Chicester, UK: Blackwell Publishing.
    [Google Scholar]
  33. Forzoni, A., Storms, J. E. A., Whittaker, A. C., & de Jager, G. (2014). Delayed delivery from the sediment factory: Modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surface Processes and Landforms, 39, 689–704.
    [Google Scholar]
  34. Fraser, S., Robinson, A., Johnson, H., Underhill, J., Kadolsky, D., Connel, R., … Ravnås, R. (2003). Upper Jurassic. In D.Evans, C.Graham, A.Armour, & P.Bathurst (Eds.), The millennium atlas: Petroleum geologist of the central and northern North Sea (pp. 157–189). London, UK: Geological Society of London.
    [Google Scholar]
  35. Fugelli, E. M. G., & Olsen, T. R. (2007). Delineating confined slope turbidite systems offshore mid‐Norway: The Cretaceous deep‐marine Lysing Formation. AAPG Bulletin, 91, 1577–1601. https://doi.org/10.1306/07090706137
    [Google Scholar]
  36. Garland, C., Haughton, P., King, R., & Moulds, T. (1999). Capturing reservoir heterogeneity in a sand‐rich submarine fan, Miller Field. In A.Fleet & S. A.Boldy (Eds.), Petroleum geology of northwest Europe: Proceedings of the 5th conference (pp. 1199–1208). London, UK: Geological Society of London.
    [Google Scholar]
  37. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11, 642–658.
    [Google Scholar]
  38. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218.
    [Google Scholar]
  39. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., … Stamatakis, M. (2018). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research, 30, 448–479. https://doi.org/10.1111/bre.12260
    [Google Scholar]
  40. Ge, Z., Nemec, W., Gawthorpe, R. L., & Hansen, E. W. M. (2017). Response of unconfined turbidity current to normal‐fault topography. Sedimentology, 64, 932–959. https://doi.org/10.1111/sed.12333
    [Google Scholar]
  41. Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Hansen, E. W. M. (2018). Response of unconfined turbidity current to relay‐ramp topography: Insights from process‐based numerical modelling. Basin Research, 30, 321–343. https://doi.org/10.1111/bre.12255
    [Google Scholar]
  42. Gelder, G. D., Fernández‐blanco, D., Melnick, D., Duclaux, G., Bell, R. E., Jara‐Muñoz, J., … Lacassin, R. (2019). Lithospheric flexure and rheology determined by climate cycle markers in the Corinth Rift. Scientific Reports, 9, 1–12.
    [Google Scholar]
  43. Gobo, K., Ghinassi, M., & Nemec, W. (2014). Reciprocal changes in foreset to bottomset facies in a gilbert‐type delta: Response to short‐term changes in base level. Journal of Sedimentary Research, 84, 1079–1095.
    [Google Scholar]
  44. Gobo, K., Ghinassi, M., & Nemec, W. (2015). Gilbert‐type deltas recording short‐term base‐level changes: Delta‐brink morphodynamics and related foreset facies. Sedimentology, 62, 1923–1949. https://doi.org/10.1111/sed.12212
    [Google Scholar]
  45. Gobo, K., Ghinassi, M., Nemec, W., & Sjursen, E. (2014). Development of an incised valley‐fill at an evolving rift margin: Pleistocene eustasy and tectonics on the southern side of the Gulf of Corinth. Greece. Sedimentology, 61, 1086–1119. https://doi.org/10.1111/sed.12089
    [Google Scholar]
  46. Goldsworthy, M., & Jackson, J. (2001). Migration of activity within normal fault systems: Examples from the quaternary of mainland Greece. Journal of Structural Geology, 23, 489–506.
    [Google Scholar]
  47. Gupta, S., Underhill, J. R., Sharp, I. R., & Gawthorpe, R. K. (1999). Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt. Basin Research, 11, 167–189. https://doi.org/10.1046/j.1365-2117.1999.00300.x
    [Google Scholar]
  48. Harms, J. C., Southard, J. B., Spearing, D. R., & Walker, R. G. (1975). Depositional environments as interpreted from primary sedimentary and stratigraphic sequences. In: Depositional Environments as Interpreted from Primary Sedimentary and Stratigraphic Sequences. SEPM Short course 2.
  49. Haughton, P., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits ‐ Classification, origin and significance. Marine and Petroleum Geology, 26, 1900–1918.
    [Google Scholar]
  50. Hemelsdaël, R., & Ford, M. (2016). Relay zone evolution: A history of repeated fault propagation and linkage, central Corinth rift, Greece. Basin Research, 28, 34–56. https://doi.org/10.1111/bre.12101
    [Google Scholar]
  51. Henstra, G. A., Grundvåg, S. A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., … Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology, 76, 187–209.
    [Google Scholar]
  52. Hodgson, D. M., & Haughton, P. D. W. (2004). Impact of syndepositional faulting on gravity current behaviour and deep‐water stratigraphy: Tabernas‐Sorbas Basin, SE Spain. In S.Lomas & P.Joseph (Eds.), Confined turbidite systems (pp. 135–158). London, UK: Geological Society of London.
    [Google Scholar]
  53. Hodgson, D. M., Kane, I. A., Flint, S. S., Brunt, R. L., & Ortiz‐Karpf, A. (2016). Time‐transgressive confinement on the slope and the progradation of basin‐floor fans: Implications for the sequence stratigraphy of deep‐water deposits. Journal of Sedimentary Research, 86, 73–86. https://doi.org/10.2110/jsr.2016.3
    [Google Scholar]
  54. Hoyal, D., Van Wagoner, J. C., Adair, N., Deffenbaugh, M., Li, D., Sun, T., …Giffin, D. (2003). Sedimentation from jets: A depositional model for clastic deposits of all scales and environments. AAPG Annual Conference & Exhibition extended abstract.
  55. Jackson, C.‐A.‐L., Kane, K., Larsen, E., Evrard, E., Elliott, G., & Gawthorpe, R. (2012). Variability in syn‐rift structural style associated with a mobile substrate and implications for trap definition and reservoir distribution in extensional basins: A subsurface case study from the south Viking Graben, Offshore Norway. AAPG Search & Discovery, 10423, 1–7.
    [Google Scholar]
  56. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, 1–5.
    [Google Scholar]
  57. Jones, M. A., Cronin, B. T., & Allerton, S. (2018). A depositional model for the T‐block Thelma field, UKCS block 16/17. In C. C.Turner & B. T.Cronin (Eds.), Rift‐related coarse‐grained submarine fan reservoirs; The Brae Play, South Viking Graben, North Sea: AAPG Memoir (Vol. 115, pp. 307–338). Tulsa, Oklahoma: American Association of Petroleum Geologists.
    [Google Scholar]
  58. Kane, I. A., Catterall, V., McCaffrey, W. D., & Martinsen, O. J. (2010). Submarine channel response to intrabasinal tectonics: The influence of lateral tilt. AAPG Bulletin, 94, 189–219. https://doi.org/10.1306/08180909059
    [Google Scholar]
  59. Kane, I. A., Dykstra, M. L., Kneller, B. C., Tremblay, S., & McCaffrey, W. D. (2009). Architecture of a coarse‐grained channel‐levée system: The Rosario Formation, Baja California, Mexico. Sedimentology, 56, 2207–2234.
    [Google Scholar]
  60. Kane, I. A., Pontén, A. S. M., Vangdal, B., Eggenhuisen, J. T., & Hodgson, D. M. (2017). The stratigraphic record and processes of turbidity current transformation across deep‐marine lobes. Sedimentology, 64, 1236–1273.
    [Google Scholar]
  61. Kostaschuk, R. A., & McCann, S. B. (1989). Submarine slope stability of a fjord delta: Bella Coola. British Columbia. Géographie Physique Et Quaternaire, 43, 87. https://doi.org/10.7202/032756ar
    [Google Scholar]
  62. Koutsouveli, A., Mettos, A., Tsapralis, V., Tsala‐Monopoli, S., & Iokim, C. (1989). Geological map of Greece: 1:50,000, Xylokastro Sheet. Athens, Greece: IGME Publications.
    [Google Scholar]
  63. Leeder, M. R., Mark, D. F., Gawthorpe, R. L., Kranis, H., Loveless, S., Pedentchouk, N., … Stamatakis, M. (2012). A ‘Great Deepening’: Chronology of rift climax, Corinth rift, Greece. Geology, 40, 999–1002. https://doi.org/10.1130/G33360.1
    [Google Scholar]
  64. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt. Sedimentary Geology, 191, 67–87.
    [Google Scholar]
  65. Lewis, M. M., Jackson, C. A. L., & Gawthorpe, R. L. (2015). Tectono‐sedimentary development of early syn‐rift deposits: The Abura Graben, Suez Rift, Egypt. Basin Research, 29, 327–351.
    [Google Scholar]
  66. Lowe, D. R. (1982). Sediment gravity flows: II Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Petrology, 52, 279–297. https://doi.org/10.1306/212F7F31-2B24-11D7-8648000102C1865D
    [Google Scholar]
  67. MacDonald, H. A., Peakall, J., Wignall, P. B., & Best, J. (2011). Sedimentation in deep-sea lobe-elements: Implications for the origin of thickening-upward sequences. Journal of the Geological Society London, 168, 319–331.
    [Google Scholar]
  68. McArthur, A. D., Hartley, A. J., Archer, S. G., Jolley, D. W., & Lawrence, H. M. (2016). Spatiotemporal relationships of deep‐marine, axial, and transverse depositional systems from the synrift Upper Jurassic of the central North Sea. AAPG Bulletin, 100, 1469–1500. https://doi.org/10.1306/04041615125
    [Google Scholar]
  69. McLeod, A. E., Underhill, J. R., Davies, S. J., & Dawers, N. H. (2002). The influence of fault array evolution on synrift sedimentation patterns: Controls on deposition in the strathspey‐brent‐statfjord half graben, northern North Sea. AAPG Bulletin, 86, 1061–1093.
    [Google Scholar]
  70. McNeill, L. C., Cotterill, C. J., Bull, J. M., Henstock, T. J., Bell, R., & Stefatos, A. (2007). Geometry and slip rate of the Aigion fault, a young normal fault system in the western Gulf of Corinth. Geology, 35, 355–358. https://doi.org/10.1130/G23281A.1
    [Google Scholar]
  71. McNeill, L. C., Cotterill, C. J., Henstock, T. J., Bull, J. M., Stefatos, T. J., Collier, R. E. L., … Hicks, S. E. (2005). Active faulting within the offshore western Gulf of Corinth, Greece: Implications for models of continental rift deformation. Geology, 33, 241–244. https://doi.org/10.1130/G21127.1
    [Google Scholar]
  72. Mcneill, L. C., Shillington, D. J., Carter, G. D. O., Everest, J. D., Gawthorpe, R. L., Miller, C., … Ford, M. (2019). High‐resolution record reveals climate‐driven environmental and sedimentary changes in an active rift. Scientific Reports, 9, 1–11.
    [Google Scholar]
  73. Nixon, C. W., McNeill, L. C., Bull, J. M., Bell, R. E., Gawthorpe, R. L., Henstock, T. J., … Kranis, H. (2016). Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, 35, 1225–1248.
    [Google Scholar]
  74. Papanikolaou, D. J., & Royden, L. H. (2007). Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene‐Quaternary normal faults — Or what happened at Corinth ?Tectonics, 26, 1–16.
    [Google Scholar]
  75. Pirazzoli, P. A., Stiros, S. C., Fontugne, M., & Arnold, M. (2004). Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Marine Geology, 212, 35–44.
    [Google Scholar]
  76. Postma, G. (1986). Classification for sediment gravity‐flow deposits based on flow conditions during sedimentation. Geology, 14, 291–294.
    [Google Scholar]
  77. Postma, G., & Cruickshank, C. (1988). Sedimentology of a late Weichselian to Holocene terraced fan delta, Varangerfjord, Northern Norway. In W.Nemec & R. J.Steel (Eds.), Fan deltas: Sedimentology and tectonic settings (pp. 144–157). London, UK: Blackie & Son.
    [Google Scholar]
  78. Prior, D. B., & Bornhold, B. (1988). Submarine morphology and processes of fjord fan deltas and related high‐gradient systems: modern examples from British Columbia. In W.Nemec, & R. J.Steel (Eds.), Fan deltas: Sedimentology and tectonic settings (pp. 125–143). London, UK: Blackie & Son.
    [Google Scholar]
  79. Prior, D. B., Wiseman, W. J., & Bryant, W. R. (1981). Submarine chutes on the slopes of fjord deltas. Nature, 290, 326–328.
    [Google Scholar]
  80. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society of London Special Publication, 71, 35–66.
    [Google Scholar]
  81. Ravnås, R., & Steel, R. J. (1997). Contrasting styles of Late Jurassic syn‐rift turbidite sedimentation: A comparative study of the Magnus and Oseberg areas, northern North Sea. Marine and Petroleum Geology, 14, 417–449.
    [Google Scholar]
  82. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift basin successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  83. Reading, H. G., & Richards, M. (1994). Turbidite systems in deep‐water basin margins classified by grain size and feeder system. AAPG Bulletin, 78, 792–822.
    [Google Scholar]
  84. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: Implications for its structural evolution. Tectonophysics, 440, 5–28. https://doi.org/10.1016/j.tecto.2006.11.006
    [Google Scholar]
  85. Rohais, S., Eschard, R., & Guillocheau, F. (2008). Depositional model and stratigraphic architecture of rift climax Gilbert‐type fan deltas (Gulf of Corinth, Greece). Sedimentary Geology, 210, 132–145.
    [Google Scholar]
  86. Rohais, S., Joannin, S., Colin, J. P., Suc, J. P., Guillocheau, F., & Eschard, R. (2007). Age and environmental evolution of the syn‐rift fill of the southern coast of the Gulf of Corinth (Akrata‐Derveni region, Greece). Bulletin De La Societe Geologique De France, 178, 231–243.
    [Google Scholar]
  87. Rohais, S., & Moretti, I. (2017). Structural and stratigraphic architecture of the Corinth Rift (Greece): An integrated onshore to offshore basin‐scale synthesis. In F.Roure, A. A.Amin, S.Khomsi, & M. A.Al Garni (Eds.), Lithosphere dynamics and sedimentary basins of the Arabian plate and surrounding areas (pp. 89–120). Switzerland: Springer International Publishing, Frontiers in Earth Sciences.
    [Google Scholar]
  88. Rubi, R., Rohais, S., Bourquin, S., Moretti, I., & Desaubliaux, G. (2018). Processes and typology in Gilbert‐type delta bottomset deposits based on outcrop examples in the Corinth Rift. Marine and Petroleum Geology, 92, 193–212. https://doi.org/10.1016/j.marpetgeo.2018.02.014
    [Google Scholar]
  89. Scholz, C. A., Moore, T. C., Hutchinson, D. R., Golmshtok, A. J., Klitgord, K. D., & Kurotchkin, A. G. (1998). Comparative sequence stratigraphy of low‐latitude versus high‐latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts. Palaeogeography, Palaeoclimatology, Palaeoecology, 140, 401–420.
    [Google Scholar]
  90. Scholz, C. A., Rosendahl, B. R., & Scott, D. L. (1990). Development of coarse grained‐facies in lacustrine rift basins: Example from East Africa. Geology, 18, 140–144.
    [Google Scholar]
  91. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Bulletin of the Geological Society of America, 112, 1877–1899.
    [Google Scholar]
  92. Skourtsos, E., & Kranis, H. (2009). Structure and evolution of the western Corinth Rift, through new field data from the Northern Peloponnesus. In U.Ring & B.Wernicke (Eds.), Extending a continent: Architecture, rheology and heat budget (Vol. 321, pp. 119–138). London, UK: Geological Society of London.
    [Google Scholar]
  93. Skourtsos, E., Kranis, H., Zambetakis‐Lekkas, A., Gawthorpe, R., & Leeder, M. (2016). Alpine basement outcrops at northern peloponnesus: Implications for the early stages in the evolution of the Corinth Rift. Bulletin of the Geological Society of Greece, 50, 153–163.
    [Google Scholar]
  94. Soreghan, M. J., Scholz, C. A., & Wells, J. T. (1999). Coarse‐grained, deep‐water sedimentation along a border fault margin of Lake Malawi, Africa: Seismic stratigraphic analysis. Journal of Sedimentary Research, 69, 832–846.
    [Google Scholar]
  95. Stevenson, C. J., Jackson, C.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  96. Strachan, L. J., Rarity, F., Gawthorpe, R. L., Wilson, P., Sharp, I., & Hodgetts, D. (2013). Submarine slope processes in rift‐margin basins, Miocene Suez Rift, Egypt. Bulletin of the Geological Society of America, 125, 109–127.
    [Google Scholar]
  97. Sumner, E. J., Talling, P. J., & Amy, L. A. (2009). Deposits of flows transitional between turbidity current and debris flow. Geology, 37, 991–994.
    [Google Scholar]
  98. Taylor, B., Weiss, J. R., Goodliffe, A. M., Sachpazi, M., Laigle, M., & Hirn, A. (2011). The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophysical Journal International, 185, 1189–1219.
    [Google Scholar]
  99. Trout, M. N. (1999). Sediment transport and deposition across active faulted rift margins. PhD Thesis, University of Leeds.
  100. Tsoflias, P., Fleury, J., & Iokim, C. (1993). Geological map of Greece: 1:50,000, Derveni sheet. Athens, Greece: IGME Publications.
    [Google Scholar]
  101. Turner, C., & Allen, P. A. (1991). The Central Brae Field, block 16/7a, UK North Sea. In I.Abbotts (Ed.), United Kingdom Oil and Gas Fields; 25 years Commemorative Volume, Geological Society Memoir (Vol. 14, pp. 49–54). London, UK: Geological Society of London.
    [Google Scholar]
  102. Turner, C. C., Bastidas, R. E., Connell, E. R., & Petrik, F. E. (2018). Proximal submarine fan reservoir architecture and development in the upper Jurassic brae formation of the brae fields, south Viking Graben, U.K. North Sea. In C. C.Turner & B. T.Cronin (Eds.) Rift‐related coarse‐grained submarine fan reservoirs; The Brae Play, South Viking Graben, North Sea: AAPG Memoir (Vol. 115, pp. 213–256). Tulsa, Oklahoma: American Association of Petroleum Geologists.
    [Google Scholar]
  103. Turner, C. C., Cronin, B. T., Cronin, B. T., Riley, L. A., Patruno, S., Reid, W. T. L. R., … Jackson, C. A. (2018). The south Viking graben: Overview of upper Jurassic rift geometry, biostratigraphy, and extent of brae play submarine fan systems. In C. C.Turner & B. T.Cronin (Eds.), Rift‐related coarse‐grained submarine fan reservoirs; The Brae Play, South Viking Graben, North Sea: AAPG Memoir (Vol. 115, pp. 9–38). Tulsa, Oklahoma: American Association of Petroleum Geologists.
    [Google Scholar]
  104. Westaway, R. (2002). The Quarternary evolution of the Gulf of Corinth, central Greece: Coupling between surface processes and flow in the lower continental crust. Tectonophysics, 348, 269–318.
    [Google Scholar]
  105. Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2002). Architecture and evolution of syn‐rift clastic depositional systems towards the tip of a major fault segment, Suez rift. Egypt. Basin Research., 14, 1–23. https://doi.org/10.1046/j.1365-2117.2002.00162.x
    [Google Scholar]
  106. Zhang, J., Burgess, P. M., Granjeon, D., & Steel, R. (2019). Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31, 274–289.
    [Google Scholar]
  107. Zhang, J., Kim, W., Olariu, C., & Steel, R. (2019). Accommodation‐ versus supply‐dominated systems for sediment partitioning to deep water. Geology, 47, 1–4. https://doi.org/10.1130/G45730.1
    [Google Scholar]
  108. Zhong, X., Escalona, A., Sverdrup, E., & Bukta, K. E. (2018). Impact of fault evolution in Gilbert‐type fan deltas in the Evrostini area, south‐central Gulf of Corinth, Greece. Marine and Petroleum Geology, 95, 82–99.
    [Google Scholar]
  109. Zitter, T. A. C., Grall, C., Henry, P., Özeren, M. S., Çaǧatay, M. N., Şengör, A. M. C., … Géli, L. (2012). Distribution, morphology and triggers of submarine mass wasting in the Sea of Marmara. Marine Geology, 329–331, 58–74.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12416
Loading
/content/journals/10.1111/bre.12416
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error