1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[

The Po River Lowstand Wedge (PRLW) of the central Adriatic Sea is made up of stacked alternated clinothems (Type A, B and C clinothems) that show different amount of aggradation of their topsets (e.g. Pellegrini et al., 2018). In this paper, we present novel sedimentological and paleontological analyses and discuss the processes responsible for the observed successions. We detail the character of the clinoforms deposited at the shelf‐edge, discussing the importance of hyperpycnal and storm‐enhanced sediment‐gravity flows in controlling the lithologic assemblage of the different tracts of the compound clinoforms. More in general, we show that, when the fine details of prograding clinoform units are investigated, the processes that lead to margin outbuilding are more complex than usually envisaged.

, Abstract

Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea‐level variation and as predictors of the character of deposits beyond the shelf‐break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high‐resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf‐break. It comprised a wave‐dominated delta to the west and a barrier and back‐barrier depositional system in the central and eastern area. Storm‐enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm‐enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf‐break trajectory. However, the main phase of shelf‐break bypass and basin deposition coincides with a younger steeply rising shelf‐break trajectory. We interpret divergence from standard models, linking shelf‐break trajectory to deep‐sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea‐level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf‐edge. In general, our study suggests that where the shoreline does not coincide with the shelf‐break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12417
2019-10-31
2024-04-18
Loading full text...

Full text loading...

References

  1. Bhattacharya, J. P., & MacEachern, J. A. (2009). Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. Journal of Sedimentary Research, 79, 184–209.
    [Google Scholar]
  2. Birgenheier, L. P., Horton, B., McCauleyA. D., JohnsonC. L., & Kennedy, A., (2017). A depositional model for offshore deposits of the lower Blue Gate Member, Mancos Shale, Uinta Basin, Utha, USA. Sedimentology, 64, 1402–1438.
    [Google Scholar]
  3. Bullimore, S., Henriksen, S., LiestøL, F., & Helland‐Hansen, W. (2005). Clinoform stacking patterns, shelf‐edge trajectories and facies associations in the Tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems. Norwegian Journal of Geology, 85, 169–187.
    [Google Scholar]
  4. Carvajal, C. R., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  5. Collins, D. S., Johnson, H. D., Allison, P. A., Guilpain, P., & Razak Damit, A. (2017). Coupled “storm‐flood depositional model: Application to the Miocene‐Modern Baram Delta Province, north‐west Borneo. Sedimentology, 64, 1203–1235. https://doi.org/10.1111/sed.12316
    [Google Scholar]
  6. Cosgrove, G. I. E., Hodgson, D. M., Mountney, N. P., & McCaffrey, W. D. (2019). High‐resolution correlations of strata within a sand‐rich clinothem using grain fabric data, offshore New Jersey, USA. Geosphere, 15, 1291–1322. https://doi.org/10.1130/GES02046.1
    [Google Scholar]
  7. Cosgrove, G. I. E., Hodgson, D. M., Poyatos‐Morè, M., McCaffrey, W. D., & Mountney, N. P. (2018). Filter or conveyor? Establishing relationships between clinoform rollover trajectory, sedimentary process‐regime, and grain character within intrashelf clinothems, offshore New Jersey. USA. Journal of Sedimentary Research, 88, 917–941.
    [Google Scholar]
  8. Dalla Valle, G., Gamberi, F., Trincardi, F., Baglioni, L., Errera, A., & Rocchini, P. (2013). Contrasting slope channel styles on a prograding mud‐prone margin. Marine and Petroleum Geology, 41, 72–82.
    [Google Scholar]
  9. Dixon, J. F., Steel, R. J., & Olariu, C. (2012). Shelf‐edge delta regime as a predictor of the deep‐water deposition. Journal of Sedimentary Research, 82, 681–687.
    [Google Scholar]
  10. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2013). Late Miocene‐Middle Pleistocene sequences in the Po Plain‐Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology, 42, 50–81. https://doi.org/10.1016/j.marpetgeo.2012.11.007
    [Google Scholar]
  11. Glørstad‐Clark, E., Birkeland, E. P., Nystuen, J. P., Faleide, J. I., & Midtkandal, I. (2011). Triassic platform‐margin deltas in the western Barents Sea. Marine and Petroleum Geology, 28, 1294–1314.
    [Google Scholar]
  12. Glørstad‐Clark, E., Faleide, J. I., Lundschein, B. A., & Nystuen, J. P. (2010). Triassic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27, 1448–1475.
    [Google Scholar]
  13. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483.
    [Google Scholar]
  14. Henriksen, S., Hampson, G. J., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 21, 445–453.
    [Google Scholar]
  15. Henriksen, S., Helland‐Hansen, W., & Bullimore, S. (2011). Relationships between shelf‐edge trajectories and sediment dispersal along depositional dip and strike: A different approach to sequence stratigraphy. Basin Research, 23, 3–21.
    [Google Scholar]
  16. Hodgson, D. M., Browning, J. V., Miller, K. G., Hesselbo, S. P., Poyatos‐Morè, M., Mountain, G. S., & Proust, J.‐N. (2018). Sedimentology, stratigraphic context, and implications of Miocene intrashelf bottomset deposits, offshore New Jersey. Geosphere, 14, 95–114. https://doi.org/10.1130/GES01530.1
    [Google Scholar]
  17. Holgate, N. E., Hampson, G. J., Jackson, C. A. L., & Petersen, S. A. (2014). Constraining uncertainty in interpreting of seismically imaged clinoforms in deltaic reservoirs, Troll field, Norwegian North Sea: Insights from forward seismic models of outcrop analogs. AAPG Bull., 98, 2629–2663.
    [Google Scholar]
  18. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deep water sands. Basin Research, 15, 521–550.
    [Google Scholar]
  19. Jones, G. E. D., Hodgson, D. M., & Flint, S. (2015). Lateral variability in clinoform trajectory, process regime, and sediment dispersal patters beyond the shelf‐edge rollover in exhumed basin margin‐scale clinothems. Basin Research, 27, 657–680.
    [Google Scholar]
  20. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R. & Laursen, I., (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122.
    [Google Scholar]
  21. Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. (2014). Sea level and global ice volumes from the last glacial maximum to the Holocene. Proc. Nat. Acad. Sci. Unit. Stat. Am., 111, 15296–15303.
    [Google Scholar]
  22. Macquaker, J. H. S., Bentley, S. J., & Bohacs, K. M. (2010). Wave‐enhanced sediment‐gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38, 947–950. https://doi.org/10.1130/G31093.1
    [Google Scholar]
  23. Muto, T., & Steel, R. J. (2002). Role of autoretreat and A/S changes in the understanding of deltaic shoreline trajectory: A semi‐quantitative approach. Basin Research, 14, 303–318.
    [Google Scholar]
  24. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  25. Neal, J., Abreu, V., Bohacs, K. M., Feldman, H. R., & Pederson, K. (2016). Accommodation succession (δA/δS) sequence stratigraphy : Observational method, utility and insights into sequence boundary formation. Journal of the Geological Society, 173, 803–816.
    [Google Scholar]
  26. Patruno, S., Hampson, G. J., & Jackson, C.‐A.‐L. (2015a). Quantitative characterization of deltaic subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  27. Patruno, S., Hampson, G. J., Jackson, C.‐A.‐L., & Dreyer, T. (2015b). Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand‐rich subaqueous delta: \Jurassic Sognefjord Formation, offshore Norway. Sedimentology, 62, 350–388. https://doi.org/10.1111/sed.12153
    [Google Scholar]
  28. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous delta shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  29. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., … Trincardi, F. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning. Marine and Petroleum Geology, 93, 16–50. https://doi.org/10.1016/j.marpetgeo.2018.03.002
    [Google Scholar]
  30. Pellegrini, C., Bohacs, K. M., Drexler, T. M., Gamberi, F., Rovere, M., & Trincardi, F. (2017b) Identifying the sequence boundary in over‐ and under‐supplied contexts: the case of the late Pleistocene Adriatic continental margin. In B.Hart, N. C.Rosen, D.West, A.D'Agostino, C.Messina, M.Hoffman, & R.Wild (Eds.), Sequence Stratigraphy: the Future Defined, Proceedings of the 36th Annual Perkins‐Rosen Research Conference GCSSEPM Foundation (pp. 160–182). Tulsa, OK.
    [Google Scholar]
  31. Pellegrini, C., Maselli, V., Cattaneo, A., Piva, A., Ceregato, A., & Trincardi, F. (2015). Anatomy of a compound delta from the post‐glacial transgressive record in the Adriatic Sea. Marine Geology, 362, 43–59.
    [Google Scholar]
  32. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K. M., Drexler, T. M., & Trincardi, F. (2017a). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45, 327–330. https://doi.org/10.1130/G38848.1
    [Google Scholar]
  33. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Sc‐Rev., 62, 283–326.
    [Google Scholar]
  34. Porębski, S., & Steel, R. J. (2006). Deltas and sea level change. Journal of Sedimentary Research, 76, 390–403.
    [Google Scholar]
  35. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin‐margin progradation: Processes and implications. J. Sed. Res., 86, 863–878.
    [Google Scholar]
  36. Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., … Friedrichs, C. T.& Fedele, J. J. (2007). Seascape evolution on clastic continental shelves and slopes. In C. A.Nittrouer, J. A.Austin, M. E.Field, J. H.Kravitz, J. P. M.Syvitski, & P. L.Wiberg (Eds.), Continental margin sedimentation (pp. 339–380). IAS Spec. Publ., 37. Blackwell Publishing Ltd, Oxford, UK.
    [Google Scholar]
  37. Rossi, M., Minervini, M., Ghielmi, M., & Rogledi, S. (2015). Messinian and Pliocene erosional surfaces in the Po Plain‐Adriatic Basin: Insights from allostratigraphy and sequence stratigraphy in assessing play concepts related to accommodation and gateway turnarounds in tectonically active margins. Marine and Petroleum Geology, 66, 192–216. https://doi.org/10.1016/j.marpetgeo.2014.12.012
    [Google Scholar]
  38. Scarponi, D., & Angeletti, L. (2008). Integration of palaeontological patterns in the sequence stratigraphy paradigm: A case study from Holocene deposits of the Po Plain (Italy). GeoActa, 7, 1–13.
    [Google Scholar]
  39. Scarponi, D., Azzarone, A., Kowalewski, M., & Huntley, J. W. (2017). Surges in trematode prevalence linked to centennial‐scale flooding events in the Adriatic. Scientific Reports, 7, 5732‐.
    [Google Scholar]
  40. Schieber, J. (2016). Mud re‐distribution in epicontinental basins‐exploring likely processes. Earth‐Science Reviews, 71, 119–133.
    [Google Scholar]
  41. Steel, R. J., Carvajal, C., Petter, A. L., & Uroza, C. (2008). Shelf and shelf‐margin growth in scenarios of rising and falling sea level. In G. H.Hampson, R. J.Steel, P. M.Burgess, & R. W.Dalrymple (Eds.). Recent advances in models of siliciclastic shallow‐marine stratigraphy, 90, (pp. 47–71). SEPM Spec. Publ., Tulsa, OK.
    [Google Scholar]
  42. Steel, R. J., & Olsen, T. (2002). Clinoforms, clinoform trajectories and deepwater sands. In J. M.Armentrout, & N. C.Rosen (Eds.). GCS‐SEPM Foundation 22nd Annual Research Conference, Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories (pp. 367–380). Tulsa, Ok.
    [Google Scholar]
  43. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., & Brad Murray, A. (2005). Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modelling of compound‐clinoform development. Journal of Geophysical Research, 110(F02013), 1–16.
    [Google Scholar]
  44. Trincardi, F., Correggiari, A., & Roveri, M. (1994). Late Quaternary transgressive erosion and deposition in a modern epicontinental shelf: The Adriatic semienclosed basin. Geo‐Marine Letters, 14, 41–51. https://doi.org/10.1007/BF01204470
    [Google Scholar]
  45. Uroza, C. A., & Steel, R. J. (2008). A highstand shelf‐margin delta system from the Eocene of West Spitsbergen. Norway. Sed. Geol., 203, 229–245.
    [Google Scholar]
  46. Yoshida, S., Steel, R. J., & Dalrymple, R. W. (2007). Changes in depositional processes‐an ingredient in a new generation of sequence‐stratigraphic models. Journal of Sedimentary Research, 77, 447–460.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12417
Loading
/content/journals/10.1111/bre.12417
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error