1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

We used clumped isotope thermometry to explore past geothermal gradients for five wells in the Delaware Basin, West Texas, USA. Measured Δ temperatures range from 27–307°C, with most temperatures significantly higher than the modern geothermal gradient. We calculated past geothermal gradients using clumped isotope reordering models, revealing a range of past geothermal gradients from 32°C/km in the eastern portions of the basin to 45°C/km in the western portion.

, Abstract

We utilized carbonate clumped isotope thermometry to explore the thermal history of the Delaware Basin, West Texas, USA. Carbonate wellbore cuttings from five oil/gas wells across the basin yielded clumped isotope temperatures (T(Δ)) ranging from 27°C to 307°C, interpreted to reflect a combination of initial precipitation/recrystallization temperature and solid‐state C‐O bond reordering during burial. Dolomite samples generally record lower apparent T(Δ)s than calcite, reflecting greater resistance to reordering in dolomite. In all five wells, clumped isotope temperatures exceed modern downhole temperature measurements, indicating higher heat flow in the past. Using modelled burial curves based on sedimentological history, we created unique time‐temperature histories by linearly applying a geothermal gradient. Applying two different thermal history reordering models, we modelled the extent of solid‐state C–O bond reordering to iteratively find the time‐averaged best‐fit geothermal gradients for each of the five wells. Results of this modelling suggest that the shallower, southwestern portion of the study area experienced higher geothermal gradients throughout the sediment history (~45°C/km) than did the deeper, southeastern portion (~32°C/km), with the northern portion experiencing intermediate geothermal gradients (~35–38°C/km). This trend is in agreement with the observed gas/oil ratios of the Delaware Basin, increasing from east to west. Furthermore, our clumped isotope temperatures agree well with previously published vitrinite reflectance data, confirming previous observations and demonstrating the utility of carbonate clumped isotope thermometry to reconstruct basin thermal histories.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12419
2020-09-26
2020-10-29
Loading full text...

Full text loading...

References

  1. Barker, C. E., & Pawlewicz, M. J. (1986). The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In G.Buntebarth & L.Stegena (Eds.), Paleogeothermics (pp. 79–93). Berlin, Heidelberg: Springer.
    [Google Scholar]
  2. Barker, C. E., & Pawlewicz, M. J. (1987). The effects of igneous intrusions and higher heat flow on the thermal maturity of Leonardian and younger rocks, western Delaware Basin, Texas. In D. W.Cromwell & L.Mazzullo (Eds.), The Leonardian Facies in W. Texas and S. E. New Mexico and guidebook to the Glass Mountains, West Texas (pp. 69–83). Midland, TX: Permian Basin Section‐SEPM Publication 87–27.
    [Google Scholar]
  3. Bernasconi, S. M., Hu, B., Wacker, U., Fiebig, J., Breitenbach, S. F. M., & Rutz, T. (2013). Background effects on Faraday collectors in gas‐source mass spectrometry and implications for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 27, 603–612. https://doi.org/10.1002/rcm.6490
    [Google Scholar]
  4. Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F. M., Fernandez, A., Hodell, D. A., … Ziegler, M. (2018). Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate‐based standardization. Geochemistry, Geophysics, Geosystems, 19, 2895–2914. https://doi.org/10.1029/2017GC007385
    [Google Scholar]
  5. Bonifacie, M., Calmels, D., Eiler, J. M., Horita, J., Chaduteau, C., Vasconcelos, C., … Bourrand, J. J. (2017). Calibration of the dolomite clumped isotope thermometer from 25 to 350 °C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochimica et Cosmochimica Acta, 200, 255–279. https://doi.org/10.1016/j.gca.2016.11.028
    [Google Scholar]
  6. Came, R. E., Eiler, J. M., Veizer, J., Azmy, K., Brand, U., & Weidman, C. R. (2007). Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era. Nature, 449, 198–201. https://doi.org/10.1038/nature06085
    [Google Scholar]
  7. Clauer, N., & Chaudhuri, S. (1995). Clays in Crustal Environments Isotope Dating and Tracing. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer‐Verlag, 369 pp.
    [Google Scholar]
  8. Defliese, W. F., & Lohmann, K. C. (2015). Non-linear mixing effects on mass-47 CO2 clumped isotope thermometry: Patterns and implications. Rapid Communications in Mass Spectrometry, 29, 901–909. https://doi.org/10.1002/rcm.7175
    [Google Scholar]
  9. Defliese, W. F., & Lohmann, K. C. (2016). Evaluation of meteoric calcite cements as a proxy material for mass‐47 clumped isotope thermometry. Geochimica et Cosmochimica Acta, 173, 126–141. https://doi.org/10.1016/j.gca.2015.10.022
    [Google Scholar]
  10. Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., & Eiler, J. M. (2011). Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochimica et Cosmochimica Acta, 75(22), 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
    [Google Scholar]
  11. Dennis, K. J., & Schrag, D. P. (2010). Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74, 4110–4122. https://doi.org/10.1016/j.gca.2010.04.005
    [Google Scholar]
  12. Eiler, J. M. (2007). “Clumped‐isotope” geochemistry‐the study of naturally‐occurring, multiply‐substitute isotopologues. Earth and Planetary Science Letters, 262, 309–327.
    [Google Scholar]
  13. Eiler, J. M. (2011). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30(25–26), 3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001
    [Google Scholar]
  14. Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate‐water isotopic temperature scale. Geological Society of America Bulletin, 64, 1315–1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
    [Google Scholar]
  15. Farver, J. R. (1994). Oxygen self‐diffusion in calcite: Dependence on temperature and water fugacity. Earth and Planetary Science Letters, 121(3–4), 575–587. https://doi.org/10.1016/0012-821X(94)90092-2
    [Google Scholar]
  16. Fernandez, A., Müller, I. A., Rodríguez‐Sanz, L., van Dijk, J., Looser, N., & Bernasconi, S. M. (2017). A reassessment of the precision of carbonate clumped isotope measurements: Implications for calibrations and paleoclimate reconstructions. Geochemistry, Geophysics, Geosystems, 18(12), 4375–4386. https://doi.org/10.1002/2017GC007106
    [Google Scholar]
  17. Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., … Fischer, W. W. (2011). The magnitude and duration of Late Ordovician‐Early Silurian glaciation. Science, 331, 903–906. https://doi.org/10.1126/science.1200803
    [Google Scholar]
  18. Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572. https://doi.org/10.1146/annurev.earth.26.1.519
    [Google Scholar]
  19. Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., … Eiler, J. M. (2006). 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456. https://doi.org/10.1016/j.gca.2005.11.014
    [Google Scholar]
  20. Goldstein, R. H., & Reynolds, T. J. (1994). Systematics of fluid inclusions in diagenetic minerals, SEPM Short Course 31. Society for Sedimentary Geology. https://doi.org/10.2110/scn.94.31
    [Google Scholar]
  21. He, B., Olack, G. A., & Colman, A. S. (2012). Pressure baseline correction and high‐precision CO2 clumped‐isotope (∆47) measurements in bellows and micro‐volume modes. Rapid Communications in Mass Spectrometry, 26, 2837–2853.
    [Google Scholar]
  22. Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez‐Huerta, A., & Yancey, T. E. (2014). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382. https://doi.org/10.1016/j.gca.2014.04.040
    [Google Scholar]
  23. Hills, J. M. (1984). Sedimentation, tectonism, and hydrocarbon generation in Delaware basin, west Texas and southeastern New Mexico. AAPG Bulletin, 68, 250–267.
    [Google Scholar]
  24. Horita, J. (2014). Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129, 111–124. https://doi.org/10.1016/j.gca.2013.12.027
    [Google Scholar]
  25. Hu, B., Radke, J., Schlüter, H. J., Heine, F. T., Zhou, L., & Bernasconi, S. M. (2014). A modified procedure for gas‐source isotope ratio mass spectrometry: The long‐integration dual‐inlet (LIDI) methodology and implications for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28(13), 1413–1425. https://doi.org/10.1002/rcm.6909
    [Google Scholar]
  26. Huntington, K. W., Budd, D. A., Wernicke, B. P., & Eiler, J. M. (2011). Use of clumped‐isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research, 81, 656–669. https://doi.org/10.2110/jsr.2011.51
    [Google Scholar]
  27. Huntington, K. W., & Lechler, A. R. (2015). Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics, 647, 1–20. https://doi.org/10.1016/j.tecto.2015.02.019
    [Google Scholar]
  28. Huntington, K. W., Wernicke, B. P., & Eiler, J. M. (2010). Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics, 29(3), https://doi.org/10.1029/2009TC002449
    [Google Scholar]
  29. Ingalls, M. (2019). Reconstructing carbonate alteration histories in orogenic sedimentary basins: Xigaze forearc, southern Tibet. Geochimica et Cosmochimica Acta, 251, 284–300. https://doi.org/10.1016/j.gca.2019.02.005
    [Google Scholar]
  30. Ingalls, M., Rowley, D., Olack, G., Currie, B., Li, S., Schmidt, J., … Colman, A. (2018). Paleocene to Pliocene low‐latitude, high‐elevation basins of southern Tibet: Implications for tectonic models of India‐Asia collision, Cenozoic climate, and geochemical weathering. GSA Bulletin, 130(1–2), 307–330. https://doi.org/10.1130/B31723.1
    [Google Scholar]
  31. John, C. M. (2015). Burial estimates constrained by clumped isotope thermometry: Example of the Lower Cretaceous Qishn Formation (Haushi‐Huqf, High, Oman). London: Geological Society, Special Publications, 435, SP435‐5.
    [Google Scholar]
  32. Kim, S. T., & O'Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61, 3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5
    [Google Scholar]
  33. Kinley, T. J., Cook, L. W., Breyer, J. A., Jarvie, D. M., & Busbey, A. B. (2008). Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico. AAPG Bulletin, 92(8), 967–991. https://doi.org/10.1306/03240807121
    [Google Scholar]
  34. Kluth, C. F., & Coney, P. J. (1981). Plate tectonics of the ancestral Rocky Mountains. Geology, 9, 10–15. https://doi.org/10.1130/0091-7613(1981)9<10:PTOTAR>2.0.CO;2
    [Google Scholar]
  35. Kronenberg, A. K., Yund, R. A., & Giletti, B. J. (1984). Carbon and oxygen diffusion in calcite: Effects of Mn content and pH2O. Physics and Chemistry of Minerals, 11(3), 101–112. https://doi.org/10.1007/BF00309248
    [Google Scholar]
  36. Kupecz, J. A., & Land, L. S. (1991). Late‐stage dolomitization of the lower Ordovician Ellenburger Group, west Texas. Journal of Sedimentary Research, 61, 551–571.
    [Google Scholar]
  37. Labotka, T. C., Cole, D. R., & Riciputi, L. R. (2000). Diffusion of C and O in calcite at 100 MPa. American Mineralogist, 85(3–4), 488–494. https://doi.org/10.2138/am-2000-0410
    [Google Scholar]
  38. Lacroix, B., & Niemi, N. A. (2019). Investigating the effect of burial histories on the clumped isotope thermometer: An example from the Green River and Washakie Basins, Wyoming. Geochimica et Cosmochimica Acta, 247, 40–58. https://doi.org/10.1016/j.gca.2018.12.016
    [Google Scholar]
  39. Lawson, M., Shenton, B. J., Stolper, D. A., Eiler, J. M., Rasbury, E. T., Becker, T. P., … Gournay, J. (2018). Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U‐Pb dating. GSA Bulletin, 130, 617–629. https://doi.org/10.1130/B31656.1
    [Google Scholar]
  40. Lloyd, M. K., Ryb, U., & Eiler, J. M. (2018). Experimental calibration of clumped isotope reordering in dolomite. Geochimica et Cosmochimica Acta, 242, 1–20. https://doi.org/10.1016/j.gca.2018.08.036
    [Google Scholar]
  41. MacDonald, J. M., John, C. M., & Girard, J. P. (2017). Testing clumped isotopes as a reservoir characterization tool: A comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2–4 km. London: Geological Society, Special Publications, 468, SP468‐7.
    [Google Scholar]
  42. Mangenot, X., Gasparrini, M., Rouchon, V., & Bonifacie, M. (2018). Basin‐scale thermal and fluid flow histories revealed by carbonate clumped isotopes (Δ47)–Middle Jurassic carbonates of the Paris Basin depocentre. Sedimentology, 65(1), 123–150.
    [Google Scholar]
  43. Meckler, A. N., Ziegler, M., Millán, M. I., Breitenbach, S. F., & Bernasconi, S. M. (2014). Long‐term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements. Rapid Communications in Mass Spectrometry, 28, 1705–1715. https://doi.org/10.1002/rcm.6949
    [Google Scholar]
  44. Müller, I. A., Fernandez, A., Radke, J., Van Dijk, J., Bowen, D., Schwieters, J., & Bernasconi, S. M. (2017). Carbonate clumped isotope analyses with the long‐integration dual‐inlet (LIDI) workflow: Scratching at the lower sample weight boundaries. Rapid Communications in Mass Spectrometry, 31(12), 1057–1066. https://doi.org/10.1002/rcm.7878
    [Google Scholar]
  45. Passey, B. H., & Henkes, G. A. (2012). Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 352–352, 223–236. https://doi.org/10.1016/j.epsl.2012.07.021
    [Google Scholar]
  46. Pawlewicz, M. J., Barker, C. E., & McDonald, S. (2005) Vitrinite reflectance data for the Permian Basin, west Texas and southeast New Mexico. US Department of the Interior, US Geological Survey, Open‐File Report 2005–1171.
  47. Petersen, S. V., Defliese, W. F., Saenger, C., Daëron, M., Huntington, K. W., John, C. M., … Winkelstern, I. Z. (2019). Effects of improved 17O correction on inter‐laboratory agreement in clumped isotope calibrations, estimates of mineral‐specific offsets, and temperature dependence of acid digestion fractionation. Geophysics, Geosystems: Geochemistry, 20, 1–25. https://doi.org/10.1029/2018GC008127
    [Google Scholar]
  48. Ross, S. M. (2003). Peirce's criterion for the elimination of suspect experimental data. Journal of Engineering Technology, 20, 38–41.
    [Google Scholar]
  49. Schauble, E. A., Ghosh, P., & Eiler, J. M. (2006). Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first‐principles lattice dynamics. Geochimica et Cosmochimica Acta, 70, 2510–2529. https://doi.org/10.1016/j.gca.2006.02.011
    [Google Scholar]
  50. Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T. P., Laya, J. C., … Lawson, M. (2015). Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. Geological Society of America Bulletin, 127, 1036–1051. https://doi.org/10.1130/B31169.1
    [Google Scholar]
  51. Sinclair, T. D. (2007) The generation and continued existence of overpressure in the Delaware Basin, Texas. Dissertation (Ph.D.), Durham University.
  52. Smith, G. W. (1979). Ellenburger Group, Delaware Basin, West Texas. AAPG Bulletin, 63, 530–530.
    [Google Scholar]
  53. Stolper, D. A., & Eiler, J. M. (2015). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315, 363–411. https://doi.org/10.2475/05.2015.01
    [Google Scholar]
  54. Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 562–581. https://doi.org/10.1039/jr9470000562
    [Google Scholar]
  55. Veillard, C. M., John, C. M., Krevor, S., & Najorka, J. (2019). Rock‐buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X‐ray diffraction analysis. Geochimica et Cosmochimica Acta, 252, 190–212. https://doi.org/10.1016/j.gca.2019.02.012
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12419
Loading
/content/journals/10.1111/bre.12419
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): clumped isotope thermometry , Delaware Basin , geothermal gradient and Permian Basin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error