1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

The southeastern mediterranean continental slope bathymetry is impacted by interleaved imprints of mass transport processes. These are delineated, classified and mapped through semi‐automatic bathymetric spectral decomposition, appraising their role in sediments bypassing and maintenance of a long‐term shelf‐to‐basin equilibrium profile.

, Abstract

Understanding continental‐slope morphological evolution is essential for predicting basin deposition. However, separating the imprints and chronology of different seafloor shaping processes is difficult. This study explores the utility of bathymetric spectral decomposition for separating and characterizing the variety of interleaved seafloor imprints of mass wasting, and clarifying their role in the morphological evolution of the southeastern Mediterranean Sea passive‐margin slope. Bathymetric spectral decomposition, integrated with interpretation of seismic profiles, highlights the long‐term shape of the slope and separates the observed mass transport elements into several genetic groups: (1) a series of ~25 km wide, now‐buried slide scars and lobes; (2) slope‐parallel bathymetric scarps representing shallow faults; (3) slope‐perpendicular, open slope slide scars; (4) bathymetric roughness representing debris lobes; (5) slope‐confined gullies. Our results provide a multi‐scale view of the interplay between sediment transport, mass transport and shallow faulting in the evolution of the slope morphology. The base of the slope and focused disturbances are controlled by ~1 km deep salt retreat, and mimic the Messinian base of slope. The top of the open‐slope is delimited by faults, accommodating internal collapse of the margin. The now‐buried slides were slope‐confined and presumably cohesive, and mostly nucleated along the upper‐slope faults. Sediment accumulations, infilling the now‐buried scars, generated more recent open‐slope slides. These latter slides transported ~10 km3 of sediments, depositing a significant fraction (~3 m in average) of the sediments along the base of the studied slope during the past < 50 ka. South to north decrease in the volume of the open‐slope slides highlight their role in counterbalancing the northwards diminishing sediment supply and helping to maintain a long‐term steady‐state bathymetric profile. The latest phase slope‐confined gullies were presumably created by channelling of bottom currents into slide‐scar depressions, possibly establishing incipient canyon headword erosion.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12420
2020-09-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/5/bre12420.html?itemId=/content/journals/10.1111/bre.12420&mimeType=html&fmt=ahah

References

  1. Adams, E. W., & Schlager, W. (2000). Basic types of submarine slope curvature. Journal of Sedimentary Research, 70(4), 814–828. https://doi.org/10.1306/2DC4093A-0E47-11D7-8643000102C1865D
    [Google Scholar]
  2. Almagor, G. (1984). Salt‐controlled slumping on the Mediterranean slope of central Israel. Marine Geophysical Researches, 6(3), 227–243. https://doi.org/10.1007/BF00286527
    [Google Scholar]
  3. Almagor, G., & Garfunkel, Z. (1979). submarine slumping in continental margin of Israel and Northern Sinai. The American Association of Petroleum Geologists Bulletin, 63(3), 324–340.
    [Google Scholar]
  4. Almagor, G., & Schilman, B. (1995). Sedimentary structures and sediment transport across the continental slope of Israel from piston core studies. Sedimentology, 42(4), 575–592. https://doi.org/10.1111/j.1365-3091.1995.tb00393.x
    [Google Scholar]
  5. Almagor, G., & Wiseman, G. (1977). Analysis of submarine slumping in the continental slope off the southern coast of Israel. Marine Geotechnology, 10, 303–342. https://doi.org/10.1080/10641199109379898
    [Google Scholar]
  6. Almogi‐Labin, A., Bar‐Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., … Matthews, A. (2009). Climatic variability during the last ∼90ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews, 28(25–26), 2882–2896. https://doi.org/10.1016/j.quascirev.2009.07.017
    [Google Scholar]
  7. Baudon, C., Cartwright, J. A. (2008). 3D seismic characterisation of an array of blind normal faults in the Levant Basin, Eastern Mediterranean. Journal of Structural Geology, 30(6), 746–760. https://doi.org/10.1016/j.jsg.2007.12.008
    [Google Scholar]
  8. Ben‐Avraham, Z. (1978). The structure and tectonic setting of the levant continental margin. Eastern Mediterranean. Tectonophysics, 46(3–4), 313–331. https://doi.org/10.1016/0040-1951(78)90210-X
    [Google Scholar]
  9. Berndt, C., Costa, S., Canals, M., Camerlenghi, A., de Mol, B., & Saunders, M. (2012). Repeated slope failure linked to fluid migration: The Ana submarine landslide complex, Eivissa Channel, Western Mediterranean Sea. Earth and Planetary Science Letters, 319–320, 65–74. https://doi.org/10.1016/j.epsl.2011.11.045
    [Google Scholar]
  10. Box, M. R., Krom, M. D., Cliff, R. A., Bar‐Matthews, M., Almogi‐Labin, A., Ayalon, A., & Paterne, M. (2011). Response of the Nile and its catchment to millennial‐scale climatic change since the LGM from Sr isotopes and major elements of East Mediterranean sediments. Quaternary Science Reviews, 30(3–4), 431–442. https://doi.org/10.1016/j.quascirev.2010.12.005
    [Google Scholar]
  11. Brenner, S. (2003). High‐resolution nested model simulations of the climatological circulation in the southeastern Mediterranean Sea. Annales Geophysicae, 21, 267–280. Retrieved from https://hal-insu.archives-ouvertes.fr/docs/00/31/69/79/PDF/angeo-21-267-2003.pdf. https://doi.org/10.5194/angeo-21-267-2003
    [Google Scholar]
  12. Brothers, D. S., ten Brink, U. S., Andrews, B. D., & Chaytor, J. D. (2013). Geomorphic characterization of the U.S. Atlantic Continental Margin. Marine Geology, 338, 46–63. https://doi.org/10.1016/j.margeo.2012.12.008
    [Google Scholar]
  13. Buchbinder, B., & Zilberman, E. (1997). Sequence stratigraphy of Miocene‐Pliocene carbonate‐siliciclastic shelf deposits in the eastern Mediterranean margin (Israel): Effects of eustasy and tectonics. Sedimentary Geology, 112(1–2), 7–32. https://doi.org/10.1016/S0037-0738(97)00034-1
    [Google Scholar]
  14. Bull, S., Cartwright, J., & Huuse, M. (2008). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26(7), 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  15. Camerlenghi, A., Urgeles, R., & Fantoni, L. (2010). A database on submarine landslides of the Mediterranean Sea. In Submarine Mass Movements and Their Consequences (pp. 503–513). Retrieved from http://link.springer.com/chapter/10.1007/978-90-481-3071-9_41
    [Google Scholar]
  16. Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J., Cattaneo, A., … Bryn, P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: Case studies from the COSTA project. Marine Geology, 213(1–4), 9–72. https://doi.org/10.1016/j.margeo.2004.10.001
    [Google Scholar]
  17. Cartwright, J., & Jackson, M. P. A. (2008). Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120(3–4), 399–413. https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  18. Castañeda, I. S., Schefuß, E., Pätzold, J., Sinninghe Damsté, J. S., Weldeab, S., & Schouten, S. (2010). Millennial‐scale sea surface temperature changes in the eastern Mediterranean (Nile River Delta region) over the last 27,000 years. Paleoceanography, 25(1), https://doi.org/10.1029/2009PA001740
    [Google Scholar]
  19. Cazenave, P. W., Dix, J. K., Lambkin, D. O., & McNeill, L. C. (2013). A method for semi‐automated objective quantification of linear bedforms from multi‐scale digital elevation models. Earth Surface Processes and Landforms, 38(3), 221–236. https://doi.org/10.1002/esp.3269
    [Google Scholar]
  20. Chaytor, J. D., ten Brink, U. S., Solow, A. R., & Andrews, B. D. (2009). Size distribution of submarine landslides along the U.S. Atlantic margin. Marine Geology, 264(1–2), 16–27. https://doi.org/10.1016/j.margeo.2008.08.007
    [Google Scholar]
  21. CIESM
    CIESM (2008). The Messinian Salinity Crisis from mega‐deposits to microbiology—A consensus report. CIESM Workshop Monographs, 30
    [Google Scholar]
  22. Covault, J. A., Normark, W. R., Romans, B. W., & Graham, S. A. (2007). Highstand fans in the California borderland: The overlooked deep‐water depositional systems. Geology, 35(9), 783–786https://doi.org/10.1130/G23800A.1
    [Google Scholar]
  23. Dalla Valle, G., Gamberi, F., Trincardi, F., Baglioni, L., Errera, A., & Rocchini, P. (2013). Contrasting slope channel styles on a prograding mud‐prone margin. Marine and Petroleum Geology, 41, 72–82. https://doi.org/10.1016/j.marpetgeo.2012.02.003
    [Google Scholar]
  24. Ducassou, E., Migeon, S., Mulder, T., Murat, A., Capotondi, L., Bernasconi, S. M., & Mascle, J. (2009). Evolution of the Nile deep‐sea turbidite system during the Late Quaternary: Influence of climate change on fan sedimentation. Sedimentology, 56(7), 2061–2090. https://doi.org/10.1111/j.1365-3091.2009.01070.x
    [Google Scholar]
  25. Dugan, B., & Flemings, P. B. (2000). Overpressure and fluid flow in the New Jersey continental slope: Implications for slope failure and cold seeps. Science, 289(5477), 288–291.
    [Google Scholar]
  26. Embley, R. W. (1976). New evidence for occurrence of debris flow deposits in the deep sea. Geology, 4(6), 371–374. https://doi.org/10.1130/0091-7613(1976)4<371:NEFOOD>2.0.CO;2
    [Google Scholar]
  27. Embley, R. W. (1980). The role of mass transport in the distribution and character of deep‐ocean sediments with special reference to the North Atlantic. Marine Geology, 38(1), 23–50. https://doi.org/10.1016/0025-3227(80)90050-X
    [Google Scholar]
  28. Emery, K. O., & Bentor, Y. K. (1960). The continental shelf of Israel. Retrieved fromhttp://www.vliz.be/imisdocs/publications/261833.pdf.
  29. Evans, D., King, E. L., Kenyon, N. H., Brett, C., & Wallis, D. (1996). Evidence for long‐term instability in the Storegga Slide region off western Norway. Marine Geology, 130(3), 281–292. https://doi.org/10.1016/0025-3227(95)00135-2
    [Google Scholar]
  30. Frey Martinez, J., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17(1), 83–108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
    [Google Scholar]
  31. Frey‐Martínez, J., Cartwright, J., & James, D. (2006). Frontally confined versus frontally emergent submarine landslides: A 3D seismic characterisation. Marine and Petroleum Geology, 23(5), 585–604. https://doi.org/10.1016/j.marpetgeo.2006.04.002
    [Google Scholar]
  32. Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics & Data Analysis, 54(4), 1167–1178. https://doi.org/10.1016/j.csda.2009.09.020
    [Google Scholar]
  33. Garcia, D. (2011). A fast all‐in‐one method for automated post‐processing of PIV data. Experiments in Fluids, 50(5), 1247–1259. https://doi.org/10.1007/s00348-010-0985-y
    [Google Scholar]
  34. Gardosh, M. A., & Druckman, Y. (2006). Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. Geological Society of London Special Publications, 260, 201–227. https://doi.org/10.1144/GSL.SP.2006.260.01.09
    [Google Scholar]
  35. Garfunkel, Z. (1984). Large‐scale submarine rotational slumps and growth faults in the eastern Mediterranean. Marine Geology, 55(3–4), 305–324. https://doi.org/10.1016/0025-3227(84)90074-4
    [Google Scholar]
  36. Garfunkel, Z., Arad, A., & Almagor, G. (1979). The Palmahim disturbance and its regional setting. Jerusalem: In Ol. Surv. Lsr. Bull.
    [Google Scholar]
  37. Garziglia, S., Migeon, S., Ducassou, E., Loncke, L., & Mascle, J. (2008). Mass‐transport deposits on the Rosetta province (NW Nile deep‐sea turbidite system, Egyptian margin): Characteristics, distribution, and potential causal processes. Marine Geology, 250(3–4), 180–198. https://doi.org/10.1016/j.margeo.2008.01.016
    [Google Scholar]
  38. Gee, M. J. R., Gawthorpe, R. L., & Friedmann, S. J. (2006). Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76(1), 9–19. https://doi.org/10.2110/jsr.2006.02
    [Google Scholar]
  39. Gradmann, S., Hübscher, C., Ben‐Avraham, Z., Gajewski, D., & Netzeband, G. (2005). Salt tectonics off northern Israel. Marine and Petroleum Geology, 22(5), 597–611. https://doi.org/10.1016/j.marpetgeo.2005.02.001
    [Google Scholar]
  40. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., & Ben‐Avraham, Z. (2013). Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth and Planetary Science Letters, 379, 108–119. https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  41. Gvirtzman, Z., Reshef, M., Buch‐Leviatan, O., Groves‐Gidney, G., Karcz, Z., Makovsky, Y., & Ben‐Avraham, Z. (2015). Bathymetry of the Levant basin: Interaction of salt‐tectonics and surficial mass movements. Marine Geology, 360, 25–39. https://doi.org/10.1016/j.margeo.2014.12.001
    [Google Scholar]
  42. Gvirtzman, Z., Zilberman, E., & Folkman, Y. (2008). Reactivation of the Levant passive margin during the late Tertiary and formation of the Jaffa Basin offshore central Israel. Journal of the Geological Society, 165, 563–578. https://doi.org/10.1144/0016-76492006-200
    [Google Scholar]
  43. Hall, J. K., Lippman, S., Gardosh, M., Tibor, G., Sade, A. R., Sade, H., … Nissim, I. (2015). A New Bathymetric Map for the Israeli EEZ: Preliminary Results. Energy and Water Resources and the Survey of Israel, Ministry of National Infrastructures.
    [Google Scholar]
  44. Hamann, Y., Ehrmann, W., Schmiedl, G., Krüger, S., Stuut, J.‐B., & Kuhnt, T. (2008). Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end‐member modelling of the terrigenous fraction in marine sediments. Marine Geology, 248(1–2), 97–114. https://doi.org/10.1016/j.margeo.2007.10.009
    [Google Scholar]
  45. Hampton, M. A., Lee, H. J., Locat, J. S., Slides, L., & Of, R. (1996). Geophysics, 34, 33–59. https://doi.org/10.1029/95RG03287
    [Google Scholar]
  46. Harders, R., Ranero, C. R., Weinrebe, W., & Behrmann, J. (2011). Submarine slope failures along the convergent continental margin of the Middle America Trench. Geochemistry, Geophysics, Geosystems, 12(6), n/a‐n/a. https://doi.org/10.1029/2010GC003401
    [Google Scholar]
  47. Hübscher, C., Betzler, C., & Reiche, S. (2016). Seismo‐stratigraphic evidences for deep base level control on middle to late Pleistocene drift evolution and mass wasting along southern Levant continental slope (Eastern Mediterranean). Marine and Petroleum Geology, 77, 526–534. https://doi.org/10.1016/j.marpetgeo.2016.07.008
    [Google Scholar]
  48. Hübscher, C., Pätzold, J., Arz, H. W., Ben‐Avraham, Z., Berger, J., Dehghani, A., … Thorwart, M. (2003). Black Sea–Mediterranean–Red Sea Part 2. Meteor‐Berichte, 3, 2.
    [Google Scholar]
  49. Hühnerbach, V., & Masson, D. G. (2004). Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Marine Geology, 213(1–4), 343–362. https://doi.org/10.1016/j.margeo.2004.10.013
    [Google Scholar]
  50. Katz, O., Reuven, E., & Aharonov, E. (2015). Submarine landslides and fault scarps along the eastern Mediterranean Israeli continental‐slope. Marine Geology, 369, 100–115. https://doi.org/10.1016/j.margeo.2015.08.006
    [Google Scholar]
  51. Lastras, G., Canals, M., Urgeles, R., Hughes‐Clarke, J. E., & Acosta, J. (2004). Shallow slides and pockmark swarms in the Eivissa Channel, western Mediterranean Sea: Shallow slides and pockmark swarms. Sedimentology, 51(4), 837–850. https://doi.org/10.1111/j.1365-3091.2004.00654.x
    [Google Scholar]
  52. Lee, H. J., Syvitski, J. P., Parker, G., Orange, D., Locat, J., Hutton, E. W., & Imran, J. (2002). Distinguishing sediment waves from slope failure deposits: Field examples, including the ‘Humboldt slide’, and modelling results. Marine Geology, 192(1), 79–104. https://doi.org/10.1016/S0025-3227(02)00550-9
    [Google Scholar]
  53. Lefebvre, A., & Lyons, A. P. (2011). Quantification of roughness for seabed characterization. Proc 4th Int. Conf & Exhib, UAM, 20–24.
  54. Lisimenka, A., & Rudowski, S. (2013). Bedform characterization in river channel through 2D spectral analysis. Presented at the Marine and River Dune Dynamics, Bruges, Belgium: MARID IV. Retrieved from http://www.vliz.be/imisdocs/publications/246026.pdf
  55. Locat, J., & Lee, H. J. (2002). Submarine landslides: Advances and challenges. Canadian Geotechnical Journal, 39(1), 193–212. https://doi.org/10.1139/t01-089
    [Google Scholar]
  56. Lyons, A. P., Fox, W. L., Hasiotis, T., & Pouliquen, E. (2002). Characterization of the two‐dimensional roughness of wave‐rippled sea floors using digital photogrammetry. IEEE Journal of Oceanic Engineering, 27(3), 515–524. https://doi.org/10.1109/JOE.2002.1040935
    [Google Scholar]
  57. Mart, Y., & Ryan, W. (2007). The Levant Slumps and the Phoenician Structures: Collapse features along the continental margin of the southeastern Mediterranean Sea. Marine Geophysical Researches, 28(4), 297–307. https://doi.org/10.1007/s11001-007-9032-7
    [Google Scholar]
  58. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Lovholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1845), 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    [Google Scholar]
  59. McAdoo, B. G., Pratson, L. F., & Orange, D. L. (2000). Submarine landslide geomorphology, US continental slope. Marine Geology, 169(1), 103–136. https://doi.org/10.1016/S0025-3227(00)00050-5
    [Google Scholar]
  60. Meilijson, A., Steinberg, J., Hilgen, F., Bialik, O. M., Waldmann, N. D., & Makovsky, Y. (2018). Deep‐basin evidence resolves a 50‐year‐old debate and demonstrates synchronous onset of Messinian evaporite deposition in a non‐desiccated Mediterranean. Geology, 46(3), 243–246. https://doi.org/10.1130/G39868.1
    [Google Scholar]
  61. Micallef, A., Berndt, C., Masson, D. G., & Stow, D. A. V. (2007). A technique for the morphological characterization of submarine landscapes as exemplified by debris flows of the Storegga Slide. Journal of Geophysical Research, 112(F2), https://doi.org/10.1029/2006JF000505
    [Google Scholar]
  62. Micallef, A., & Mountjoy, J. J. (2011). A topographic signature of a hydrodynamic origin for submarine gullies. Geology, 39(2), 115–118. https://doi.org/10.1130/G31475.1
    [Google Scholar]
  63. Migeon, S., Ceramicola, S., Praeg, D., Ducassou, E., Dano, A., Ketzer, J. M., Mascle, J. (2014). Post‐failure processes on the continental slope of the central Nile deep‐sea fan: Interactions between fluid seepage, sediment deformation and sediment‐wave construction. In Submarine Mass Movements and Their Consequences (pp. 117–127). Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-00972-8_11.
    [Google Scholar]
  64. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98. https://doi.org/10.1111/j.1365-2117.2007.00340.x
    [Google Scholar]
  65. Mosher, D. C., & Campbell, D. C. (2010). The Barrington submarine landslide, western Scotian slope. The Importance of Mass‐Transport Deposits in Deepwater Settings. SEPM Spec Pub, 91.
  66. Mosher, D. C., Campbell, D. C., Gardner, J. V., Piper, D. J. W., Chaytor, J. D., & Rebesco, M. (2017). The role of deep‐water sedimentary processes in shaping a continental margin: The Northwest Atlantic. Marine Geology, 393, 245–259. https://doi.org/10.1016/j.margeo.2017.08.018
    [Google Scholar]
  67. Mosher, D. C., & Piper, D. J. W. (2007). Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 grand banks landslide area. In V.Lykousis, D.Sakellariou, & J.Locat (Eds.), Submarine Mass Movements and Their Consequences (pp. 77–88). https://doi.org/10.1007/978-1-4020-6512-5_9
    [Google Scholar]
  68. Mulder, T., & Cochonat, P. (1996). Classification of offshore mass movements. Journal of Sedimentary Research, Retrieved from http://techplace.datapages.com/data/sepm/journals/v66-67/data/066/066001/pdfs/0043.pdf
    [Google Scholar]
  69. Neev, D., Bakler, N., & Emery, K. O. (1987). Mediterranean coasts of Israel and Sinai: Holocene tectonism from geology, geophysics, and archaelogy. Taylor & Francis, https://doi.org/10.1016/0025-3227(88)90134-X
    [Google Scholar]
  70. Neev, D., & Ben‐Avraham, Z. (1977). The Levantine Countries: The Israeli Coastal Region. In A. E. M.Nairn, W. H.Kanes & F. G.Stehli (Eds.)., The Ocean Basins and Margins (pp. 355–377). https://doi.org/10.1007/978-1-4684-3036-3_9.
    [Google Scholar]
  71. Netzeband, G. L., Hübscher, C. P., & Gajewski, D. (2006). The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230(3–4), 249–273. https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  72. Nir, Y. (1984). Recent sediments of the Israel Mediterranean continental shelf and slope (University of Gothenburg). Retrieved from https://gupea.ub.gu.se/handle/2077/13267
  73. Normark, W. R., & Gutmacher, C. E. (1988). Sur submarine slide, Monterey fan, central California. Sedimentology, 35(4), 629–647. https://doi.org/10.1111/j.1365-3091.1988.tb01241.x
    [Google Scholar]
  74. Omeru, T., & Cartwright, J. (2015). Multistage, progressive slope failure in the Pleistocene pro‐deltaic slope of the West Nile Delta (Eastern Mediterranean). Marine Geology, 362, 76–92. https://doi.org/10.1016/j.margeo.2015.01.012
    [Google Scholar]
  75. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62(3–4), 283–326. https://doi.org/10.1016/S0012-8252(02)00161-7
    [Google Scholar]
  76. Prather, B. E., O’Byrne, C., Pirmez, C., & Sylvester, Z. (2017). Sediment partitioning, continental slopes and base‐of‐slope systems. Basin Research, 29(3), 394–416. https://doi.org/10.1111/bre.12190
    [Google Scholar]
  77. Pratson, L. F., & Coakley, B. J. (1996). A model for the headward erosion of submarine canyons induced by downslope‐eroding sediment flows. Geological Society of America Bulletin, 108(2), 225–234. https://doi.org/10.1130/0016-7606(1996)108<0225:AMFTHE>2.3.CO;2
    [Google Scholar]
  78. Puig, P., Palanques, A., Orange, D. L., Lastras, G., & Canals, M. (2008). Dense shelf water cascades and sedimentary furrow formation in the Cap de Creus Canyon, northwestern Mediterranean Sea. Continental Shelf Research, 28(15), 2017–2030. https://doi.org/10.1016/j.csr.2008.05.002
    [Google Scholar]
  79. Pyles, D. R., Syvitski, J. P. M., & Slatt, R. M. (2011). Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope‐to‐basin profile: An outcrop perspective. Marine and Petroleum Geology, 28(3), 675–697. https://doi.org/10.1016/j.marpetgeo.2010.07.006
    [Google Scholar]
  80. Rosentraub, Z., & Brenner, S. (2007). Circulation over the southeastern continental shelf and slope of the Mediterranean Sea: Direct current measurements, winds, and numerical model simulations. Journal of Geophysical Research, 112(C11), https://doi.org/10.1029/2006JC003775
    [Google Scholar]
  81. Ross, W. C., Halliwell, B. A., May, J. A., Watts, D. E., & Syvitski, J. P. M. (1994). Slope readjustment: A new model for the development of submarine fans and aprons. Geology, 22(6), 511–514. https://doi.org/10.1130/0091-7613(1994)022<0511:SRANMF>2.3.CO;2
    [Google Scholar]
  82. Ross, W. C., Watts, D. E., & May, J. A. (1995). Insights from stratigraphic modeling: Mud‐limited versus sand‐limited depositional systems. AAPG Bulletin, 79(2), 231–258.
    [Google Scholar]
  83. Rovere, M., Gamberi, F., Mercorella, A., & Leidi, E. (2013). Geomorphometry of a submarine mass‐transport complex and relationships with active faults in a rapidly uplifting margin (Gioia Basin, NE Sicily margin). Marine Geology, 356, 31–43. https://doi.org/10.1016/j.margeo.2013.06.003
    [Google Scholar]
  84. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  85. Ryan, W. B. F. (1978). Messinian badlands on the southeastern margin of the Mediterranean Sea. Marine Geology, 27(3–4), 349–363. https://doi.org/10.1016/0025-3227(78)90039-7
    [Google Scholar]
  86. Safadi, M., Meilijson, A., & Makovsky, Y. (2017). Internal deformation of the southeast Levant margin through continued activity of buried mass transport deposits. Tectonics, 36(3), 559–581. https://doi.org/10.1002/2016TC004342
    [Google Scholar]
  87. Sagy, Y., Gvirtzman, Z., Reshef, M., & Makovsky, Y. (2015). The enigma of the Jonah high in the middle of the Levant basin and its significance to the history of rifting. Tectonophysics, 665, 186–198. https://doi.org/10.1016/j.tecto.2015.09.037
    [Google Scholar]
  88. Salamon, A. (2010). Potential tsunamigenic sources in the eastern Mediterranean and a decision matrix for a tsunami early warning system in Israel. Retrieved from http://www.gsi.gov.il/_uploads/ftp/GsiReport/2010/Salomon-Amos-GSI-02-2010.pdf
  89. Salamon, A., Hofstetter, A., Garfunkel, Z., & Ron, H. (1996). Seismicity of the eastern Mediterranean region: Perspective from the Sinai subplate. Tectonophysics, 263(1), 293–305. https://doi.org/10.1016/S0040-1951(96)00030-3
    [Google Scholar]
  90. Schattner, U., Gurevich, M., Kanari, M., & Lazar, M. (2015). Levant jet system—Effect of post LGM seafloor currents on Nile sediment transport in the eastern Mediterranean. Sedimentary Geology, 329, 28–39. https://doi.org/10.1016/j.sedgeo.2015.09.007
    [Google Scholar]
  91. Schattner, U., & Lazar, M. (2016). Hierarchy of source‐to‐sink systems—Example from the Nile distribution across the eastern Mediterranean. Sedimentary Geology, 343, 119–131. https://doi.org/10.1016/j.sedgeo.2016.08.006
    [Google Scholar]
  92. Schilman, B., Bar‐Matthews, M., Almogi‐Labin, A., & Luz, B. (2001). Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 176(1), 157–176. https://doi.org/10.1016/S0031-0182(01)00336-4
    [Google Scholar]
  93. Segev, A., Rybakov, M., Lyakhovsky, V., Hofstetter, A., Tibor, G., Goldshmidt, V., & Ben Avraham, Z. (2006). The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics, 425(1–4), 137–157. https://doi.org/10.1016/j.tecto.2006.07.010
    [Google Scholar]
  94. Shanmugam, G. (2010). Slides, slumps, debris flow, and turbidity currents. Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences, 20, 418.
    [Google Scholar]
  95. Solheim, A., Bryn, P., Sejrup, H. P., Mienert, J., & Berg, K. (2005). Ormen Lange—An integrated study for the safe development of a deep‐water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Marine and Petroleum Geology, 22(1–2), 1–9. https://doi.org/10.1016/j.marpetgeo.2004.10.001
    [Google Scholar]
  96. Stanley, D. J., & Warne, A. G. (1998). Nile Delta in its destruction phase. Journal of Coastal Research, 14(3), 795–825.
    [Google Scholar]
  97. Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., … Wilson, C. (2004). Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Marine Geology, 213(1–4), 291–321. https://doi.org/10.1016/j.margeo.2004.10.011
    [Google Scholar]
  98. ten Brink, U. S., Barkan, R., Andrews, B. D., & Chaytor, J. D. (2009). Size distributions and failure initiation of submarine and subaerial landslides. Earth and Planetary Science Letters, 287(1–2), 31–42. https://doi.org/10.1016/j.epsl.2009.07.031
    [Google Scholar]
  99. ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., & Andrews, B. D. (2014). Assessment of tsunami hazard to the U.S. Atlantic margin. Marine Geology, 353, 31–54. https://doi.org/10.1016/j.margeo.2014.02.011
    [Google Scholar]
  100. ten Brink, U. S., Geist, E. L., Lynett, P. J., & Andrews, B. D. (2006). Submarine slides north of Puerto Rico and their tsunami potential. Caribbean Tsunami Hazard, 67.
    [Google Scholar]
  101. ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264(1–2), 65–73. https://doi.org/10.1016/j.margeo.2008.05.011
    [Google Scholar]
  102. Thornes, J. (1972). Debris Slopes as Series. Arctic and Alpine Research, 4(4), 337. https://doi.org/10.2307/1550273
    [Google Scholar]
  103. Tibor, G., Ben‐Avraham, Z., Steckler, M., & Fligelman, H. (1992). Late Tertiary subsidence history of the southern Levant Margin, eastern Mediterranean Sea, and its implications to the understanding of the Messinian Event. Journal of Geophysical Research, 97(B12), 17593. https://doi.org/10.1029/92JB00978
    [Google Scholar]
  104. Trincardi, F., Verdicchio, G., & Miserocchi, S. (2007). Seafloor evidence for the interaction between cascading and along‐slope bottom water masses. Journal of Geophysical Research, 112(F3), https://doi.org/10.1029/2006JF000620
    [Google Scholar]
  105. van Dijk, T. A. G. P., Lindenbergh, R. C., & Egberts, P. J. P. (2008). Separating bathymetric data representing multiscale rhythmic bed forms: A geostatistical and spectral method compared. Journal of Geophysical Research, 113(F4), https://doi.org/10.1029/2007JF000950
    [Google Scholar]
  106. Vanneste, M., Sultan, N., Garziglia, S., Forsberg, C. F., & L’Heureux, J.‐S. (2014). Seafloor instabilities and sediment deformation processes: The need for integrated, multi‐disciplinary investigations. Marine Geology, 352, 183–214. https://doi.org/10.1016/j.margeo.2014.01.005
    [Google Scholar]
  107. Ward, S. N. (2001). Landslide tsunami. Journal of Geophysical Research, 106(6), 11–201. https://doi.org/10.1029/2000JB900450
    [Google Scholar]
  108. Wright, L. D., Friedrichs, C. T., Kim, S. C., & Scully, M. E. (2001). Effects of ambient currents and waves on gravity‐driven sediment transport on continental shelves. Marine Geology, 175(1), 25–45. https://doi.org/10.1016/S0025-3227(01)00140-2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12420
Loading
/content/journals/10.1111/bre.12420
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error