1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[

Map view and seismic dip lines visualizing differential progradation of SBT7‐8 along bin 60 and bin 100 (=2 km lateral separation). (a) Map view of SB7 and SB8. (b) Map view of SBT 7–8 color‐coded for aggradation (blue) and downstepping (red). (c) Uninterpreted depth‐converted seismic dip line along bin 60. Vertical exaggeration = 3×. (d) Uninterpreted depth‐converted seismic dip line along bin 100. (e) Interpreted depth‐converted seismic dip line along bin 60 with shelf breaks SB7 and SB8, indicating an aggrading shelf break trajectory with minor progradation. (f) Interpreted depth‐converted seismic dip line along bin 100 with shelf breaks SB7 and SB8, indicating a prograding shelf break trajectory with minor aggradation.

, Abstract

We developed a seismic geomorphology‐based procedure to enhance traditional trajectory analysis with the ability to visualize and quantify lateral variability along carbonate prograding‐margin types (ramps and rimmed shelves) in 3D and 4D. This quantitative approach analysed the shelf break geometric evolution of the Oligo‐Miocene carbonate clinoform system in the Browse Basin and delineated the feedback between antecedent topography and carbonate system response as controlling factor on shelf break rugosity. Our geometrical analysis identified a systematic shift in the large‐scale average shelf break strike direction over a transect of 10 km from 62° to 55° in the Oligo‐Miocene interval of the Browse Basin, which is likely controlled by far‐field allogenic forcing from the Timor Trough collision zone. Plotting of 3D shelf break trajectories represents a convenient way to visualize the lateral variability in shelf break evolution. Shelf break trajectories that indicate contemporaneous along‐strike progradation and retrogradation correlate with phases of autogenic slope system re‐organization and may be a proxy for morphological stability of the shelf break. Shelf break rugosity and shelf break trajectory rugosity are not inherited parameters and antecedent topography does not dictate long‐term differential movement of the shelf margin through successive depositional sequences. The autogenic carbonate system response to antecedent topography smooths high‐rugosity areas by filling accommodation and maintains a relatively constant shelf break rugosity of ~150 m. Color‐coding of the vertical component in the shelf break trajectory captures the creation and filling of accommodation, and highlights areas of the transect that are likely to yield inconsistent 2D sequence stratigraphic interpretations.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12422
2019-12-10
2024-04-18
Loading full text...

Full text loading...

References

  1. Adams, E. W., Kenter, J. A., Verwer, K., Playton, T., & Harris, P. (2013). So different, yet so similar: Comparing and contrasting siliciclastic and carbonate slopes. Deposits, Architecture, and Controls of Carbonate Margin, Slope, and Basinal Settings: SEPM, Special Publication, 105, 14–25.
    [Google Scholar]
  2. Adams, E. W., & Schlager, W. (2000). Basic types of submarine slope curvature. Journal of Sedimentary Research, 70, 814–828. https://doi.org/10.1306/2DC4093A-0E47-11D7-8643000102C1865D
    [Google Scholar]
  3. Apthorpe, M. (1988). Cainozoic depositional history of the north west shelf. In P. G.Purcell, & R. R.Purcell (Eds.), The sedimentary basins of Western Australia 2. Proceedings of the petroleum exploration society of Australia symposium (pp. 55–84). Perth, Australia: Petroleum Exploration Society of Australia.
    [Google Scholar]
  4. Belde, J., Back, S., Bourget, J., & Reuning, L. (2017). Oligocene and Miocene carbonate platform development in the browse basin, Australian northwest shelf. Journal of Sedimentary Research, 87, 795–816. https://doi.org/10.2110/jsr.2017.44
    [Google Scholar]
  5. Black, J. T., & Kohser, R. A. (2017). Degarmo's materials and processes in manufacturing. Hoboken, NJ: John Wiley & Sons.
    [Google Scholar]
  6. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  7. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2019). different stacking patterns along an active fold‐and‐thrust belt—Acerenza bay, southern Apennines (Italy). Geology, 47, 139–142. https://doi.org/10.1130/G45628.1
    [Google Scholar]
  8. Cobbold, P. R., Meisling, K. E., & Mount, V. S. (2001). Reactivation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85, 1925–1944.
    [Google Scholar]
  9. Gill, J. R., & Cobban, W. A. (1973). Stratigraphy and geologic history of the Montana group and equivalent rocks, Montana, Wyoming, and north and South Dakota.
  10. Hall, R. (2011). Australia–SE Asia collision: Plate tectonics and crustal flow. Geological Society, London, Special Publications, 355, 75–109. https://doi.org/10.1144/SP355.5
    [Google Scholar]
  11. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483. https://doi.org/10.1111/j.1365-2117.2009.00425.x
    [Google Scholar]
  12. Henriksen, S., Hampson, G. J., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 21, 445–453. https://doi.org/10.1111/j.1365-2117.2009.00432.x
    [Google Scholar]
  13. Kennard, J., Deighton, I., Ryan, D., Edwards, D., & Boreham, C. (2003). Subsidence and thermal history modelling: New insights into hydrocarbon expulsion from multiple petroleum systems in the browse basin. Timor Sea Petroleum Geoscience. Proceedings of the Timor Sea Symposium, Darwin.
  14. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44, 315–318. https://doi.org/10.1130/G37613.1
    [Google Scholar]
  15. Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: WH Freeman and Company.
    [Google Scholar]
  16. Martinsen, O. J., & Helland‐Hansen, W. (1995). Strike variability of clastic depositional systems: Does it matter for sequence‐stratigraphic analysis?Geology, 23, 439–442. https://doi.org/10.1130/0091-7613(1995)023<0439:SVOCDS>2.3.CO;2
    [Google Scholar]
  17. Mitchum, R., Vail, P., & Sangree, J. (1977a). Seismic stratigraphy and global changes of sea level: Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. In C. E.Payton (Ed.), Aapg memoir 26: Seismic stratigraphy—Applications to hydrocarbon exploration (pp. 117–133). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  18. Mitchum, R., Vail, P., & Thompson, S.III. (1977b). Seismic stratigraphy and global changes of sea level: Part 2. The Depositional Sequence as a Basic Unit for Stratigraphic Analysis: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation.
  19. Mitchum, R. M., & Van Wagoner, J. C. (1991). High‐frequency sequences and their stacking patterns: Sequence‐stratigraphic evidence of high‐frequency eustatic cycles. Sedimentary Geology, 70, 131–160. https://doi.org/10.1016/0037-0738(91)90139-5
    [Google Scholar]
  20. Neal, J. E., Abreu, V., Bohacs, K. M., Feldman, H. R., & Pederson, K. H. (2016). Accommodation succession (Δa/Δs) sequence stratigraphy: Observational method, utility and insights into sequence boundary formation. Journal of the Geological Society, 173, 803–816.
    [Google Scholar]
  21. Patruno, S., & Helland‐Hansen, W. (2018). Clinoform Systems: Review and Dynamic Classification Scheme for Shorelines, Subaqueous Deltas, Shelf Edges and Continental Margins. Earth‐science reviews.
  22. Plotnick, R. E., Gardner, R. H., Hargrove, W. W., Prestegaard, K., & Perlmutter, M. (1996). Lacunarity analysis: A general technique for the analysis of spatial patterns. Physical Review E, 53, 5461–5468. https://doi.org/10.1103/PhysRevE.53.5461
    [Google Scholar]
  23. Pomar, L., & Kendall, C. S. C. (2008). Carbonate platform architecture; a response to hydrodynamics and evolving ecology. Controls on Carbonate Platform and Reef Development, SEPM Special Publication, 89, 187–216.
    [Google Scholar]
  24. Puga‐Bernabéu, Á., Webster, J. M., Beaman, R. J., & Guilbaud, V. (2013). Variation in canyon morphology on the great barrier reef margin, north‐eastern Australia: The influence of slope and barrier reefs. Geomorphology, 191, 35–50. https://doi.org/10.1016/j.geomorph.2013.03.001
    [Google Scholar]
  25. Reuning, L., Back, S., Schulz, H., Hirsch, M., Kukla, P., & Grötsch, J. (2009). Seismic expression of sedimentary processes on a carbonate shelf and slope system, browse basin, Australia – Part I – Non‐tropical carbonates, Eocene to lower Miocene. Extended Abstract. 71st EAGE Conference & Exhibition.
  26. Rinke‐Hardekopf, L., Reuning, L., Bourget, J., & Back, S. (2018). Syn‐sedimentary deformation as a mechanism for the initiation of submarine gullies on a carbonate platform to slope transition, Browse Basin, Australian North West Shelf. Marine and Petroleum Geology, 91, 622–630. https://doi.org/10.1016/j.marpetgeo.2017.12.034
    [Google Scholar]
  27. Rosleff‐Soerensen, B., Reuning, L., Back, S., & Kukla, P. (2012). Seismic geomorphology and growth architecture of a miocene barrier reef, browse basin, NW‐Australia. Marine and Petroleum Geology, 29, 233–254. https://doi.org/10.1016/j.marpetgeo.2010.11.001
    [Google Scholar]
  28. Rosleff‐Soerensen, B., Reuning, L., Back, S., & Kukla, P. A. (2016). The response of a basin‐scale miocene barrier reef system to long‐term, strong subsidence on a passive continental margin, barcoo sub‐basin, Australian north west shelf. Basin Research, 28, 103–123. https://doi.org/10.1111/bre.12100
    [Google Scholar]
  29. Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy. Tulsa, Okla: SEPM.
    [Google Scholar]
  30. Schlager, W., & Adams, E. W. (2001). Model for the sigmoidal curvature of submarine slopes. Geology, 29, 883–886. https://doi.org/10.1130/0091-7613(2001)029<0883:MFTSCO>2.0.CO;2
    [Google Scholar]
  31. Stephenson, A. E., & Cadman, S. J. (1994). Browse basin, northwest Australia – The evolution, paleogeography and petroleum potential of a passive continental‐margin. Palaeogeography Palaeoclimatology Palaeoecology, 111, 337–366.
    [Google Scholar]
  32. Tesch, P., Reece, R., Pope, M., & Markello, J. (2018). Quantification of architectural variability and controls in an upper oligocene to lower miocene carbonate ramp, browse basin, Australia. Marine and Petroleum Geology, 91, 432–454. https://doi.org/10.1016/j.marpetgeo.2018.01.022
    [Google Scholar]
  33. Vail, P., Mitchum, R.Jr, & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level; part 4, global cycles of relative changes of sea level. In C. E.Payton (Ed.), Seismic stratigraphy; applications to hydrocarbon exploration: American association of petroleum geologists memoir (Vol. 26, pp. 83–97). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  34. Veritas
    Veritas . (2000). 1999 Brecknock south 3d marine seismic survey, seismic data processing report, Veritas DCG Asia Pacific Ltd., 198.
  35. Wehr, F. (1994). Effects of variations in subsidence and sediment supply on parasequence stacking patterns. Siliciclastic Sequence Stratigraphy, 58, 369–379.
    [Google Scholar]
  36. Wiseman, J. D., & Ovey, C. D. (1953). Definitions of features on the deep‐sea floor. Deep Sea Research, 1, 11–16. https://doi.org/10.1016/0146-6313(53)90004-5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12422
Loading
/content/journals/10.1111/bre.12422
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): carbonate clinoforms; sequence stratigraphy; trajectory analysis

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error