1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

[

Tectono‐sedimentary models of the evolution of the Rethi‐Dendro Formation depositional environment in the Amphithea fault block. Plio‐Pleistocene syn‐rift of the Corinth Rift, Greece.

, Abstract

Our current understanding on sedimentary deep‐water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio‐Pleistocene deep‐water sedimentary system (Rethi‐Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep‐water syn‐rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast‐count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone‐dominated sheets, B—conglomerate‐dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone‐dominated broad shallow lobes, F—sandstone‐dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland‐fed Mavro delta, with minor contributions from a transverse system of conglomerate‐dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep‐water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin‐floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large‐scale subaqueous landslides and eventual uplift of the whole fault block.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12423
2020-09-26
2020-10-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/5/bre12423.html?itemId=/content/journals/10.1111/bre.12423&mimeType=html&fmt=ahah

References

  1. Armitage, D. A., McHargue, T., Fildani, A., & Graham, S. A. (2012). Postavulsion channel evolution: Niger delta continental slope. AAPG Bulletin, 96, 823–843. https://doi.org/10.1306/09131110189
    [Google Scholar]
  2. Azpiroz‐Zabala, M., Cartigny, M. J. B., Talling, P. J., Parsons, D. R., Sumner, E. J., Clare, M. A., … Pope, E. L. (2017). Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 3, e1700200. https://doi.org/10.1126/sciadv.1700200
    [Google Scholar]
  3. Bentham, P., Collier, R. E. L., Gawthorpe, R. L., Leeder, M. R., Prossor, S., & Stark, C. (1991). Tectono‐sedimentary development of an extensional Basin: The neogene megara basin, Greece. Journal of the Geological Society, 148, 923–934. https://doi.org/10.1144/gsjgs.148.5.0923
    [Google Scholar]
  4. Bornovas, J., Lalechos, N., Filippakis, N., Christodoulou, G., & Tsaila‐Monopoli, S. (1972). Geological map of Greece: 1:50,000. Nemea Sheet: IGME Publications, Athens, Greece.
    [Google Scholar]
  5. Bosworth, W., Huchon, P., & McClay, K. R. (2005). The red sea and gulf of aden basins. Journal of African Earth Sciences, 43, 334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020
    [Google Scholar]
  6. Brooks, H. L., Hodgson, D. M., Brunt, R. L., Peakall, J., Hofstra, M., & Flint, S. S. (2018). Deep‐water channel‐lobe transition zone dynamics: processes and depositional architecture, an example from the karoo basin, South Africa. Geological Society of America Bulletin, 130, 1723–1746. https://doi.org/10.1130/B31714.1
    [Google Scholar]
  7. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3d seismic data. Marine and Petroleum Geology, 26, 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  8. Carvajal, C., Paull, C. K., Caress, D. W., Fildani, A., Lundsten, E., Anderson, K., … Herguera, J. C. (2017). Unraveling the channel‐lobe transition zone with high‐resolution AUV bathymetry: Navy fan, offshore Baja California, Mexico. Journal of Sedimentary Research, 87, 1049–1059. https://doi.org/10.2110/jsr.2017.58
    [Google Scholar]
  9. Clark, J. D., & Pickering, K. T. (1996). Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG Bulletin, 80, 194–221.
    [Google Scholar]
  10. Collier, R. E. L., & Dart, C. J. (1991). Neogene to quaternary rifting, sedimentation and uplift in the Corinth Basin, Greece. Journal of the Geological Society, London, 148, 1049–1065. https://doi.org/10.1144/gsjgs.148.6.1049
    [Google Scholar]
  11. Cowie, P. A., Gupta, S., & Dawers, N. H. (2000). Implications of Fault Array Evolution for Synrift Depocentre Development: Insights from a Numerical Fault Growth Model. Basin Research, 12, 241–261. https://doi.org/10.1046/j.1365-2117.2000.00126.x
    [Google Scholar]
  12. Dasgupta, P. (2003). Sediment gravity flow ‐ the conceptual problems. Earth‐Science Reviews, 62, 265–281. https://doi.org/10.1016/S0012-8252(02)00160-5
    [Google Scholar]
  13. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O’Byrne, C. (2007). Migration‐aggradation history and 3‐D seismic geomorphology of submarine channels in the pleistocene benin‐major canyon, western niger delta slope. Marine and Petroleum Geology, 24, 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    [Google Scholar]
  14. di Celma, C. N., Brunt, R. L., Hodgson, D. M., Flint, S. S., & Kavanagh, J. P. (2011). Spatial and temporal evolution of a permian submarine slope channel‐levee system, karoo basin, South Africa. Journal of Sedimentary Research, 81, 579–599. https://doi.org/10.2110/jsr.2011.49
    [Google Scholar]
  15. Fabuel‐Pérez, I., Hodgetts, D., & Redfern, J. (2009). A new approach for outcrop characterization and geostatistical analysis of a low‐sinuosity fluvial‐dominated succession using digital outcrop models: Upper Triassic Oukaimeden Sandstone Formation, Central High Atlas, Morocco. AAPG Bulletin, 93, 795–827. https://doi.org/10.1306/02230908102
    [Google Scholar]
  16. Ferentinos, G., Papatheodorou, G., & Collins, M. B. (1988). Sediment transport processes on an active submarine fault escarpment: Gulf of Corinth, Greece. Marine Geology, 83, 43–61. https://doi.org/10.1016/0025-3227(88)90051-5
    [Google Scholar]
  17. Fildani, A., Hubbard, S. M., Covault, J. A., Maier, K. L., Romans, B. W., Traer, M., & Rowland, J. C. (2013). Erosion at inception of deep‐sea channels. Marine and Petroleum Geology, 41, 48–61. https://doi.org/10.1016/j.marpetgeo.2012.03.006
    [Google Scholar]
  18. Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malartre, F. (2013). Tectono‐sedimentary evolution of the western corinth rift (Central Greece). Basin Research, 25, 3–25. https://doi.org/10.1111/j.1365-2117.2012.00550.x
    [Google Scholar]
  19. Frey Martinez, J., Cartwright, J., & Hall, B. (2005). 3d seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17, 83–108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
    [Google Scholar]
  20. Frey‐Martínez, J., Cartwright, J., & James, D. (2006). Frontally confined versus frontally emergent submarine landslides: A 3d seismic characterisation. Marine and Petroleum Geology, 23, 585–604. https://doi.org/10.1016/j.marpetgeo.2006.04.002
    [Google Scholar]
  21. Gawthorpe, R. L., Andrews, J. E., Collier, R. E. L., Ford, M., Henstra, G. A., Kranis, H., … Skourtsos, E. (2017). Building up or Out? disparate sequence architectures along an active rift margin—corinth rift, Greece. Geology, 45, 1111–1114. https://doi.org/10.1130/G39660.1
    [Google Scholar]
  22. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  23. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., … Stamatakis, M. (2017). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift, Greece. Basin Research, 30, 448–479. https://doi.org/10.1111/bre.12260
    [Google Scholar]
  24. Ge, Z., Nemec, W., Gawthorpe, R. L., & Hansen, E. W. M. (2017). Response of unconfined turbidity current to normal‐fault topography. Sedimentology, 64, 932–959. https://doi.org/10.1111/sed.12333
    [Google Scholar]
  25. Ge, Z., Nemec, W., Gawthorpe, R. L., Rotevatn, A., & Hansen, E. W. M. (2018). Response of unconfined turbidity current to relay‐ramp topography: insights from process‐based numerical modelling. Basin Research, 30, 321–343. https://doi.org/10.1111/bre.12255
    [Google Scholar]
  26. Gee, M. J. R., & Gawthorpe, R. L. (2006). Submarine channels controlled by salt tectonics: Examples from 3d seismic data offshore angola. Marine and Petroleum Geology, 23, 443–458. https://doi.org/10.1016/j.marpetgeo.2006.01.002
    [Google Scholar]
  27. Gee, M. J. R., Gawthorpe, R. L., Bakke, K., & Friedmann, S. J. (2007). Seismic geomorphology and evolution of submarine channels from the angolan continental margin. Journal of Sedimentary Research, 77, 433–446. https://doi.org/10.2110/jsr.2007.042
    [Google Scholar]
  28. Haughton, P. D. W. (2000). Evolving turbidite systems on a deforming basin floor, tabernas, Se Spain. Sedimentology, 47, 497–518. https://doi.org/10.1046/j.1365-3091.2000.00293.x
    [Google Scholar]
  29. Henstra, G. A., Grundvåg, S.‐A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., … Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The wollaston forland group, east Greenland. Marine and Petroleum Geology, 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
    [Google Scholar]
  30. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2010). Normal‐fault development during two phases of non‐coaxial extension: An experimental study. Journal of Structural Geology, 32, 1656–1667. https://doi.org/10.1016/j.jsg.2009.07.007
    [Google Scholar]
  31. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2011). How do the properties of a pre‐existing normal‐fault population influence fault development during a subsequent phase of extension?Journal of Structural Geology, 33, 1312–1324. https://doi.org/10.1016/j.jsg.2011.06.010
    [Google Scholar]
  32. Hodgetts, D. (2009). LiDAR in the environmental sciences: Geological applications. In G.Heritage, & A.Large (Eds.), Laser scanning for the environmental sciences (pp. 165–179). Oxford: Wiley‐Blackwell.
    [Google Scholar]
  33. Hodgson, D. M., Flint, S. S., Hodgetts, D., Drinkwater, N. J., Johannessen, E. P., & Luthi, S. M. (2006). Stratigraphic evolution of fine‐grained submarine fan systems, Tanqua Depocenter, Karoo Basin, South Africa. Journal of Sedimentary Research, 76, 20–40. https://doi.org/10.2110/jsr.2006.03
    [Google Scholar]
  34. Hodgson, D. M., & Haughton, P. D. W. (2004) Impact of syndepositional faulting on gravity current behaviour and deep‐water stratigraphy: Tabernas‐sorbas Basin, Se Spain. In: S. A.Lomas & P.Joseph (Eds.), Confined turbidite systems (pp. 135–158), Geological Society, London, Special Publications, 222.
    [Google Scholar]
  35. Hubbard, S. M., Covault, J. A., Fildani, A., & Romans, B. W. (2014). Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep‐sea processes from outcrop. Geological Society of America Bulletin, 126, 857–871. https://doi.org/10.1130/B30996.1
    [Google Scholar]
  36. Hubbard, S. M., Romans, B. W., & Graham, S. A. (2008). Deep‐water foreland basin deposits of the cerro Toro formation, Magallanes Basin, Chile: Architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333–1359. https://doi.org/10.1111/j.1365-3091.2007.00948.x
    [Google Scholar]
  37. Jackson, C. A. L., Larsen, E., Hanslien, S., & Tjemsland, A. E. (2011). Controls on Synrift turbidite deposition on the hanging wall of the south Viking graben, North Sea rift system, offshore Norway. AAPG Bulletin, 95, 1557–1587. https://doi.org/10.1306/01031110037
    [Google Scholar]
  38. Janocko, M., Nemec, W., Henriksen, S., & Warchoł, M. (2013). The diversity of deep‐water sinuous channel belts and slope valley‐fill complexes. Marine and Petroleum Geology, 41, 7–34. https://doi.org/10.1016/j.marpetgeo.2012.06.012
    [Google Scholar]
  39. Johnson, S. D., Flint, S. S., Hinds, D., & de Ville Wickens, H., (2001). Anatomy, geometry and sequence stratigraphy of basin floor to slope turbidite systems, Tanqua Karoo, South Africa. Sedimentology, 48, 987–1023. https://doi.org/10.1046/j.1365-3091.2001.00405.x
    [Google Scholar]
  40. Kane, I. A., Catterall, V., McCaffrey, W. D., & Martinsen, O. J. (2010). Submarine channel response to Intrabasinal Tectonics: The influence of lateral tilt. AAPG Bulletin, 94, 189–219. https://doi.org/10.1306/08180909059
    [Google Scholar]
  41. Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and deposition of thick massive sands. Sedimentology, 42, 607–616.
    [Google Scholar]
  42. Koutsouveli, A., Mettos, A., Tsapralis, V., Tsaila‐Monopoli, S., & Ioakim, C. (1989). Geological map of Greece: 1:50,000. Xylokastro Sheet: IGME Publications, Athens, Greece.
    [Google Scholar]
  43. Leeder, M. R., Collier, R. E. L., Abdul Aziz, L. H., Trout, M., Ferentinos, G., Papatheodorou, G., & Lyberis, E. (2002). Tectono‐sedimentary processes along an active marine/lacustrine half‐graben margin: Alkyonides Gulf, E. Gulf of Corinth. Greece. Basin Research, 14, 25–41. https://doi.org/10.1046/j.1365-2117.2002.00164.x
    [Google Scholar]
  44. Leeder, M. R., & Gawthorpe, R. L. (1987) Sedimentary models for extensional tilt‐block/half‐graben basins. In: M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental Extensional Tectonics (pp. 139–152), Geological Society, London, Special Publications, Vol. 28.
    [Google Scholar]
  45. Leeder, M. R., Mack, G. H., Brasier, A. T., Parrish, R. R., McIntosh, W. C., Andrews, J. E., & Duermeijer, C. E. (2008). Late‐pliocene timing of corinth (Greece) rift‐margin fault migration. Earth and Planetary Science Letters, 274, 132–141. https://doi.org/10.1016/j.epsl.2008.07.006
    [Google Scholar]
  46. Leeder, M. R., Mark, D. F., Gawthorpe, R. L., Kranis, H., Loveless, S., Pedentchouk, N., … Stamatakis, M. (2012). A "Great Deepening": Chronology of Rift Climax, Corinth Rift, Greece. Geology, 40, 999–1002. https://doi.org/10.1130/G33360.1
    [Google Scholar]
  47. Leeder, M. R., Portman, C., Andrews, J. E., Collier, R. E. L., Finch, E., Gawthorpe, R. L., … Rowe, P. J. (2005). Normal faulting and crustal deformation, Alkyonides Gulf and perachora peninsula, eastern gulf of corinth rift, Greece. Journal of the Geological Society, London, 162, 549–561. https://doi.org/10.1144/0016-764904-075
    [Google Scholar]
  48. Leppard, C. W., & Gawthorpe, R. L. (2006). Sedimentology of rift climax deep water systems; Lower rudeis formation, hammam faraun fault block, Suez Rift. Egypt. Sedimentary Geology, 191, 67–87. https://doi.org/10.1016/j.sedgeo.2006.01.006
    [Google Scholar]
  49. Lewis, K. B. (1971). Slumping on a continental slope inclined at 1°‐ 4°. Sedimentology, 16, 97–110.
    [Google Scholar]
  50. Li, P., Kneller, B. C., Hansen, L., & Kane, I. A. (2016). The classical turbidite outcrop at san clemente, California Revisited: An example of sandy submarine channels with asymmetric facies architecture. Sedimentary Geology, 346, 1–16. https://doi.org/10.1016/j.sedgeo.2016.10.001
    [Google Scholar]
  51. Lucente, C. C., & Pini, G. A. (2003). Anatomy and emplacement mechanism of a large submarine slide within a Miocene Foredeep in the Northern Apennines, Italy: A field perspective. American Journal of Science, 303, 565–602. https://doi.org/10.2475/ajs.303.7.565
    [Google Scholar]
  52. Maier, K. L., Brothers, D. S., Paull, C. K., McGann, M., Caress, D. W., & Conrad, J. E. (2017). Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated Auv and Rov Data, Offshore Palos Verdes, Southern California Borderland. Marine Geology, 393, 47–66. https://doi.org/10.1016/j.margeo.2016.10.001
    [Google Scholar]
  53. Maier, K. L., Roland, E. C., Walton, M. A. L., Conrad, J. E., Brothers, D. S., Dartnell, P., & Kluesner, J. W. (2018). The tectonically controlled san gabriel channel‐lobe transition zone, Catalina Basin, Southern California Borderland. Journal of Sedimentary Research, 88, 942–959. https://doi.org/10.2110/jsr.2018.50
    [Google Scholar]
  54. McArthur, A. D., Kneller, B. C., Wakefield, M. I., Souza, P. A., & Kuchle, J. (2016). Palynofacies classification of the depositional elements of confined turbidite systems: examples from the Gres D'annot, Se France. Marine and Petroleum Geology, 77, 1254–1273. https://doi.org/10.1016/j.marpetgeo.2016.08.020
    [Google Scholar]
  55. Moernaut, J., & de Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285, 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
    [Google Scholar]
  56. Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawan, A., & Wanganan, N. (2004). Activation of rift oblique and rift parallel pre‐existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand. Journal of Structural Geology, 26, 1803–1829. https://doi.org/10.1016/j.jsg.2004.02.014
    [Google Scholar]
  57. Morris, E. A., Hodgson, D. M., Brunt, R. L., & Flint, S. S. (2014). Origin, evolution and anatomy of silt‐prone submarine external levées. Sedimentology, 61, 1734–1763. https://doi.org/10.1111/sed.12114
    [Google Scholar]
  58. Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the South and Equatorial Atlantic Ocean. Earth‐Science Reviews, 98, 1–37. https://doi.org/10.1016/j.earscirev.2009.08.001
    [Google Scholar]
  59. Muravchik, M., Bilmes, A., D'Elia, L., & Franzese, J. R. (2014). Alluvial fan deposition along a rift depocentre border from the neuquén basin, Argentina. Sedimentary Geology, 301, 70–89. https://doi.org/10.1016/j.sedgeo.2013.12.007
    [Google Scholar]
  60. Muravchik, M., Gawthorpe, R. L., Sharp, I. R., Rarity, F., & Hodgetts, D. (2018). Sedimentary environment evolution in a marine hangingwall dipslope setting. El Qaa Fault Block, Suez Rift. Egypt. Basin Research, 30, 452–478. https://doi.org/10.1111/bre.12231
    [Google Scholar]
  61. Normark, W. R. (1978). Fan valleys, channels, and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments. AAPG Bulletin, 62, 912–931.
    [Google Scholar]
  62. Normark, W. R., Piper, D. J. W., & Hess, G. R. (1979). Distributary channels, sand lobes, and mesotopography of navy submarine fan, California borderland, with applications to ancient fan sediments. Sedimentology, 26, 749–774. https://doi.org/10.1111/j.1365-3091.1979.tb00971.x
    [Google Scholar]
  63. Nøttvedt, A., Berge, A. M., Dawers, N. H., Færseth, R. B., Häger, K. O., Mangerud, G., & Puigdefabregas, C. (2000). Syn‐rift evolution and resulting play models in the Snorre‐H area, northern North Sea. Geological Society, London, Special Publications, 167, 179–218.
    [Google Scholar]
  64. Oluboyo, A. P., Gawthorpe, R. L., Bakke, K., & Hadler‐Jacobsen, F. (2014). Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola. Basin Research, 26, 597–620. https://doi.org/10.1111/bre.12051
    [Google Scholar]
  65. Papatheodorou, G., & Ferentinos, G. (1993). Sedimentation processes and basin‐filling depositional architecture in an active asymmetric graben: Strava graben, Gulf of Corinth, Greece. Basin Research, 5, 235–253. https://doi.org/10.1111/j.1365-2117.1993.tb00069.x
    [Google Scholar]
  66. Pemberton, E. A. L., Hubbard, S. M., Fildani, A., Romans, B., & Stright, L. (2016). The stratigraphic expression of decreasing confinement along a deep‐water sediment routing system: Outcrop example from southern Chile. Geosphere, 12, 114–134. https://doi.org/10.1130/GES01233.1
    [Google Scholar]
  67. Pe‐Piper, G., & Koukouvelas, I. (1990). Petrology and geochemistry of granitic pebbles in the pliocene fluvial deposits of the northwest peloponesse (Greece) and their regional significance. Neues Jahrbuch Für Mineralogie ‐ Abhandlungen, 161, 327–343.
    [Google Scholar]
  68. Pe‐Piper, G., & Koukouvelas, I. (1992). Petrology, geochemistry and regional significance of igneous clasts pebbles in parnassos flysch, amphissa area, greece. Neues Jahrbuch Für Mineralogie ‐ Abhandlungen, 164, 94–112.
    [Google Scholar]
  69. Pe‐Piper, G., & Piper, D. J. W. (1991). Early mesozoic oceanic subduction‐related volcanic rocks, Pindos Basin, Greece. Tectonophysics, 192, 273–292. https://doi.org/10.1016/0040-1951(91)90104-Z
    [Google Scholar]
  70. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  71. Prélat, A., & Hodgson, D. M. (2013). The Full Range of Turbidite Bed Thickness Patterns in Submarine Lobes: Controls and Implications. Journal of the Geological Society, 170, 209–214. https://doi.org/10.1144/jgs2012-056
    [Google Scholar]
  72. Prélat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: a high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154. https://doi.org/10.1111/j.1365-3091.2009.01073.x
    [Google Scholar]
  73. Rarity, F., van Lanen, X. M. T., Hodgetts, D., Gawthorpe, R. L., Wilson, P., Fabuel‐Pérez, I., & Redfern, J. (2014) Lidar‐Based Digital Outcrops for Sedimentological Analysis: Workflows and Techniques. In: A. W.Martinius, J. A.Howell, & T. R.Good (Eds.), Sediment‐Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface (pp. 153–183), Geological Society, London, Special Publications, Vol. 387.
    [Google Scholar]
  74. Ravnås, R., Nøttvedt, A., Steel, R. J., & Windelstad, J. (2000) Syn‐rift sedimentary architectures in the Northern North Sea. In: A.Nøttvedt (Ed.), Dynamics of the Norwegian Margin, Geological Society, London, Special Publication, Vol. 167, 133–177.
    [Google Scholar]
  75. Ravnås, R., & Steel, R. J. (1997). Contrasting styles of late jurassic syn‐rift turbidite sedimentation: A comparative study of the magnus and oseberg areas, Northern North Sea. Marine and Petroleum Geology, 14, 417–449. https://doi.org/10.1016/S0264-8172(97)00010-X
    [Google Scholar]
  76. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  77. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic architecture of the plio‐pleistocene infill of the corinth rift: implications for its structural evolution. Tectonophysics, 440, 5–28. https://doi.org/10.1016/j.tecto.2006.11.006
    [Google Scholar]
  78. Skourtsos, E., Kranis, H., Zambetakis‐Lekkas, A., Gawthorpe, R. L., & Leeder, M. (2016). Alpine basement outcrops at northern peloponnesus: implications for the early stages in the evolution of the corinth rift. Bulletin of the Geological Society of Greece, 50, 153–163. https://doi.org/10.12681/bgsg.11714
    [Google Scholar]
  79. Smith, D. P., & Busby, C. J. (1993). Mid‐Cretaceous crustal extension recorded in deep‐marine half‐graben fill, Cedros Island, Mexico. Geological Society of America Bulletin, 105, 547–562. https://doi.org/10.1130/0016-7606(1993)105<0547:MCCERI>2.3.CO;2
    [Google Scholar]
  80. Sohn, Y. K. (2000). Depositional processes of submarine debris flows in the Miocene fan deltas, pohang basin, se korea with special reference to flow transformation. Journal of Sedimentary Research, 70, 491–503. https://doi.org/10.1306/2DC40922-0E47-11D7-8643000102C1865D
    [Google Scholar]
  81. Sohn, Y. K., Kim, S. B., Hwang, I. G., Bahk, J. J., Choe, M. Y., & Chough, S. K. (1997). Characteristics and depositional processes of large‐scale gravelly gilbert‐type foresets on the Miocene doumsan fan delta, pohang basin, Se Korea. Journal of Sedimentary Research, 67, 130–141.
    [Google Scholar]
  82. Spychala, Y. T., Hodgson, D. M., Stevenson, C. J., & Flint, S. S. (2017). Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns. Sedimentology, 64, 582–608. https://doi.org/10.1111/sed.12315
    [Google Scholar]
  83. Steckler, M. S., Berthelot, F., Lyberis, N., & le Pichon, X. (1988). Subsidence in the gulf of suez: implications for rifting and plate kinematics. Tectonophysics, 153, 249–270. https://doi.org/10.1016/0040-1951(88)90019-4
    [Google Scholar]
  84. Stevenson, C. J., Jackson, C. A. L., Hodgson, D. M., Hubbard, S. M., & Eggenhuisen, J. T. (2015). Deep‐water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081. https://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  85. Strachan, L. J., Rarity, F., Gawthorpe, R. L., Wilson, P., Sharp, I. R., & Hodgetts, D. (2013). Submarine slope processes in rift‐margin basins, Miocene Suez Rift. Egypt. Geological Society of America Bulletin, 125, 109–127. https://doi.org/10.1130/B30665.1
    [Google Scholar]
  86. Sumner, E. J., Talling, P. J., Amy, L. A., Wynn, R. B., Stevenson, C. J., & Frenz, M. (2012). Facies architecture of individual basin‐plain turbidites: comparison with existing models and implications for flow processes. Sedimentology, 59, 1850–1887. https://doi.org/10.1111/j.1365-3091.2012.01329.x
    [Google Scholar]
  87. Symons, W. O., Sumner, E. J., Paull, C. K., Cartigny, M. J. B., Xu, J. P., Maier, K. L., … Talling, P. J. (2017). A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon. Geology, 45, 367–370. https://doi.org/10.1130/G38764.1
    [Google Scholar]
  88. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59, 1937–2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
    [Google Scholar]
  89. Tataris, A., Maragoudakis, N., Kounis, G., Christodoulou, G., & Tsaila‐Monopoli, S. (1970). Geological map of Greece: 1:50,000. Nemea Sheet: IGME Publications, Athens, Greece.
    [Google Scholar]
  90. Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 1315–1333. https://doi.org/10.1111/j.1365-246X.2009.04137.x
    [Google Scholar]
  91. Tsoflias, P., Fleury, J. J., & Ioakim, C. (1993). Geological map of Greece: 1:50,000. Derveni Sheet: IGME Publications, Athens, Greece.
    [Google Scholar]
  92. Winn, R. D., & Dott, R. H. (1979). Deep‐water fan‐channel conglomerates of late cretaceous age, Southern Chile. Sedimentology, 26, 203–228. https://doi.org/10.1111/j.1365-3091.1979.tb00351.x
    [Google Scholar]
  93. Wynn, R. B., Kenyon, N. H., Masson, D. G., Stow, D. A. V., & Weaver, P. P. E. (2002). Characterization and recognition of deep‐water channel‐lobe transition zones. AAPG Bulletin, 86, 1441–1462.
    [Google Scholar]
  94. Zhang, X., & Scholz, C. A. (2015). Turbidite systems of lacustrine rift basins: Examples from the Lake Kivu and Lake Albert rifts, East Africa. Sedimentary Geology, 325, 177–191. https://doi.org/10.1016/j.sedgeo.2015.06.003
    [Google Scholar]
  95. Zhang, X., Scholz, C. A., Hecky, R. E., Wood, D. A., Zal, H. J., & Ebinger, C. J. (2014). Climatic control of the late Quaternary turbidite sedimentology of Lake Kivu, East Africa: Implications for deep mixing and geologic hazards. Geology, 42, 811–814. https://doi.org/10.1130/G35818.1
    [Google Scholar]
  96. Ziegler, P. A., & Cloethingh, S. (2004). Dynamic processes controlling evolution of Rifted Basins. Earth‐Science Reviews, 64, 1–50. https://doi.org/10.1016/S0012-8252(03)00041-2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12423
Loading
/content/journals/10.1111/bre.12423
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error