1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

The Laplace Bjerg exhumed hydrocarbon trap in East Greenland. Superb exposures of both this fault bounded horst and the tilted fault block of the Mols Bjerge have allowed detailed mapping to be carried out. Both of these exhumed hydrocarbon traps were sealed, at depth, by mudstones, which blanketed much of East Greenland. The identification of pyrobitumen, resulting in a dark staining in the sandstones, has allowed the distribution of the palaeohydocarbon accumulation to be assessed and intra reservoir compartmentalisation by thick, mature calcretes to be recognised. Palynological analysis has determined a Triassic age for the main reservoir units providing evidence for a further potential play in the North Atlantic petroleum system.

, Abstract

Previous work has demonstrated the presence of a number of exhumed hydrocarbon traps in central East Greenland. Re‐evaluation of the stratigraphy alongside detailed investigation of the occurrence of bitumen within the Mols Bjerge and Laplace Bjerg exhumed hydrocarbon traps provides new perspectives on these structures, as well as the petroleum geology of East Greenland and the wider North Atlantic. Sedimentological and stratigraphic studies, augmented with palynological and provenance investigations, have constrained the dating and correlation of the strata exposed in the Mols Bjerge and Laplace Bjerg. Petrographic analysis, alongside analysis of the bitumen identified, has highlighted a much wider distribution of hydrocarbon than previously recognized. It was previously considered that Jurassic strata formed the main reservoir interval within the Mols Bjerge and Laplace Bjerg exhumed hydrocarbon traps. It is shown here that the reservoir intervals in the Laplace Bjerg trap lie within the Late Triassic Ørsted Dal and Vega Sund members, which contain up to 18% pyrobitumen and were previously misidentified as Jurassic. The Jurassic Bristol Elv Formation is the most extensively bitumen stained unit in the Mols Bjerge trap. However, occurrences of pyrobitumen (up to 3%) are recorded throughout the Triassic stratigraphy, including the Early Triassic Wordie Creek Formation. Faults, thick calcrete development and regionally continuous mudstone units play an important role in compartmentalizing the palaeohydrocarbon accumulations.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12424
2020-09-26
2024-03-29
Loading full text...

Full text loading...

References

  1. Andrews, S. D., & Decou, A. (2019). The Triassic of Traill Ø and Geographical Society Ø, East Greenland: Implications for North Atlantic palaeogeography. Geological Journal, 54(4), 2124–2144. https://doi.org/10.1002/gj.3287
    [Google Scholar]
  2. Andrews, S. D., Kelly, S. R. A., Braham, W., & Kaye, M. (2014). Climatic and eustatic controls on the development of a Late Triassic source rock in the Jameson Land Basin, East Greenland. Journal of the Geological Society, 171(5), 609–619.
    [Google Scholar]
  3. Beitler, B., Chan, M. A., & Parry, W. T. (2003). Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants?Geology, 31(12), 1041–1044.
    [Google Scholar]
  4. Birkelund, T., & Callomon, J. H. (1985). The Kimmeridgian ammonite faunas of Milne Land, central East Greenland. Grønlands Geologiske Undersøgelse, Bulletin, 153, 1–56.
    [Google Scholar]
  5. Bjerager, M., Seidler, L., Stemmerik, L., & Surlyk, F. (2006). Ammonoid stratigraphy and sedimentary evolution across the Permian‐Triassic boundary in East Greenland. Geological Magazine, 143, 635–656.
    [Google Scholar]
  6. Brethes, A., Guarnieri, P., Rasmussen, T. M., & Bauer, T. E. (2018). Interpretation of aeromagnetic data in the Jameson Land Basin, central East Greenland: Structures and related mineralized systems. Tectonophysics, 724, 116–136. https://doi.org/10.1016/j.tecto.2018.01.008
    [Google Scholar]
  7. Brown, J. F., Astin, T. R., & Marshall, J. E. (2019). The Paleozoic petroleum system in the north of Scotland–outcrop analogues. Geological Society, London, Special Publications, 471(1), 253–280.
    [Google Scholar]
  8. Caby, R. (1972). Preliminary results of mapping in the Caledonian rocks of Canning Land and Wegener Halvo, East Greenland. Grønlands Geologisk Undersøgelse Rapport, 48, 21–37.
    [Google Scholar]
  9. Callomon, J. H. (1993). The ammonite succession in the Middle Jurassic of East Greenland. Bulletin of the Geological Society of Denmark, 40, 83–113.
    [Google Scholar]
  10. Clemmensen, L. B. (1980a). Triassic lithostratigraphy of East Greenland between Scoresby Sund and Kejser Franz Josephs Fjord. Grønlands Geologiske Undersøgelse, Bulletin, 139, 1–56.
    [Google Scholar]
  11. Clemmensen, L. B. (1980b). Triassic rift sedimentation and palaeogeography of central East Greenland. Grønlands Geologiske Undersøgelse, Bulletin, 136, 1–72.
    [Google Scholar]
  12. Curiale, J. A. (1986). Origin of solid bitumens, with emphasis on biological marker results. Organic Geochemistry, 10, 559–580.
    [Google Scholar]
  13. Decou, A., Andrews, S. D., Alderton, D. H. M., & Morton, A. C. (2016). Triassic to Early Jurassic climatic trends recorded in the Jameson Land Basin, East Greenland: Clay mineralogy, petrography and heavy mineralogy. Basin Research, 29(5), 658–673.
    [Google Scholar]
  14. Donovan, D. T. (1949). Observations on the Mesozoic rocks of Geographical Society Ø, East Greenland. Meddelelser Om Grønland, 149(5), 1–14.
    [Google Scholar]
  15. Donovan, D. T. (1954). Upper Cretaceous fossils from Traill and Geographical Society Øer, East Greenland. Meddelelser Om Grønland, 71(6), 1–33.
    [Google Scholar]
  16. Donovan, D. T. (1955). The stratigraphy of the Jurassic and Cretaceous rocks of Geographical Society Ø, East Greenland. Meddelelser Om Grønland, 103(9), 1–60.
    [Google Scholar]
  17. Donovan, D. T. (1957). The Jurassic and Cretaceous systems in East Greenland. Meddelelser Om Grønland, 155(4), 1–214.
    [Google Scholar]
  18. Engkilde, M., & Surlyk, F. (2003). Shallow marine syn‐rift sedimentation: Middle Jurassic Pelion Formation, Jameson Land, East Greenland. In J. R.Ineson & F.Surlyk (Eds.), The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 813–863.
    [Google Scholar]
  19. Guarnieri, P., Brethes, A., & Rasmussen, T. M. (2017). Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland). Tectonics, 36(4), 602–614. https://doi.org/10.1002/2016TC004419
    [Google Scholar]
  20. Hillier, S., & Marshall, J. (1988). A rapid technique to make polished thin sections of sedimentary organic matter concentrates. Journal of Sedimentary Petrology, 58, 754–755.
    [Google Scholar]
  21. Hochuli, P. A., Colin, J. P., & Vigran, J. O. (1989). Triassic biostratigraphy of the Barents Sea area.In J. D.Collinson (Ed.) Correlation in hydrocarbon exploration (pp. 131–153). London, UK: Graham & Trotman (for the Norwegian Petroleum Society).
    [Google Scholar]
  22. Huc, A. Y., Nederlof, P., Debarre, R., Carpentier, B., Boussafir, M., Laggoun‐Défarge, F., … Bordas‐Le Floch, N. (2000). Pyrobitumen occurrence and formation in a Cambro‐Ordovician sandstone reservoir, Fahud Salt Basin, North Oman. Chemical Geology, 168(1), 99–112.
    [Google Scholar]
  23. Jacobsen, V., & van Veen, P. (1984). The Triassic offshore Norway north of 62°N. In A. M.Spencer, E.Holter, S. O.Johnsen, A.Mork, E.Nysether, P.Songstad, & A.Spinnangr (Eds.), Petroleum geology of the North European margin (pp. 317–327). London, UK: Graham and Trotman.
    [Google Scholar]
  24. Kelly, S. R. A., Gregory, F. J., Braham, B., Strogen, D. P., & Whitham, A. G. (2015). Towards an integrated Jurassic biostratigraphy for eastern Greenland. Volumina Jurassica, 13(1), 43–64.
    [Google Scholar]
  25. Kelly, S. R. A., Whitham, A. G., Koraini, M. A., & Price, S. P. (1998). Lithostratigraphy of the Cretaceous (Barremian ‐ Santonian) Hold with Hope Group, North East Greenland. Journal of the Geological Society, London, 155, 993–1008.
    [Google Scholar]
  26. Kürschner, W. M., & Herngreen, G. W. (2010). Triassic palynology of central and northwestern Europe: A review of palynofloral diversity patterns and biostratigraphic subdivisions. Geological Society, London, Special Publications, 334(1), 263–283.
    [Google Scholar]
  27. Marcussen, C., Christiansen, F. G., Larsen, P. H., Olsen, H., Piasecki, L., Stemmerik, J., … Nøhr‐Hansen, H. (1987). Studies of the onshore hydrocarbon potential in East Greenland 1986–87: Field work from 72° to 74°N. Grønlands Geologiske Undersøgelse, Rapport, 135, 72–81.
    [Google Scholar]
  28. Morton, A. C. (2012). Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada Short Course Series, 42, 133–165.
    [Google Scholar]
  29. Morton, A. C., & Hallsworth, C. R. (1994). Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90, 241–256. https://doi.org/10.1016/0037-0738(94)90041-8
    [Google Scholar]
  30. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1–4), 3–29. https://doi.org/10.1016/S0037-0738(98)00118-3
    [Google Scholar]
  31. Müller, R., Nystuen, J. P., Eide, F., & Lie, H. (2005).Late Permian to Triassic basin infill history and palaeogeography of the Mid‐Norwegian shelf – East Greenland Region. In B. T. G.Wandås, J. P.Nystuen, E. A.Eide, & F. M.Gradstein (Eds.), Onshore‐offshore relationships on the North Atlantic Margin. NPF Special Publication, 12, 165–189.
    [Google Scholar]
  32. Parsons, A. J., Whitham, A. G., Kelly, S. R. A., Vautravers, B. P. H., Dalton, T. J. S., Andrews, S. D., … Gregory, F. J. (2017). Structural evolution and basin architecture of the Traill Ø region, NE Greenland: A record of polyphase rifting of the East Greenland continental margin. Geosphere, 13(3), 733–770. https://doi.org/10.1130/GES01382.1
    [Google Scholar]
  33. Perch‐Nielsen, K., Birkenmajer, K., Birkelund, T., & Aellen, M. (1974). Revision of the Triassic stratigraphy of the Scoresby Land and the Jameson Land region, East Greenland. Grønlands Geologiske Undersøgelse, Bulletin, 109, 1–51.
    [Google Scholar]
  34. Price, S. P., Brodie, J. A., Whitham, A. G., & Kent, R. (1997). Mid‐Tertiary rifting and magmatism in the Traill Ø region, East Greenland. Journal of the Geological Society, London, 154, 419–434.
    [Google Scholar]
  35. Price, S. P., & Whitham, A. G. (1997). Exhumed hydrocarbon traps in East Greenland: Analogs for the Lower‐Middle Jurassic play of NW Europe. Bulletin of the American Association of Petroleum Geologists, 81, 196–221.
    [Google Scholar]
  36. Schamel, S. (2016). Sunnyside oil sands at Bruin Point, Southwest Uinta Basin, Utah.AAPG annual convention and exhibition.
  37. Seidler, L. (2000). Incised submarine canyons governing new evidence of Early Triassic rifting in East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 161, 267–293.
    [Google Scholar]
  38. Seidler, L., Steel, R., Stemmerik, L., & Surlyk, F. (2004). North Atlantic marine rifting in the Early Triassic: New evidence from East Greenland. Journal of the Geological Society of London, 161(4), 583–592.
    [Google Scholar]
  39. Strogen, D. P. (1999). Diagenesis of Middle to Upper Jurassic sandstones, East Greenland.Unpublished PhD Thesis, University of Reading.
  40. Strogen, D. P., Burwood, R., & Whitham, A. G. (2005).Sedimentology and geochemistry of Late Jurassic organic‐rich shelfal mudstones from East Greenland: Regional and stratigraphic variations in source‐rock quality. In A. G.Doré & B.Vining (Eds.), Petroleum geology: North‐west Europe and global perspective – Proceedings of the 6th Petroleum Geology Conference. Geological Society of London, 6(1), 903–912.
    [Google Scholar]
  41. Surlyk, F. (1977a). Mesozoic faulting in East Greenland. Geologie En Mijnbouw, 56(4), 311–327.
    [Google Scholar]
  42. Surlyk, F. (1977b). Stratigraphy, tectonics and palaeogeography of the Jurassic sediments of the areas north of Kong Oscars Fjord, East Greenland. Grønlands Geologiske Undersøgelse, Bulletin, 123, 1–56.
    [Google Scholar]
  43. Surlyk, F. (1978). Submarine fan sedimentation along fault scarps on tilted fault blocks (Jurassic‐Cretaceous boundary, East Greenland). Grønlands Geologiske Undersøgelse, Bulletin, 128, 1–108.
    [Google Scholar]
  44. Surlyk, F. (1990).Timing, style and sedimentary evolution of Late Palaeozoic‐Mesozoic extensional basins of East Greenland. In R. P. F.Hardman & J.Brooks (Eds.), Tectonic events responsible for Britain's oil and gas reserves. Geological Society Special Publication, 55, 107–125.
    [Google Scholar]
  45. Surlyk, F. (2003).The Jurassic of East Greenland: A sedimentary record of thermal subsidence, onset and culmination of rifting. In J. R.Ineson, & F.Surlyk (Eds.), The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 659–720.
    [Google Scholar]
  46. Surlyk, F., & Ineson, J. R. (2003). The Jurassic of Denmark and Greenland: key elements in the reconstruction of the North Atlantic Jurassic rift system. Geological Survey of Denmark and Greenland Bulletin, 1, 9–20.
    [Google Scholar]
  47. Therkelsen, J., & Surlyk, F. (2004).The fluviatile Bristol Elv Formation, a new Middle Jurassic lithostratigraphical unit from Traill Ø, East Greenland. In L.Stemmerik & S.Stouge (Eds.), The Jurassic of North‐East Greenland. Geological Survey of Denmark and Greenland Bulletin, 5, 19–30.
    [Google Scholar]
  48. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence. New York, NY: Springer‐Verlag.
    [Google Scholar]
  49. Vigran, J., Mangerud, G., Mørk, A., Worsley, D., & Hochuli, P. A. (2014). Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Geological Survey of Norway, Special Publication, 14, 1–270.
    [Google Scholar]
  50. Whitham, A. G., Price, S. P., Koraini, A. M., & Kelly, S. R. A. (1999). Cretaceous (post‐Valanginian) sedimentation and rift events in the NE Greenland (71°‐77°N).In A.Fleet & S.Boldy (Eds). Petroleum geology of Northwest Europe: Proceedings of the 5th Conference. Geological Society of London, 5, 325–336.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12424
Loading
/content/journals/10.1111/bre.12424
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error