1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

Sketch view of the study area showing the warping of Pleistocene sediments. Provenance analysis show a dispersal of sediment consistent with flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes.

, Abstract

Subsurface deformation is a driver for river path selection when deformation rates become comparable to the autogenic mobility rate of rivers. Here we combine geomorphology, soil and sediment facies analyses, and geophysical data of the Late Quaternary sediments of the central Garo‐Rajmahal Gap in Northwest Bengal to link subsurface deformation with surface processes. We show variable sedimentation characteristics, from slow rates (<0.8 mm/year) in the Tista megafan at the foot of the Himalaya to nondeposition at the exposed surface of the Barind Tract to the south, enabling the development of mature soils. Combined subsidence in the Tista fan and uplift of the Barind Tract are consistent with a N‐S flexural response of the Indian plate to loading of the Himalaya Mountains given a low value of elastic thickness (15–25 km). Provenance analysis based on bulk strontium concentration suggests a dispersal of sediment consistent with this flexural deformation—in particular the abandonment of the Barind Tract by a Pleistocene Brahmaputra River and the current extents of the Tista megafan lobes. Overall, these results highlight the control by deeply rooted deformation patterns on the routing of sediment by large rivers in foreland settings.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12425
2020-09-26
2024-04-16
Loading full text...

Full text loading...

References

  1. Abrahami, R., Huyghe, P., van der Beek, P., Lowick, S., Carcaillet, J., & Chakraborty, T. (2018). Late Pleistocene‐Holocene development of the tista megafan (West Bengal, India): 10Be cosmogenic and IRSL age constraints. Quaternary Science Reviews, 185, 69–90. https://doi.org/10.1016/j.quascirev.2018.02.001
    [Google Scholar]
  2. Abrahami, R., van der Beek, P., Huyghe, P., Hardwick, E., & Carcaillet, J. (2016). Decoupling of long‐term exhumation and short‐term erosion rates in the Sikkim Himalaya. Earth and Planetary Science Letters, 433, 76–88. https://doi.org/10.1016/j.epsl.2015.10.039
    [Google Scholar]
  3. Alam, M. (1989). Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeography, Palaeoclimatology, Palaeoecology, 69, 125–139. https://doi.org/10.1016/0031-0182(89)90159-4
    [Google Scholar]
  4. Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R., & Gani, M. R. (2003). An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin‐fill history. Sedimentary Geology, 155(3–4), 179–208. https://doi.org/10.1016/S0037-0738(02)00180-X
    [Google Scholar]
  5. Alam, M. K., Hasan, A. K. M. S., Rahman Khan, M., & Whitney, J. W. (1990). Geological map of Bangladesh. Bangladesh: Geological Survey of Bangladesh.
    [Google Scholar]
  6. Amorosi, A., Bruno, L., Cleveland, D. M., Morelli, A., & Hong, W. (2017). Paleosols and associated channel‐belt sand bodies from a continuously subsiding late Quaternary system (Po Basin, Italy): New insights into continental sequence stratigraphy. Geological Society of America Bulletin, 129(3–4), 449–463. https://doi.org/10.1130/B31575.1
    [Google Scholar]
  7. Berthet, T., Hetényi, G., Cattin, R., Sapkota, S. N., Champollion, C., Kandel, T., … Bonnin, M. (2013). Lateral uniformity of India Plate strength over central and eastern Nepal. Geophysical Journal International, 195(3), 1481–1493. https://doi.org/10.1093/gji/ggt357
    [Google Scholar]
  8. Bilham, R., Bendick, R., & Wallace, K. (2003). Flexure of the Indian plate and intraplate earthquakes. Journal of Earth System Science, 112(3), 315–329. https://doi.org/10.1007/BF02709259
    [Google Scholar]
  9. Blum, M., Martin, J., Milliken, K., & Garvin, M. (2013). Paleovalley systems: Insights from Quaternary analogs and experiments. Earth‐Science Reviews, 116, 128–169. https://doi.org/10.1016/j.earscirev.2012.09.003
    [Google Scholar]
  10. Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., & Peyrefitte, A., Vales, N., … Sarrailh, M. (2012). World gravity map, 1: 50000000 map. Eds. BGI‐CGMW‐CNES‐IRD, Paris.
  11. Brammer, H. (2012). Physical geography of Bangladesh. Dhaka, Bangladesh: The University Press Ltd.
    [Google Scholar]
  12. Bristow, C., Smith, N., & Rogers, J. (1999). Gradual avulsion, river metamorphosis and reworking by underfit streams: A modern example from the Brahmaputra River in Bangladesh and a possible ancient example in the Spanish Pyrenees. Fluvial Sedimentology VI, 28, 221e230.
    [Google Scholar]
  13. Bufe, A., Paola, C., & Burbank, D. W. (2016). Fluvial bevelling of topography controlled by lateral channel mobility and uplift rate. Nature Geoscience, 9(9), 706. https://doi.org/10.1038/ngeo2773
    [Google Scholar]
  14. Burbank, D. W. (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680. https://doi.org/10.1038/357680a0
    [Google Scholar]
  15. Catuneanu, O., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., … Tucker, M. E. (2010). Thematic Set: Sequence stratigraphy: Common ground after three decades of development. First Break, 28(1), 41–54. https://doi.org/10.3997/1365-2397.2010002
    [Google Scholar]
  16. Chakraborty, T., & Ghosh, P. (2010). The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Geomorphology, 115(3–4), 252–266. https://doi.org/10.1016/j.geomorph.2009.06.035
    [Google Scholar]
  17. Chatanantavet, P., Lamb, M. P., & Nittrouer, J. A. (2012). Backwater controls of avulsion location on deltas. Geophysical Research Letters, 39(1). https://doi.org/10.1029/2011GL050197
    [Google Scholar]
  18. Clark, M. K., & Bilham, R. (2008). Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth and Planetary Science Letters, 269(3–4), 337–351. https://doi.org/10.1016/j.epsl.2008.01.045
    [Google Scholar]
  19. DeCelles, P. G. (2012). Foreland basin systems revisited: Variations in response to tectonic settings, in. In C.Busby & A.Azor Pérez (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 405–426). Chichester, UK: John Wiley & Sons.
    [Google Scholar]
  20. Densmore, A. L., Sinha, R., Sinha, S., Tandon, S., & Jain, V. (2016). Sediment storage and release from Himalayan piggyback basins and implications for downstream river morphology and evolution. Basin Research, 28(4), 446–461. https://doi.org/10.1111/bre.12116
    [Google Scholar]
  21. Diehl, T., Singer, J., Hetényi, G., Grujic, D., Clinton, J., Giardini, D., & Kissling, E. (2017). Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation. Earth and Planetary Science Letters, 471, 54–64. https://doi.org/10.1016/j.epsl.2017.04.038
    [Google Scholar]
  22. Duroy, Y., Farah, A., & Lillie, R. (1989). Sub‐surface densities and lithospheric flexure of the Himalayan foreland in Pakistan, Tectonics of the Western Himalayas. Special Papers – Geological Society of America, 232, 217–236.
    [Google Scholar]
  23. Galy, A., & France‐Lanord, C. (2001). Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology, 29(1), 23–26. https://doi.org/10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2
    [Google Scholar]
  24. Ganti, V., Chadwick, A. J., Hassenruck‐Gudipati, H. J., Fuller, B. M., & Lamb, M. P. (2016). Experimental river delta size set by multiple floods and backwater hydrodynamics. Science Advances, 2(5), e1501768. https://doi.org/10.1126/sciadv.1501768
    [Google Scholar]
  25. Garzanti, E., Andò, S., France‐Lanord, C., Vezzoli, G., Censi, P., Galy, V., & Najman, Y. (2010). Mineralogical and chemical variability of fluvial sediments: 1. Bedload sand (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299(3–4), 368–381. https://doi.org/10.1016/j.epsl.2010.09.017
    [Google Scholar]
  26. Goodbred, S. L. (2003). Response of the Ganges dispersal system to climate change: A source‐to‐sink view since the last interstade. Sedimentary Geology, 162, 83–104. https://doi.org/10.1016/S0037-0738(03)00217-3
    [Google Scholar]
  27. Goodbred, S. L., & Kuehl, S. A. (2000). The Significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges‐Brahmaputra delta. Sedimentary Geology, 133, 227–248. https://doi.org/10.1016/S0037-0738(00)00041-5
    [Google Scholar]
  28. Goodbred, S. L., Kuehl, S. A., Steckler, M. S., & Sarker, M. H. (2003). Controls on facies distribution and stratigraphic preservation in the Ganges‐Brahmaputra delta sequence. Sedimentary Geology, 155(3–4), 301–316. https://doi.org/10.1016/S0037-0738(02)00184-7
    [Google Scholar]
  29. Goodbred, S. L., Paolo, P. M., Ullah, M. S., Pate, R. D., Khan, S. R., Kuehl, S. A., … Rahaman, W. (2014). Piecing together the Ganges‐Brahmaputra‐Meghna River delta: Use of sediment provenance to reconstruct the history and interaction of multiple fluvial systems during Holocene delta evolution. Geological Society of America Bulletin, 126(11–12), 1495–1510. https://doi.org/10.1130/B30965.1
    [Google Scholar]
  30. Govin, G., Najman, Y., Copley, A., Millar, I., van der Beek, P., Huyghe, P., … Davenport, J. (2018). Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland. Geology, 46(3), 279–282. https://doi.org/10.1130/G39864.1
    [Google Scholar]
  31. Grall, C., Steckler, M. S., Goodbred, S. L., Pickering, J. L., Sincavage, R., Paola, C., … Spiess, V. (2018). A base‐level stratigraphic approach to determining Holocene subsidence of the Gange‐Meghna‐Brahmaputra Delta Plain. Earth and Planetary Science Letter, 499, 23–36.
    [Google Scholar]
  32. Grimaud, J.‐L., Chardon, D., Metelka, V., Beauvais, A., & Bamba, O. (2015). Neogene cratonic erosion fluxes and landform evolution processes from regional regolith mapping (Burkina Faso, West Africa). Geomorphology, 241, 315–330. https://doi.org/10.1016/j.geomorph.2015.04.006
    [Google Scholar]
  33. Grimaud, J.‐L., Paola, C., & Ellis, C. (2017). Competition between uplift and transverse sedimentation in an experimental delta. Journal of Geophysical Research: Earth Surface, 122(7), 1339–1354. https://doi.org/10.1002/2017JF004239
    [Google Scholar]
  34. Gupta, S. (1997). Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin. Geology, 25(1), 11–14. https://doi.org/10.1130/0091-7613(1997)025<0011:HDPATO>2.3.CO;2
    [Google Scholar]
  35. Hajek, E. A., & Straub, K. M. (2017). Autogenic sedimentation in clastic stratigraphy. Annual Review of Earth and Planetary Sciences, 45, 681–709. https://doi.org/10.1146/annurev-earth-063016-015935
    [Google Scholar]
  36. Hammer, P., Berthet, T., Hetényi, G., Cattin, R., Drukpa, D., Chophel, J., … Doerflinger, E. (2013). Flexure of the India plate underneath the Bhutan Himalaya. Geophysical Research Letters, 40(16), 4225–4230. https://doi.org/10.1002/grl.50793
    [Google Scholar]
  37. Hartley, A. J., Weissmann, G. S., & Scuderi, L. (2016). Controls on the apex location of large deltas. Journal of the Geological Society, 174(1), 10–13. https://doi.org/10.1144/jgs2015-154
    [Google Scholar]
  38. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16(6), 501–504. https://doi.org/10.1130/0091-7613(1988)016<0501:TPSMOF>2.3.CO;2
    [Google Scholar]
  39. Holbrook, J. M., & Schumm, S. A. (1999). Geomorphic and sedimentary response of rivers to tectonic deformation: A brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics, 305, 287–306. https://doi.org/10.1016/S0040-1951(99)00011-6
    [Google Scholar]
  40. Hoque, M. A., McArthur, J. M., & Sikdar, P. K. (2014). Sources of low‐arsenic groundwater in the Bengal Basin: Investigating the influence of the last glacial maximum palaeosol using a 115‐km traverse across Bangladesh. Hydrogeology Journal, 22, 1535–1547. https://doi.org/10.1007/s10040-014-1139-8
    [Google Scholar]
  41. Humphrey, N. F., & Konrad, S. K. (2000). River incision or diversion in response to bedrock uplift. Geology, 28(1), 43–46. https://doi.org/10.1130/0091-7613(2000)028<0043:RIODIR>2.3.CO;2
    [Google Scholar]
  42. Jerolmack, D. J. (2009). Conceptual framework for assessing the response of delta channel networks to Holocene sea level rise. Quaternary Science Reviews, 28(17–18), 1786–1800. https://doi.org/10.1016/j.quascirev.2009.02.015
    [Google Scholar]
  43. Jordan, T. A., & Watts, A. B. (2005). Gravity anomalies, flexure and the elastic thickness structure of the India‐Eurasia collisional system. Earth and Planetary Science Letters, 236(3), 732–750. https://doi.org/10.1016/j.epsl.2005.05.036
    [Google Scholar]
  44. Khan, A. S. (2001). Morphological changes due to construction of a barrage on the Teesta river. Master thesis.Bangladesh University of Engineering and Technology, Dhaka.
  45. Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: Their geologic applications. Earth‐Science Reviews, 47(1–2), 41–70. https://doi.org/10.1016/S0012-8252(99)00026-4
    [Google Scholar]
  46. Lupker, M., France‐Lanord, C., Galy, V., Lavé, J., & Kudrass, H. (2013). Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth and Planetary Science Letters, 365, 243–252. https://doi.org/10.1016/j.epsl.2013.01.038
    [Google Scholar]
  47. Mack, G. H., James, W. C., & Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105(2), 129–136. https://doi.org/10.1130/0016-7606(1993)105<0129:COP>2.3.CO;2
    [Google Scholar]
  48. McArthur, J. M., Nath, B., Banerjee, D. M., Purohit, R., & Grassineau, N. (2011). Palaeosol control on groundwater flow and pollutant distribution: The example of arsenic. Environmental Science & Technology, 45(4), 1376–1383. https://doi.org/10.1021/es1032376
    [Google Scholar]
  49. Mitra, S., Priestley, K., Kajaljyoti, B., & Gaur, V. (2018). Crustal structure and evolution of the eastern Himalayan plate boundary system. Northeast India, Journal of Geophysical Research: Solid Earth, 123(1), 621–640. https://doi.org/10.1002/2017JB014714
    [Google Scholar]
  50. Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal basin, East Pakistan and India. Geological Society of America Bulletin, 70(3), 319–342. https://doi.org/10.1130/0016-7606(1959)70[319:QGOTBB]2.0.CO;2
    [Google Scholar]
  51. Mukhopadhyay, M., & Dasgupta, S. (1988). Deep structure and tectonics of the Burmese arc: Constraints from earthquake and gravity data. Tectonophysics, 149(3–4), 299–322. https://doi.org/10.1016/0040-1951(88)90180-1
    [Google Scholar]
  52. Najman, Y., Bracciali, L., Parrish, R. R., Chisty, E., & Copley, A. (2016). Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth and Planetary Sciences Letters, 433, 1–9. https://doi.org/10.1016/j.epsl.2015.10.017
    [Google Scholar]
  53. Norman, P. (1992). Evaluation of the Barapukuria coal deposit NW Bangladesh. Geological Society, London, Special Publications, 63(1), 107–120. https://doi.org/10.1144/GSL.SP.1992.063.01.10
    [Google Scholar]
  54. Pattison, S. A. J. (2018). Using classic outcrops to revise sequence stratigraphic models: Reevaluating the Campanian Desert Member (Blackhawk Formation) to lower Castlegate Sandstone interval, Book Cliffs, Utah and Colorado, USA. Geology, 47(1), 11–14. https://doi.org/10.1130/G45592.1
    [Google Scholar]
  55. Pickering, J. L., Diamond, M. S., Goodbred, S. L., Grall, C., Martin, J. M., Palamenghi, L., … Spiess, V. (2019). Impact of glacial‐lake paleofloods on valley development since glacial termination II: A conundrum of hydrology and scale for the lowstand Brahmaputra‐Jamuna paleovalley system. GSA Bulletin, 131(1–2), 58–70. https://doi.org/10.1130/B31941.1
    [Google Scholar]
  56. Pickering, J. L., Goodbred, S. L., Beam, J. C., Ayers, J. C., Covey, A. K., Rajapara, H. M., & Singhvi, A. K. (2017). Terrace formation in the upper Bengal basin since the Middle Pleistocene: Brahmaputra fan delta construction during multiple highstands. Basin Research, 30(1), 550–567. https://doi.org/10.1111/bre.12236
    [Google Scholar]
  57. Pickering, J. L., Goodbred, S. L., Reitz, M. D., Hartzog, T. R., Mondal, D. R., & Hossain, M. S. (2014). Late Quaternary sedimentary record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain. Geomorphology, 227, 123–136. https://doi.org/10.1016/j.geomorph.2013.09.021
    [Google Scholar]
  58. Posamentier, H., & Allen, G. (1993). Siliciclastic sequence stratigraphic patterns in foreland, ramp‐type basins. Geology, 21(5), 455–458. https://doi.org/10.1130/0091-7613(1993)021<0455:SSSPIF>2.3.CO;2
    [Google Scholar]
  59. Rashid, B., Sultan‐Ul‐islam, M., & Islam, B. (2015). Evidences of neo‐tectonic activities as reflected by drainage characteristics of the Mahananda river floodplain and its adjoining areas, Bangladesh. American Journal of Earth Sciences, 2(4), 61–70.
    [Google Scholar]
  60. Reitz, M. D., Jerolmack, D. J., & Swenson, J. B. (2010). Flooding and flow path selection on alluvial fans and deltas. Geophysical Research Letters, 37(6). https://doi.org/10.1029/2009GL041985
    [Google Scholar]
  61. Reitz, M. D., Pickering, J. L., Goodbred, S. L., Paola, C., Steckler, M. S., Seeber, L., & Akhter, S. H. (2015). Effects of tectonic deformation and sea level on river path selection: Theory and application to the Ganges‐Brahmaputra‐Meghna River Delta. Journal of Geophysical Research: Earth Surface, 120, 671–689. https://doi.org/10.1002/2014JF003202
    [Google Scholar]
  62. Roddaz, M., Viers, J., Brusset, S., Baby, P., & Hérail, G. (2005). Sediment provenances and drainage evolution of the Neogene Amazonian foreland basin. Earth and Planetary Science Letters, 239(1–2), 57–78. https://doi.org/10.1016/j.epsl.2005.08.007
    [Google Scholar]
  63. Steckler, M. S., Grall, C., Grimaud, J. L., Seeber, L., Betka, P. M., Akhter, S. H., … Lavier, L. L. (2018, December). Sinuous track of the flexural bulge in the eastern Himalayas and Bengal Basin from multiple loads on a variable rigidity plate, an explanation for the Barind and Madhupur Pleistocene uplands. In AGU Fall Meeting Abstracts.
  64. Sincavage, R., Goodbred, S. L., & Pickering, J. L. (2018). Holocene Brahmaputra River path selection and variable sediment bypass as indicators of fluctuating hydrologic and climate conditions in Sylhet Basin, Bangladesh. Basin Research, 30(2), 302–320. https://doi.org/10.1111/bre.12254
    [Google Scholar]
  65. Sincavage, R. S., Paola, C., & Goodbred, S. L. (2019). Coupling mass extraction and downstream fining with fluvial facies changes across the Sylhet basin of the Ganges‐Brahmaputra‐Meghna Delta. Journal of Geophysical Research: Earth Surface, 124(2), 400–413. https://doi.org/10.1029/2018JF004840
    [Google Scholar]
  66. Singh, A., Bhushan, K., Singh, C., Steckler, M. S., Akhter, S. H., Seeber, L., … Biswas, R. (2016). Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions. Tectonophysics, 680, 99–112. https://doi.org/10.1016/j.tecto.2016.04.046
    [Google Scholar]
  67. Singh, S. K., & France‐Lanord, C. (2002). Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth and Planetary Science Letters, 202(3–4), 645–662. https://doi.org/10.1016/S0012-821X(02)00822-1
    [Google Scholar]
  68. Singh, S. K., Santosh, K. R., & Krishnaswami, S. (2008). Sr and Nd isotopes in river sediments from the Ganga Basin: Sediment provenance and spatial variability in physical erosion. Journal of Geophysical Research, 113(F03006), 18. https://doi.org/10.1029/2007JF000909
    [Google Scholar]
  69. Sinha, R., & Friend, P. F. (1994). River systems and their sediment flux, Indo‐Gangetic plains, Northern Bihar, India. Sedimentology, 41(4), 825–845. https://doi.org/10.1111/j.1365-3091.1994.tb01426.x
    [Google Scholar]
  70. Slingerland, R., & Smith, N. D. (2004). River avulsions and their deposits. Annual Review of Earth and Planetary Sciences, 32, 257–285.
    [Google Scholar]
  71. Soil Survey Staff
    Soil Survey Staff . (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (869pp.). Washington, D.C.: US Department of Agriculture.
    [Google Scholar]
  72. Spiess, V., Schwenk, T., Palamenghi, L., Goodbred, S. L., Steckler, M. S., Seeber, L., … Khan, S. R. (2012, December). Subsurface deformation in the Gangetic plain‐first results from the BrahmaSeis multichannel seismic survey on Bangladesh Rivers. In AGU Fall Meeting Abstracts.
  73. Steckler, M. S., Akhter, S. H., & Seeber, L. (2008). Collision of the Ganges‐Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth and Planetary Science Letters, 273(3–4), 367–378. https://doi.org/10.1016/j.epsl.2008.07.009
    [Google Scholar]
  74. Targulian, V., & Krasilnikov, P. (2007). Soil system and pedogenic processes: Self‐organization, time scales, and environmental significance. Catena, 71(3), 373–381. https://doi.org/10.1016/j.catena.2007.03.007
    [Google Scholar]
  75. Vail, P. R., Mitchum, R.Jr., & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level: Part 3. Relative changes of sea level from Coastal Onlap: section 2. Application of seismic reflection Configuration to Stratigrapic Interpretation.
  76. van Dijk, W. M., Densmore, A. L., Singh, A., Gupta, S., Sinha, R., Mason, P. J., … Rai, S. P. (2016). Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej‐Yamuna plain of northwest India. Journal of Geophysical Research: Earth Surface, 121(2), 201–222. https://doi.org/10.1002/2015JF003720
    [Google Scholar]
  77. Vernant, P., Bilham, R., Szeliga, W., Drupka, D., Kalita, S., Bhattacharyya, A. K., … Berthet, T. (2014). Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. Journal of Geophysical Research: Solid Earth, 119(8), 6558–6571.
    [Google Scholar]
  78. Watts, A., Zhong, S., & Hunter, J. (2013). The behavior of the lithosphere on seismic to geologic timescales. Annual Review of Earth and Planetary Sciences, 41, 443–468. https://doi.org/10.1146/annurev-earth-042711-105457
    [Google Scholar]
  79. Wiedicke, M., Kudrass, H.‐R., & Hübscher, C. (1999). Oolitic beach barriers of the last Glacial sea‐level lowstand at the outer Bengal shelf. Marine Geology, 157(1–2), 7–18. https://doi.org/10.1016/S0025-3227(98)00162-5
    [Google Scholar]
  80. Wilson, C. A., & Goodbred, S. L. (2015). Construction and maintenance of the Ganges‐Brahmaputra‐Meghna delta: Linking process, morphology, and stratigraphy. Annual Review of Marine Science, 7, 67–88. https://doi.org/10.1146/annurev-marine-010213-135032
    [Google Scholar]
  81. Wright, V. P., & Marriott, S. B. (1993). The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sedimentary Geology, 86(3–4), 203–210. https://doi.org/10.1016/0037-0738(93)90022-W
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12425
Loading
/content/journals/10.1111/bre.12425
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): geophysics; river; sediment routing; tectonics; weathering

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error