1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[

Essential error of widely used geometric mean mixing rule for rock thermal conductivity estimation inferred from experiments as one of pitfalls of basin modelling.

, Abstract

Basin and petroleum systems are routinely modelled to provide qualitative and quantitative assessments of a hydrocarbon play. The importance of the rock thermal properties and heat flow density in thermal modelling the history of a basin are well‐known, but little attention is paid to assumptions of the thermal conductivity, present‐day heat flow density and thermal history of basins. Assumed values are often far from measured values when data are available to check parameters, and effective thermal conductivity models prescribed in many basin simulators require improvement. The reconstructed thermal history is often justified by a successful calibration to present‐day temperature and vitrinite reflectance data. However, a successful calibration does not guarantee that the reconstruction history is correct. In this paper, we describe the pitfalls in setting the thermal conductivity and heat flow density in basin models and the typical uncertainties in these parameters, and we estimate the consequences by means of a one‐dimensional model of the super‐deep Tyumen SG‐6 well area that benefits from large amounts of reliable input and calibration data. The results show that the entire approach to present‐day heat flow evaluations needs to be reassessed. Unreliable heat flow density data along with a lack of measurements of rock thermal properties of cores can undermine the quality of basin and petroleum system modelling.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12427
2020-09-26
2024-04-18
Loading full text...

Full text loading...

References

  1. Asaad, Y. (1955). A study of the thermal conductivity of fluid bearing porous rocks. PhD dissertation. Berkeley, CA: University of California.
    [Google Scholar]
  2. Athy, L. F. (1930). Density, porosity and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  3. Babushkin, A. E., Devyatov, V. P., Grigor'yev, N. V., Gurari, F. G., Kazakov, A. M., Shatskiy, S. B., … Surkov, V. S. (1995). West Siberia in late Maastrichtian. In V. S.Surkov (Ed.), Atlas of paleotectonic and paleogeographical‐landscape maps of hydrocarbon provinces of Siberia. Geneva, Switzerland: Petroconsultants S.A. IES.
    [Google Scholar]
  4. Batalin, O., & Vafina, N. (2017). Condensation mechanism of hydrocarbon field formation. Scientific Reports, 7, 10253. https://doi.org/10.1038/s41598-017-10585-7
    [Google Scholar]
  5. Baur, F., Scheirer, A. H., & Peters, K. E. (2018). Past, present, and future of basin and petroleum system modeling. AAPG Bulletin, 102(4), 549–561. https://doi.org/10.1306/08281717049
    [Google Scholar]
  6. Blackwell, D. D., & Steele, J. L. (1989). Thermal conductivity of rocks: Measurement and significance. In N. D.Naeser & T. H.McCullohet (Eds.), Thermal history of sedimentary basins: Methods and case histories (pp. 13–36). New York, NY: Springer.
    [Google Scholar]
  7. Bogoyavlenskiy, V. I., & Polyakova, I. D. (2012). Prospects for the oil and gas potential of large depths in the South Kara region (in Russian). Arctic: Ecology and Economy, 3(7), 92–103.
    [Google Scholar]
  8. Chekhonin, E., Peshkov, G., Myasnikov, A., Rupke, L., Podladchikov, Y., Musikhin, K., …Kostenko, O. (2017). Automated thermal history reconstruction of basin in West Siberia using 2D inverse modeling. Proc. Geomodel‐2017 (in Russian with English abstract). https://doi.org/10.3997/2214-4609.201702248
  9. Cherepanova, Y., Artemieva, I. M., Thybo, H., & Chemia, Z. (2013). Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data. Tectonophysics, 609, 154–183. https://doi.org/10.1016/j.tecto.2013.05.004
    [Google Scholar]
  10. Clauser, C. (2006) Geothermal energy. In: K.Heinloth (Ed.), Landolt‐Börnstein, Group VIII: Advanced materials and technologies (pp. 480–595). Vol. 3(C). “Renewable Energies”. Heidelberg‐Berlin, Germany: Springer Verlag.
    [Google Scholar]
  11. Clauser, C., Giese, P., Huenges, E., Kohl, T. H., Lehmann, H., Rybach, L., … Zoth, G. (1997). The thermal regime of the crystalline continental crust: Implications from the KTB. Journal of Geophysical Research, 102(B8), 18417–18441. https://doi.org/10.1029/96JB03443
    [Google Scholar]
  12. Dobretsov, N. L., Polyanskii, O. P., Reverdatto, V. V., & Babichev, A. V. (2013). Dynamics of the Arctic and adjacent petroleum basins: A record of plume and rifting activity. Russian Geology and Geophysics, 54(8), 888–902. https://doi.org/10.1016/j.rgg.2013.07.009
    [Google Scholar]
  13. Dolzhenko, K. V., Safronov, P. I., Fomin, A. N., & Melenevsky, V. N. (2017). The study of organic matter of the Bazhenov formation and modeling of hydrocarbon generation based on the Tyumen SG‐6 well. Interexpo GEO‐Sibir, 2(1), 106–110. (in Russian with English abstract)
    [Google Scholar]
  14. Duchkov, A. D., Sokolova, L. S., Ayunov, D. E., & Zlobina, O. N. (2013). Thermal conductivity of sediments in high‐latitude West Siberia. Russian Geology and Geophysics, 54, 1522–1528. https://doi.org/10.1016/j.rgg.2013.10.015
    [Google Scholar]
  15. Duran, R. E., Primio, R., Anka, Z., Stoddart, D., & Horsfield, B. (2013). 3D‐basin modelling of the Hammerfest Basin (southwestern Barents Sea): A quantitative assessment of petroleum generation, migration and leakage. Marine and Petroleum Geology, 45, 281–303. https://doi.org/10.1016/j.marpetgeo.2013.04.023
    [Google Scholar]
  16. Emmerman, R., & Lauterjung, J. (1997). The German continental deep drilling program KTB: Overview and major results. Journal of Geophysical Research, 102(B8), 18179–18201. https://doi.org/10.1029/96JB03945
    [Google Scholar]
  17. Ershov, S. V. (2018). Sequence stratigraphy of the Berriassian‐Lower Aptian deposits of West Siberia. Russian Geology and Geophysics, 59(7), 891–904. https://doi.org/10.1016/j.rgg.2018.07.011
    [Google Scholar]
  18. Fadeeva, N. P., Korchagina, Y. I., & Gorbachev, V. I. (1996). Source rocks in the Mesozoic section of the Tyumen superdeep well according to pyrolysis data. In V. B.Mazur (Ed.), Tyumen superdeep well (interval 0–7502 m). Results of drilling and study (pp. 245–253). Perm, Russia: KamNIIKIGS. (in Russian)
    [Google Scholar]
  19. Fjeldskaar, W., Christie, O. H. J., Midttømme, K., Virnovsky, G., Jensen, N. B., Lohne, A., … Balling, N. (2009). On the determination of thermal conductivity of sedimentary rocks and the significance for basin temperature history. Petroleum Geoscience, 15(4), 367–380. https://doi.org/10.1144/1354-079309-814
    [Google Scholar]
  20. Fomin, A., Kontorovich, A., & Krasavchikov, V. (2001). Catagenesis of organic matter and petroleum potential of the Jurassic, Triassic, and Paleozoic deposits in the northern areas of the west Siberian megabasin. Geology and Geophysics, 42(11–12), 1875–1887. (in Russian with English abstract)
    [Google Scholar]
  21. Fonkin, V. E. (1996). The experience of the mass studies of the core of the Tyumen super deep well. In V. B.Mazur (Ed.), Tyumen super deep well (interval 0–7502 m). Results of drilling and study (pp. 70–79). Perm, Russia: KamNIIKIGS. (in Russian)
    [Google Scholar]
  22. Frik, M. G. (1996). Genetic features of organic matter and rock bitumoids in the section of Tyumen super deep well. In V. B.Mazur (Ed.), Tyumen super deep well (interval 0–7502 m). Results of drilling and study (pp. 232–244). Perm, Russia: KamNIIKIGS. (in Russian)
    [Google Scholar]
  23. Fuchs, S., & Balling, N. (2016). Improving the temperature predictions of subsurface thermal models by using high‐quality input data. Part 2: A case study from the Danish‐German border region. Geothermics, 64, 1–14. https://doi.org/10.1016/j.geothermics.2016.04.004
    [Google Scholar]
  24. Fuchs, S., Balling, N., & Förster, A. (2015). Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs. Geophysical Journal International, 203, 1977–2000. https://doi.org/10.1093/gji/ggv403
    [Google Scholar]
  25. Funnell, R., Chapman, D., Allis, R., & Amstrong, P. (1996). Thermal state of the Taranaki Basin, New Zealand. Journal of Geophysical Research, 101, 25197–25215.
    [Google Scholar]
  26. Gallagher, K., & Morrow, D. W. (1998) A novel approach for constraining heat flow histories in sedimentary basins. In S. J.Duppenbecker, & J. E.Iliffe (Eds.), Basin modelling: Practice and progress (pp. 223–239). London, UK: Geological Society Special Publications.
    [Google Scholar]
  27. Gallagher, K., Ramsdale, M., Lonergan, L., & Morrow, D. (1997). The role of thermal conductivity measurements in modelling thermal histories in sedimentary basins. Marine and Petroleum Geology, 14(2), 201–214. https://doi.org/10.1016/S0264-8172(96)00068-2
    [Google Scholar]
  28. Galushkin, Y. I. (1997). Numerical simulation of permafrost evolution as a part of basin modeling: Permafrost in Pliocene‐Holocene climate history of Urengoy field in West Siberian basin. Canadian Journal of Earth Science, 34(7), 935–948. https://doi.org/10.1139/e17-078
    [Google Scholar]
  29. Galushkin, Y. I., Lopatin, N. V., & Emets, T. P. (1996). Numerical modeling of the evolution of the catagenesis of the Jurassic and Triassic deposits. In V. B.Mazur (Ed.), Tyumen super deep well (interval 0–7502 m). Results of drilling and study (pp. 279–286). Perm, Russia: KamNIIKIGS. (in Russian)
    [Google Scholar]
  30. Galushkin, Y. U., Simonenkova, O., & Lopatin, N. (1999). Thermal and maturation modeling of the urengoy field, West Siberian Basin: Some special considerations in basin modeling. AAPG Bulletin, 83(12), 1965–1979.
    [Google Scholar]
  31. Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of basin and petroleum systems modeling (p. 476). Berlin‐Heidelberg, Germany: Springer‐Verlag.
    [Google Scholar]
  32. Hartmann, A., Rath, V., & Clauser, C. (2005). Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences, 42, 1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015
    [Google Scholar]
  33. Hicks, P. J.Jr, Fraticelli, C. M., Shosa, J. D., Hardy, M. J., & Townsley, M. B. (2012). Identifying and quantifying significant uncertainties in basin modeling. In K. E.Peters, D. J.Curry, & M.Kacewicz (Eds.), Basin modeling: New horizons in research and applications (pp. 207–219). Vol. 4. AAPG Hedberg Series. Tulsa, OK: AAPG.
    [Google Scholar]
  34. Karaseva, T. V., Gorbachev, V. I., Keller, M. B., & Ponamorev, V. A. (1996). The main scientific results of the study of the Tyumen Superdeep Well. In V. B.Mazur (Ed.), Tyumen super deep well (interval 0–7502 m). Results of drilling and study (pp. 49–62). Perm, Russia: KamNIIKIGS. (in Russian)
    [Google Scholar]
  35. Kontorovich, A. E., Burshtein, L. M., Malyshev, N. A., Safronov, P. I., Gus'kov, S. A., Ershov, S. V., … Skvortsov, M. B. (2013). Historical‐geological modeling of hydrocarbon generation in the Mesozoic‐Cenozoic sedimentary basin of the Kara Sea (basin modeling). Russian Geology and Geophysics, 54, 917–957. https://doi.org/10.1016/j.rgg.2013.07.011
    [Google Scholar]
  36. Kontorovich, A. E., Kontorovich, V. A., Ryzhkova, S. V., Shurygin, B. N., Vakulenko, L. G., Gaideburova, E. A., … Yan, P. A. (2013). Jurassic paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 54, 747–779. https://doi.org/10.1016/j.rgg.2013.07.002
    [Google Scholar]
  37. Kontorovich, A. E., Nesterov, I. I., Salmanov, F. K., Surkov, V. S., Trofimuk, A. A., & Ervie, Y. G. (1975). Geology of oil and gas in Western Siberia (p. 680). Moscow, Russia: Nedra. (in Russian)
    [Google Scholar]
  38. Kontorovich, A. E., & Surkov, V. S. (2000). Geology and mineral resources of Russia, Vol. 2: Western Siberia (p. 477). St. Petersburg, Russia: VSEGEI. (in Russian)
    [Google Scholar]
  39. Kukkonen, T., Rath, V., Kivekäs, L., Šafanda, J., & Čermak, V. (2011). Geothermal studies of the Outokumpu Deep Drill Hole, Finland: Vertical variation in heat flow and palaeoclimatic implications. Physics of the Earth and Planetary Interiors, 188, 9–25. https://doi.org/10.1016/j.pepi.2011.06.002
    [Google Scholar]
  40. Kurchikov, A. R., & Stavitski, B. P. (1987). Geothermy of oil and gas bearing areas of Western Siberia (p. 134). Moscow, Russia: Nedra. (in Russian)
    [Google Scholar]
  41. Lee, Y., & Deming, D. (1998). Evaluation of thermal conductivity temperature corrections applied in terrestrial heat flow studies. Journal of Geophysical Research, 103(B2), 2447–2454. https://doi.org/10.1029/97JB03104
    [Google Scholar]
  42. Lichteneker, К. (1926). The thermal conductivity of granular materials. Physikalische Zc, 27, 115–118.
    [Google Scholar]
  43. Lopatin, N. V. (2006). Concept of petroleum system plays as integrity tool in exploration. Geoinformatika, 3, 101–120. (in Russian with English abstract)
    [Google Scholar]
  44. Makhous, M., & Galushkin, Y. I. (2005). Basin analysis and modeling of the burial, thermal and maturation histories in sedimentary basins (p. 380). Paris, France: Editions Technip.
    [Google Scholar]
  45. Matava, T., Matt, V., & Flannery, J. (2018). New insights on measured and calculated vitrinite reflectance. Basin Research, 31(2), 213–227. https://doi.org/10.1111/bre.12317
    [Google Scholar]
  46. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012-821x(78)90071-7
    [Google Scholar]
  47. Norden, B., Förster, A., & Balling, N. (2008). Heat Flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics, 460(1–4), 215–229. https://doi.org/10.1016/j.tecto.2008.08.022
    [Google Scholar]
  48. Pasquale, V., Chiozzi, P., Verdoya, M., & Gola, G. (2012). Heat flow in the western Po Basin and the surrounding orogenic belts. Geophysical Journal International, 190, 8–22. https://doi.org/10.1111/j.1365-246x.2012.05486.x
    [Google Scholar]
  49. Pasquale, V., Gola, G., Chiozzi, P., & Verdoya, M. (2011). Thermophysical properties of the Po Basin rocks. Geophysical Journal International, 186(1), 69–81. https://doi.org/10.1111/j.1365-246X.2011.05040.x
    [Google Scholar]
  50. Peterson, J. A., & Clarke, J. W. (1991). Geology and hydrocarbon habitat of the West Siberian Basin. AAPG Studies in Geology, 32, 96.
    [Google Scholar]
  51. Popov, Y., Beardsmore, G., Clauser, C., & Roy, S. (2016). ISRM Suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49(10), 4179–4207. https://doi.org/10.1007/s00603-016-1070-5
    [Google Scholar]
  52. Popov, Y., Parshin, A., Ursegov, S., Taraskin, E., Chekhonin, E., Andrianov, N., …Pimenov, V. (2012). Thermal reservoir simulation: Thermal property data uncertainties and their influence on simulation results. Proc. World Heavy Oil Congress, Aberdeen, Paper WHOC12‐291.
  53. Popov, Y. A., Pevzner, S. L., Pimenov, V. P., & Romushkevich, R. A. (1999). New geothermal data from the Kola superdeep well SG‐3. Tectonophysics, 306(3–4), 345–366. https://doi.org/10.1016/S0040-1951(99)00065-7
    [Google Scholar]
  54. Popov, Y., Popov, E., Chekhonin, E., Spasennykh, M., & Goncharov, A. (2019). Evolution in information on crustal geothermal parameters due to application of advanced experimental basis. IOP Conference Series: Earth and Environmental Science, 249, 012042. https://doi.org/10.1088/1755-1315/249/1/012042
    [Google Scholar]
  55. Popov, Y., Popov, E., Miklashevskiy, D., & Korobkov, D. (2014). New thermal data and challenges of heat flow variations evaluation for basin petroleum exploration. International Petroleum Technology Conference, Paper 18095‐MS, 12 p. https://doi.org/10.2523/iptc-18095-ms
  56. Popov, Y. A., Romushkevich, R. A., & Popov, E. Y. (1996). Thermophysical studies of the rocks in the Tyumen super deep well. In V. B.Mazur (Ed.), Tyumen super deep well (interval 0–7502 m). Results of drilling and study (pp. 163–175). Perm, Russia: KamNIIKIGS. (in Russian)
    [Google Scholar]
  57. Rüpke, L. H., Schmalholz, S. M., Schmid, E. H., & Podladchikov, Y. (2008). Automated thermotectono‐ stratigraphic basin reconstruction: Viking Graben case study. AAPG Bulletin, 92(3), 309–326. https://doi.org/10.1306/11140707009
    [Google Scholar]
  58. Saraev, S. V., Baturina, T. P., Ponomarchuk, V. A., & Travin, A. V. (2009). Permo‐triassic volcanics of the Koltogory‐Urengoi rift of the West Syberian geosyneclise. Russian Geology and Geophysics, 50, 1–14. https://doi.org/10.1016/j.rgg.2008.06.013
    [Google Scholar]
  59. Sass, J. H., Lachenbruch, A. H., Moses, T. H.Jr, & Morgan, P. (1992). Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research, 97, 5017–5030. https://doi.org/10.1029/91jb01504
    [Google Scholar]
  60. Saunders, A. D., England, R. W., Reichow, M. K., & White, R. V. (2005). A mantle plume origin for the Siberian traps: Uplift and extension in the West Siberian Basin, Russia. Lithos, 79(3–4), 407–424. https://doi.org/10.1016/j.lithos.2004.09.010
    [Google Scholar]
  61. Schenk, O., Peters, K., & Burnham, A. (2017). Evaluation of alternatives to Easy%Ro for calibration of basin and petroleum system models. 79th EAGE Conference and Exhibition. https://doi.org/10.3997/2214-4609.201700614
  62. Schon, J. H. (2011). Physical properties of rocks: A workbook. In J.Cubitt (Ed.), Handbook of petroleum exploration and production (p. 494). Vol. 8. Oxford, UK: Elsevier.
    [Google Scholar]
  63. Sekiguchi, K. (1984). A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics, 103, 67–79. https://doi.org/10.1016/0040-1951(84)90075-1
    [Google Scholar]
  64. Somerton, W. H. (1992). Thermal properties and temperature‐related behavior of rock/fluid systems (p. 57). New York, NY: Elsevier.
    [Google Scholar]
  65. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10), 1559–1570. https://doi.org/10.1306/0c9b251f-1710-11d7-8645000102c1865d
    [Google Scholar]
  66. Theissen, S., & Rüpke, L. H. (2010). Feedbacks of sedimentation on crustal heat flow: New insights from the Vøring Basin, Norwegian Sea. Basin Research, 22(6), 976–990. https://doi.org/10.1111/j.1365-2117.2009.00437.x
    [Google Scholar]
  67. Thomsen, R. O. (1998). Aspects of applied basin modelling: Sensitivity analysis and scientific risk. In S. J.Düppenbecker, & J. E.Iliffe (Eds.), Basin modelling: Practice and progress (pp. 209–221). Vol. 141. London, UK: Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1998.141.01.13
    [Google Scholar]
  68. Ulmishek, G. F. (2003). Petroleum Geology and Resources of the West Siberian Basin, Russia. USGS Bull. 2201–G. Denver.
  69. Waples, D. W. (2001). A new model for heat flow in extensional basins: Radiogenicheat, asthenospheric heat, and the McKenzie model. Natural Resources Research, 10(3), 227–238.
    [Google Scholar]
  70. Zimmerman, R. W. (1989). Thermal conductivity of fluid‐saturated rocks. Journal of Petroleum Science and Engineering, 3, 219–227. https://doi.org/10.1016/0920-4105(89)90019-3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12427
Loading
/content/journals/10.1111/bre.12427
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error