1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The architecture of salt diapir‐flank strata (i.e. halokinetic sequences) is controlled by the interplay between volumetric diapiric flux and sediment accumulation. Halokinetic sequences consist of unconformity‐bounded packages of thinned and folded strata formed by drape folding around passive diapirs. They are described by two end‐members: (a) , which are characterized by narrow zones of folding (<200 m) and high taper angles (>70°); and (b) , typified by broad zones of folding (300–1000 m) and low taper angles (<30°). Hooks and wedges stack to form tabular and tapered composite halokinetic sequences (CHS) respectively. CHSs were most thoroughly described from outcrop‐based studies that, although able to capture their high‐resolution facies variations, are limited in describing their 4D variability. This study integrates 3D seismic data from the Precaspian Basin and restorations to examine variations in CHS architecture through time and space along diapirs with variable plan‐form and cross‐sectional geometries. The diapirs consist of curvilinear walls that vary from upright to inclined and locally display well‐developed salt shoulders and/or laterally transition into rollers. CHS are highly variable in both time and space, even along a single diapir or minibasin. A single CHS can transition along a salt wall from tabular to tapered geometries. They can be downturned and exhibit rollover‐synclinal geometries with thickening towards the diapir above salt shoulders. Inclined walls present a greater proportion of tapered CHSs implying an overall greater ratio between sediment accumulation and salt‐rise relatively to vertical walls. In terms of vertical stacking, CHS can present a typical zonation with lower tapered, intermediate tabular and upper tapered CHSs, but also unique patterns where the lower sequences are tabular and transition upward to tapered CHS. The study demonstrates that CHSs are more variable than previously documented, indicating a complex interplay between volumetric salt rise, diapir‐flank geometry, sediment accumulation and roof dimensions.

,

Representative sections illustrating the CHS variability and near‐diapir stratal architecture across two distinct diapir‐flank geometries: (a) inclined diapir flank and (b) vertical diapir.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12428
2020-11-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Banham, S. G., & Mountney, N. P. (2013). Evolution of fluvial systems in salt‐walled mini‐basins: A review and new insights. Sedimentary Geology, 296, 142–166. https://doi.org/10.1016/j.sedgeo.2013.08.010
    [Google Scholar]
  2. Barde, J. P., Chamberlain, P., Galavazi, M., Harwijanto, J., Marsky, J., Gralla, P., & van den Belt, F. (2002a). Sedimentation during halokinesis: Permo‐Triassic reservoirs of the Saigak field, Precaspian basin, Kazakhstan. Petroleum Geoscience, 8(2), 177–187. https://doi.org/10.1144/petgeo.8.2.177
    [Google Scholar]
  3. Barde, J. P., Gralla, P., Harwijanto, J., & Marsky, J. (2002b). Exploration at the eastern edge of the Precaspian basin: Impact of data integration on Upper Permian and Triassic prospectivity. AAPG Bulletin, 86(3), 399–415. https://doi.org/10.1306/61EEDAEE-173E-11D7-8645000102C1865D
    [Google Scholar]
  4. Brunet, M. F., Volozh, Y. A., Antipov, M. P., & Lobkovsky, L. I. (1999). The geodynamic evolution of the Precaspian Basin (Kazakhstan) along a north–south section. Tectonophysics, 313(1–2), 85–106. https://doi.org/10.1016/S0040-1951(99)00191-2
    [Google Scholar]
  5. Duffy, O. B., Fernandez, N., Hudec, M. R., Jackson, M. P., Burg, G., Dooley, T. P., & Jackson, C. A. L. (2017). Lateral mobility of minibasins during shortening: Insights from the SE Precaspian Basin, Kazakhstan. Journal of Structural Geology, 97, 257–276. https://doi.org/10.1016/j.jsg.2017.02.002
    [Google Scholar]
  6. Fernandez, N., Duffy, O. B., Hudec, M. R., Jackson, M. P., Burg, G., Jackson, C. A. L., & Dooley, T. P. (2017). The origin of salt‐encased sediment packages: Observations from the SE Precaspian Basin (Kazakhstan). Journal of Structural Geology, 97, 237–256. https://doi.org/10.1016/j.jsg.2017.01.008
    [Google Scholar]
  7. Fernandez, N., Hudec, M. R., Jackson, C. A. L., Dooley, T. P., & Duffy, O. B. (2019). The competition for salt and kinematic interactions between minibasins during density‐driven subsidence: Observations from numerical models. https://doi.org/10.1144/petgeo2019-051
  8. Giles, K. A., & Lawton, T. F. (2002). Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. AAPG Bulletin, 86(5), 823–840.
    [Google Scholar]
  9. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363(1), 7–31. https://doi.org/10.1144/SP363.2
    [Google Scholar]
  10. Giles, K. A., Rowan, M. G., Langford, R., McFarland, J., & Hearon, T. (2018). Salt Shoulders in AAPG Search and Discovery, AAPG International Conference and Exhibition, London, England.
    [Google Scholar]
  11. Hearon, T. E., Rowan, M. G., Giles, K. A., & Hart, W. H. (2014). Halokinetic deformation adjacent to the deepwater Auger diapir, Garden Banks 470, northern Gulf of Mexico: Testing the applicability of an outcrop‐based model using subsurface data. Interpretation, 2(4), SM57‐SM76. https://doi.org/10.1190/INT-2014-0053.1
    [Google Scholar]
  12. Hudec, M. R., & Jackson, M. P. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1–2), 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  13. Jackson, C. A. L., Duffy, O. B., Fernandez, N., Dooley, T. P., Hudec, M. R., Jackson, M. P., & Burg, G. (2019). The Stratigraphic Record of Minibasin Subsidence, Precaspian Basin. Basin Research: Kazakhstan.
    [Google Scholar]
  14. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  15. Jackson, M. P. A., & Talbot, C. J. (1991). A glossary of salt tectonics. Bureau of Economic Geology. Austin; University of Texas.
    [Google Scholar]
  16. Kergaravat, C., Ribes, C., Legeay, E., Callot, J. P., Kavak, K. S., & Ringenbach, J. C. (2016). Minibasins and salt canopy in foreland fold‐and‐thrust belts: The central Sivas Basin. Turkey. Tectonics, 35(6), 1342–1366. https://doi.org/10.1002/2016TC004186
    [Google Scholar]
  17. Martín‐Martín, J. D., Vergés, J., Saura, E., Moragas, M., Messager, G., Baqués, V., … Hunt, D. W. (2017). Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco). Tectonics, 36(1), 2–32. https://doi.org/10.1002/2016TC004300
    [Google Scholar]
  18. Matthews, W. J., Hampson, G. J., Trudgill, B. D., & Underhill, J. R. (2007). Controls on fluviolacustrine reservoir distribution and architecture in passive salt‐diapir provinces: Insights from outcrop analogs. AAPG Bulletin, 91(10), 1367–1403. https://doi.org/10.1306/05310706123
    [Google Scholar]
  19. McGuinness, D. B., & Hossack, J. R. (1993). The development of allochthonous salt sheets as controlled by the rates of extension, sedimentation, and salt supply. In J. M.Armentrout, R.Bloch, H. C.Olson & B. F.Perkins (Eds.), Rates of geological processes: 14th Annual Gulf Coast Section SEPM Foundation Research Conference, Houston, Texas, December 5–8, 1993 (pp. 127–139). https://doi.org/10.5724/gcs.93.14.0127
    [Google Scholar]
  20. Moragas, M., Vergés, J., Saura, E., Martín‐Martín, J. D., Messager, G., Merino‐Tomé, Ó., … Joussiaume, R. (2018). Jurassic rifting to post‐rift subsidence analysis in the Central High Atlas and its relation to salt diapirism. Basin Research, 30, 336–362. https://doi.org/10.1111/bre.12223
    [Google Scholar]
  21. Natal'in, B. A., & Şengör, A. C. (2005). Late palaeozoic to triassic evolution of the turan and scythian platforms: The pre-history of the Palaeo-Tethyan closure. Tectonophysics, 404(3–4), 175–202.
    [Google Scholar]
  22. Nelson, T. H. (1989). Style of salt diapirs as a function of the stage of evolution and the nature of the encasing sediments. In Gulf Coast Section SEPM Foundation 10th Annual Research Conference Program and Abstracts (pp. 109–110).
  23. Rowan, M. G., Giles, K. A., Hearon, T. E.IV, & Fiduk, J. C. (2016). Megaflaps adjacent to salt diapirs. AAPG Bulletin, 100(11), 1723–1747. https://doi.org/10.1306/05241616009
    [Google Scholar]
  24. Rowan, M. G., Lawton, T. F., Giles, K. A., & Ratliff, R. A. (2003). Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. AAPG Bulletin, 87(5), 733–756. https://doi.org/10.1306/01150302012
    [Google Scholar]
  25. Rowan, M. G., & Ratliff, R. A. (2012). Cross‐section restoration of salt‐related deformation: Best practices and potential pitfalls. Journal of Structural Geology, 41, 24–37. https://doi.org/10.1016/j.jsg.2011.12.012
    [Google Scholar]
  26. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82(5), 1055–1082.
    [Google Scholar]
  27. Saura, E., Vergés, J., Martín‐Martín, J. D., Messager, G., Moragas, M., Razin, P., … Hunt, D. W. (2014). Syn‐to post‐rift diapirism and minibasins of the Central High Atlas (Morocco): The changing face of a mountain belt. Journal of the Geological Society, 171(1), 97–105. https://doi.org/10.1144/jgs2013-079
    [Google Scholar]
  28. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐Mid‐Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711–3739.
    [Google Scholar]
  29. Vendeville, B. C., & Jackson, M. P. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 331–354. https://doi.org/10.1016/0264-8172(92)90047-I
    [Google Scholar]
  30. Volozh, Y. A., Antipov, M. P., Brunet, M. F., Garagash, I. A., Lobkovskii, L. I., & Cadet, J. P. (2003). Pre‐Mesozoic geodynamics of the Precaspian basin (Kazakhstan). Sedimentary Geology, 156(1–4), 35–58. https://doi.org/10.1016/S0037-0738(02)00281-6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12428
Loading
/content/journals/10.1111/bre.12428
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error