1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Chagan Depression in the Yingen‐Ejinaqi Basin, located at the intersection of the Paleo‐Asian Ocean and the Tethys Ocean domains is an important region to gain insights on terrestrial heat flow, lithospheric thermal structure and deep geodynamic processes. Here, we compute terrestrial heat flow values in the Chagan Depression using a large set of system steady‐state temperature data from four representative wells and rock thermal conductivity. We also estimate the “thermal” lithospheric thickness, mantle heat flow, ratio of mantle heat flow to surface heat flow and Moho temperature to evaluate the regional tectonic framework and deep dynamics. The results show that the heat flow in the Chagan Depression ranges from 66.5 to 69.8 mW/m2, with an average value of 68.3 ± 1.2 mW/m2. The Chagan Depression is characterized by a thin “thermal” lithosphere, high mantle heat flow, and high Moho temperature, corresponding to the lithospheric thermal structure of “cold mantle and hot crust” type. We correlate the formation of the Yingen‐Ejinaqi Basin to the Early Cretaceous and Cenozoic subduction of the western Pacific Plate and the Cenozoic multiple extrusions. Our results provide new insights into the thermal structure and dynamics of the lithospheric evolution in central China.

,

System steady‐state temperature data measurements for typical wells in the Chagan Depression.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12430
2020-11-22
2024-09-12
Loading full text...

Full text loading...

References

  1. Alabi, O. O., Akinluyi, F. O., Ojo, M. O., & Adebo, B. A. (2007). Radiogenic heat production of rock from three rivers in Osun state of Nigeria. Journal of Applied Sciences, 7, 1661–1663. https://doi.org/10.3923/jas.2007.1661.1663
    [Google Scholar]
  2. Anderson, D. L. (1995). Lithosphere, asthenosphere, and perisphere. Reviews of Geophysics, 33, 125–149. https://doi.org/10.1029/94RG02785
    [Google Scholar]
  3. Artemieva, I. M. (2006). Global 1°×1° thermal model TC1 for the continental lithosphere Implications for lithosphere secular evolution. Tectonophysics, 416(1–4), 245–277. https://doi.org/10.1016/j.tecto.2005.11.022
    [Google Scholar]
  4. Artemieva, I. M. (2018). Lithosphere structure in Europe from thermal isostasy. Earth‐Science Reviews, 188, 454–468. https://doi.org/10.1016/j.earscirev.2018.11.004
    [Google Scholar]
  5. Artemieva, I. M., & Mooney, W. D. (2001). Thermal structure and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research, 106(B8), 16387–16414.
    [Google Scholar]
  6. Ashchepkov, I. V., Rotman, A. Y., Somov, S. V., Afanasiev, P., Downes, H., Logvinova, A. M., … Vladykin, N. V. (2012). Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola. Tectonophysics, 530, 128–151. https://doi.org/10.1016/j.tecto.2011.12.007
    [Google Scholar]
  7. Barrel, J. (1914). The strength of the Earth’s crust. I. Geologic tests of the limits of strength. Journal of Structural Geology, 22, 28–48.
    [Google Scholar]
  8. Björk, G., & Winsosr, P. (2006). The deep waters of the Eurasian Basin, Arctic Ocean: Geothermal heat flow, mixing and renewal. Deep Sea Research Part I, Oceanographic Research Papers, 53(7), 1253–1271. https://doi.org/10.1016/j.dsr.2006.05.006
    [Google Scholar]
  9. Blackwell, D. D. (1971). The thermal structure of the continental crust. In The structure and physical properties of the earth's crust (Vol. 14, pp. 169–184). Washington, DC: AGU.
    [Google Scholar]
  10. Bullard, E. C. (1939). Heat flow in south Africa. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 173(955), 474–502.
    [Google Scholar]
  11. Chang, J., Qiu, N. S., Liu, S., Cai, C. E., Xu, Q. C., & Liu, N. (2019). Post‐Triassic multiple exhumation of the Taihang Mountains revealed via low‐T thermochronology: Implications for the paleo‐geomorphologic reconstruction of the North China Craton. Gondwana Research, 68, 34–49. https://doi.org/10.1016/j.gr.2018.11.007
    [Google Scholar]
  12. Chen, C. C. (1994). A personal view on rotation drift movement of the Siberia plate. World Regional Studies, 1, 67–71 (in Chinese with English abstract).
    [Google Scholar]
  13. Clowes, R. M. (1997). Lithosprobe phase V proposal‐evolution of a continental revealed.Vancouver: Lithoprobe secretariat. University of British Columbia.
    [Google Scholar]
  14. Cui, Z. Z., Li, Q. S., & Meng, L. S. (1999). Lithospheric structure and deep structure of Gelmud‐Ejinaqi. Beijing: Science Press (in Chinese).
    [Google Scholar]
  15. Dalton, C. A., Bao, X., & Ma, Z. (2017). The thermal structure of cratonic lithosphere from global Rayleigh wave attenuation. Earth and Planetary Science Letters, 457, 250–262. https://doi.org/10.1016/j.epsl.2016.10.014
    [Google Scholar]
  16. Deng, J., Wang, C., Bagas, L., Santosh, M., & Yao, E. (2018). Crustal architecture and metallogenesis in the south‐eastern North China Craton. Earth‐Science Reviews, 182, 251–272. https://doi.org/10.1016/j.earscirev.2018.05.001
    [Google Scholar]
  17. Dérerová, J., Zeyen, H., Bielik, M., & Salman, K. (2006). Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics, 25(3), 1–12. https://doi.org/10.1029/2005TC001883
    [Google Scholar]
  18. Duchkov, A. D. (1991). Review of Siberian Heat Flow Data. In V.Ermák, & P. D. L.Rybach (Eds.), Heat Flow and the Lithosphere Structure (pp. 426–443). Berlin: Springer.
    [Google Scholar]
  19. Duchkov, A. D., & Sokolova, L. S. (1997). Thermal structure of the lithosphere of the Siberian Platform. Russian Geology and Geophysics, 38(2), 528–537.
    [Google Scholar]
  20. Emmerson, B., & McKenzie, D. (2007). Thermal structure and seismicity of subducting lithosphere. Physics of the Earth and Planetary Interiors, 163(1–4), 191–208. https://doi.org/10.1016/j.pepi.2007.05.007
    [Google Scholar]
  21. Fu, D., Huang, B., Peng, S. B., Kusky, T. M., Zhou, W. X., & Ge, M. C. (2016). Geochronology and geochemistry of late Carboniferous volcanic rocks from northern Inner Mongolia, North China: Petrogenesis and tectonic implications. Gondwana Research, 36, 545–560.
    [Google Scholar]
  22. Fuchs, S., & Förster, A. (2013). Well‐log based prediction of thermal conductivity of sedimentary successions: A case study from the North German Basin. Geophysical Journal International, 196(1), 291–311. https://doi.org/10.1093/gji/ggt382
    [Google Scholar]
  23. Fuchs, S., Schütz, F., Förster, H. J., & Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52. https://doi.org/10.1016/j.geothermics.2013.02.002
    [Google Scholar]
  24. Gao, P., & Santosh, M. (2019). Building the Wutai arc: Insights into the Archean – Paleoproterozoic crustal evolution of the North China Craton. Precambrian Research, 333, https://doi.org/10.1016/j.precamres.2019.105429
    [Google Scholar]
  25. Goes, S., Govers, R., & Vacher, P. (2000). Shallow mantle temperatures under Europe from P and S wave tomography. Journal of Geophysical Research, 105(B5), 11153–11169.
    [Google Scholar]
  26. Gong, Y. L., Zhang, H., & Ye, T. F. (2011). Heat flow density in Bohai Bay Basin: Data set compilation and interpretation. Procedia Earth and Planetary Science, 3(2), 212–216. https://doi.org/10.1016/j.proeps.2011.09.034
    [Google Scholar]
  27. Goodge, J. W. (2018). Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet. Cryosphere, 12(2), 491–504.
    [Google Scholar]
  28. Gornov, P. Y., Goroshko, M. V., Malyshev, Y. F., & Podgornyi, V. Y. (2009). Thermal structure of lithosphere in Central Asian and Pacific belts and their adjacent cratons, from data of geoscience transects. Russian Geology and Geophysics, 50(5), 485–499. https://doi.org/10.1016/j.rgg.2008.10.001
    [Google Scholar]
  29. Griffin, W. L., Doyle, B. J., Ryan, C. G., Pearson, N. J., Suzanne, Y. O., Davies, R., … Natapov, L. M. (1999). Layered mantle lithosphere in the Lac de Gras area, Slave Craton: Composition, structure and origin. Journal of Petrology, 40(5), 705–727. https://doi.org/10.1093/petroj/40.5.705
    [Google Scholar]
  30. Guo, Z., Afonso, J. C., Qashqai, M. T., Yang, Y., & Chen, Y. J. (2016). Thermochemical structure of the North China Craton from multi‐observable probabilistic inversion: Extent and causes of cratonic lithosphere modification. Gondwana Research, 37, 252–265. https://doi.org/10.1016/j.gr.2016.07.002
    [Google Scholar]
  31. Gupta, M. L. (1993). Is the Indian Shield hotter than other Gondwana shields?Earth and Planetary Science Letters, 115(1–4), 275–285. https://doi.org/10.1016/0012-821X(93)90227-Z
    [Google Scholar]
  32. Han, W. (2017). Study of sedimentary‐tectonic evolution since Late Paleozoic and its impacts on oil and gas geological conditions of Yin‐E Basin (doctoral dissertation). Xi’an, Northwest University (in Chinese with English abstract).
    [Google Scholar]
  33. He, L. (2015). Thermal regime of the North China Craton: Implications for craton destruction. Earth‐Science Reviews, 140, 14–26. https://doi.org/10.1016/j.earscirev.2014.10.011
    [Google Scholar]
  34. He, L. J., Xiong, L. P., & Wang, J. Y. (1998). The geothermal characteristics in South China Sea. China Offshore Oil and Gas (Geology), 13(2), 87–90 (in Chinese with English abstract).
    [Google Scholar]
  35. He, L. J., & Zhang, L. Y. (2018). Thermal evolution of cratons in China. Journal of Asian Earth Sciences, 164, 237–247. https://doi.org/10.1016/j.jseaes.2018.06.028
    [Google Scholar]
  36. Hu, S., Fu, M., Yang, S., Yuan, Y., & Wang, J. (2007). Palaeogeothermal response and record of Late Mesozoic lithospheric thinning in the eastern North China Craton. Geological Society, London, Special Publications, 280(1), 267–280. https://doi.org/10.1144/SP280.13
    [Google Scholar]
  37. Hu, S. B., He, L. J., & Wang, J. Y. (2000). Heat flow in the continental area of China: A new data set. Earth and Planetary Science Letters, 179, 407–419. https://doi.org/10.1016/S0012-821X(00)00126-6
    [Google Scholar]
  38. Hu, S. B., He, L. J., & Wang, J. Y. (2001). Compilation of heat flow data in the China continental area. Chinese Journal of Geophysics, 44(5), 142–153 (in Chinese). https://doi.org/10.1002/cjg2.180
    [Google Scholar]
  39. Huang, F., He, L. J., & Wu, Q. J. (2015). Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton. Chinese Journal of Geophysics, 58(10), 3671–3686 (in Chinese with English abstract).
    [Google Scholar]
  40. Huang, Z., Wang, L., Zhao, D., Mi, N., & Xu, M. (2011). Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 306(1–2), 105–117. https://doi.org/10.1016/j.epsl.2011.03.038
    [Google Scholar]
  41. Irina, M. A. (2006). Global 1°×1° thermal model TC1 for the continental lithosphere Implications for lithosphere secular evolution. Tectonophysics, 416, 245–277. https://doi.org/10.1016/j.tecto.2005.11.022
    [Google Scholar]
  42. Jaupart, C., & Mareschal, J. C. (2014). Lithosphere, continental: Thermal structure. In Encyclopedia of solid earth geophysics (pp. 681–693). Amsterdam, the Netherlands: Springer.
    [Google Scholar]
  43. Jaupart, C., Mareschal, J. C., & Iarotsky, L. (2016). Radiogenic heat production in the continental crust. Lithos, 262, 398–427. https://doi.org/10.1016/j.lithos.2016.07.017
    [Google Scholar]
  44. Jia, C. Z. (2004). Plate tectonics and continental dynamics in Tarim Basin. Beijing: Petroleum Industry Press (in Chinese).
    [Google Scholar]
  45. Jiang, G. Z., Hu, S. B., Shi, Y. Z., Zhang, C., Wang, Z. T., & Hu, D. (2019). Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics, 753, 36–48. https://doi.org/10.1016/j.tecto.2019.01.006
    [Google Scholar]
  46. Jiao, Y. X., Qiu, N. S., Li, W. Z., Zuo, Y. H., Que, Y. Q., & Liu, F. L. (2013). The Mesozoic‐Cenozoic evolution of lithospheric thickness in the Ordos basin constrained by geothermal evidence. Chinese J. Geophys., 56(9), 3051–3060 (in Chinese with English abstract).
    [Google Scholar]
  47. Jougout, D., & Revil, A. (2010). Thermal conductivity of unsaturated clay‐rocks. Hydrology and Earth System Sciences, 14, 91–98. https://doi.org/10.5194/hess-14-91-2010
    [Google Scholar]
  48. Kuskov, O. L., & Kronrod, V. A. (2007). Composition, temperature, and thickness of the lithosphere of the Archean Kaapvaal craton. Izvestiya, Physics of the Solid Earth, 43(1), 42–62. https://doi.org/10.1134/S1069351307010053
    [Google Scholar]
  49. Lachenbruch, A. H. (1970). Crustal temperature and heat production: Implication of the linear heat flow relation. Journal of Geophysical Research, 75(17), 3291–3300.
    [Google Scholar]
  50. Lee, C. T. A., Lenardic, A., Cooper, C. M., Niu, F., & Levandar, A. (2005). The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth and Planetary Science Letters, 230(3–4), 379–395. https://doi.org/10.1016/j.epsl.2004.11.019
    [Google Scholar]
  51. Li, T. D. (2010). The principal characteristics of the lithosphere of China. Geoscience Frontiers, 1(1), 45–56. https://doi.org/10.1016/j.gsf.2010.08.005
    [Google Scholar]
  52. Li, S., Wilde, S. A., Wang, T., Xiao, W. J., & Guo, Q. Q. (2016). Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research, 29(1), 168–180. https://doi.org/10.1016/j.gr.2014.11.006
    [Google Scholar]
  53. Li, Z., Zuo, Y., Qiu, N., & Gao, J. (2017). Meso-Cenozoic lithospheric thermal structure in the Bohai Bay Basin, eastern North China Craton. Geoscience Frontiers, 8(5), 977–987.
    [Google Scholar]
  54. Liu, J. L., Shen, A. B., & Chen, X. L. (2011). Application of magnetotelluric sounding for Carboniferous‐Permian petroleum geological survey in Yingen‐Ejin Banner basin, western Inner Mongolia. Geological Bulletin of China, 30(6), 993–1000 (in Chinese with English abstract).
    [Google Scholar]
  55. Liu, Q. Y., Zhang, L. Y., Zhang, C., & He, L. J. (2016). Lithospheric thermal structure of the North China Craton and its geodynamic implications. Journal of Geodynamics, 102, 139–150. https://doi.org/10.1016/j.jog.2016.09.005
    [Google Scholar]
  56. Lu, J. C., Zhang, H. A., Niu, Y. Z., Liu, F. C., Chen, Q. T., & Wei, J. S. (2017). Carboniferous‐Permian petroleum conditions and exploration breakthrough in the Yingen‐Ejin Basin in Inner Mongolia. Geology in China, 44(1), 13–32 (in Chinese with English abstract).
    [Google Scholar]
  57. Lu, J., Zheng, J., Griffin, W. L., & Yu, C. (2013). Petrology and geochemistry of peridotite xenoliths from the Lianshan region: Nature and evolution of lithospheric mantle beneath the lower Yangtze block. Gondwana Research, 23(1), 161–175. https://doi.org/10.1016/j.gr.2012.01.008
    [Google Scholar]
  58. Lü, X. M., Ren, Z. L., Chen, Q. L., Li, X. B., & Guan, Y. L. (2006). Basement structure of Yingen basin and its significance on basin evolution. Coal Geology & Exploration, 34(1), 16–19 (in Chinese with English abstract).
    [Google Scholar]
  59. Majorowicz, J. A., Grad, M., & Polkowski, M. (2019). Terrestrial heat flow versus crustal thickness and topography–European continental study. International Journal of Terrestrial Heat Flow and Applications, 2(1), 17–21. https://doi.org/10.31214/ijthfa.v2i1.30
    [Google Scholar]
  60. Mareschal, J. C., & Jaupart, C. (2004). Variations of surface heat flow and lithospheric thermal structure beneath the North American Craton. Earth and Planetary Science Letters, 223(1–2), 65–77. https://doi.org/10.1016/j.epsl.2004.04.002
    [Google Scholar]
  61. Meng, Q. R., Hu, J. M., Jin, J. Q., Zhang, Y., & Xu, D. F. (2003). Tectonics of the late Mesozoic wide extensional basin system in the China‐Mongolia border region. Basin Research, 15(3), 397–415. https://doi.org/10.1046/j.1365-2117.2003.00209.x
    [Google Scholar]
  62. Michaut, C., & Jaupart, C. (2007). Secular cooling and thermal structure of continental lithosphere. Earth and Planetary Science Letters, 257(1–2), 83–96. https://doi.org/10.1016/j.epsl.2007.02.019
    [Google Scholar]
  63. Morgan, P. (1982). Heat flow in rift zone, continental and oceanic rifts. Geody Ser, 8, 357–362.
    [Google Scholar]
  64. Muller, M. R., Jones, A. G., Evans, R. L., Grütter, H. S., Hatton, C., Garcia, X., … Wasborg, J. (2009). Lithospheric structure, evolution and diamond prospectivity of the Rehoboth Terrane and western Kaapvaal Craton, southern Africa: Constraints from broadband magnetotellurics. Lithos, 112, 93–105. https://doi.org/10.1016/j.lithos.2009.06.023
    [Google Scholar]
  65. Niu, Y. L. (2014). Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tectonics and Metallogeny, 10, 23–47. https://doi.org/10.1127/gtm/2014/0009
    [Google Scholar]
  66. Niu, Z., Liu, G., Cao, Z., Guo, D., Wang, P., & Tang, G. (2018). Geochemical characteristics, depositional environment, and controlling factors of Lower Cretaceous shales in Chagan Sag, Yingen‐Ejinaqi Basin. Geological Journal, 53(4), 1308–1321. https://doi.org/10.1002/gj.2958
    [Google Scholar]
  67. Norden, B., Förster, A., & Balling, N. (2008). Heat flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics, 460(1–4), 215–229. https://doi.org/10.1016/j.tecto.2008.08.022
    [Google Scholar]
  68. Pollackm, H. N., & Chapman, D. S. (1977). On the regional variation of heat flow, geothermal and the thickness of lithosphere. Tectonophysics, 38, 279–296.
    [Google Scholar]
  69. Popov, Y. A., Pevzner, S. L., Pimenov, V. P., & Romushkevich, R. A. (1999). New geothermal data from the Kola superdeep well SG‐3. Tectonophysics, 306(3), 345–366. https://doi.org/10.1016/S0040-1951(99)00065-7
    [Google Scholar]
  70. Priestley, K., & McKenzie, D. (2006). The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters, 244(1–2), 285–301. https://doi.org/10.1016/j.epsl.2006.01.008
    [Google Scholar]
  71. Qiu, N., Chang, J., Li, J., Li, W., Yun, L., & Li, H. (2012). New evidence on the Neogene uplift of South Tianshan: Constraints from the (U–Th)/He and AFT ages of borehole samples of the Tarim basin and implications for hydrocarbon generation. International Journal of Earth Sciences, 101(6), 1625–1643. https://doi.org/10.1007/s00531-011-0745-0
    [Google Scholar]
  72. Qiu, N. S., Xu, W., Zuo, Y. H., & Chang, J. (2015). Meso‐Cenozoic thermal regime in the Bohai Bay Basin, eastern North China Craton. International Geologiy Review, 57(3), 271–289. https://doi.org/10.1080/00206814.2014.1002818
    [Google Scholar]
  73. Qiu, N. S., Zuo, Y. H., Chang, J., & Li, W. Z. (2014). Geothermal evidence of Mesozoic and Cenozoic lithosphere thinning in the Jiyang subbasin, Bohai Bay Basin, eastern North China Craton. Gondwana Research, 26, 1079–1092.
    [Google Scholar]
  74. Qiu, N. S., Zuo, Y. H., Xu, W., Li, W. Z., Chang, J., & Zhu, C. Q. (2016). Meso‐Cenozoic lithosphere thinning in the eastern North China Craton: Evidence from thermal history of the Bohai Bay Basin, North China. Journal of Geology, 142(2), 195–219. https://doi.org/10.1086/684830
    [Google Scholar]
  75. Qiu, R. Z. (2006). The composition and evolution of lithospheric materials in Chinese Mainland. Beijing: Geological Publishing House (in Chinese).
    [Google Scholar]
  76. Ren, J. S. (1999). Tectonic map of China and adjacent regions. Beijing: Geological Publishing House.
    [Google Scholar]
  77. Ren, S. M., Zhu, R. X., Huang, B. C., Zhang, F. Q., & Wang, H. B. (2002). Paleomagnetism in Orogenic Belt—A case study of Early Cretaceous volcanic rocks in the Suhongtu area. Science in China (series D), 10, 799–804.
    [Google Scholar]
  78. Robert, A. M., Fernàndez, M., Jiménez‐Munt, I., & Vergés, J. (2017). Lithospheric structure in Central Eurasia derived from elevation, geoid anomaly and thermal analysis. Geological Society, London, Special Publications, 427(1), 271–293. https://doi.org/10.1144/SP427.10
    [Google Scholar]
  79. Roy, S., Ray, L., Bhattacharya, A., & Srinivasan, R. (2008). Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India. International Journal of Earth Sciences, 97(2), 245–256. https://doi.org/10.1007/s00531-007-0239-2
    [Google Scholar]
  80. Rudnick, R. L., McDonough, W. F., & O’Connell, R. J. (1998). Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 145, 395–411. https://doi.org/10.1016/S0009-2541(97)00151-4
    [Google Scholar]
  81. Rudnick, R. L., & Nyblade, A. A. (1999). The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow. Mantle Petrology, 6, 3–12.
    [Google Scholar]
  82. Rybach, L. (1976). Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure and Applied Geophysics, 114(2), 309–317. https://doi.org/10.1007/BF00878955
    [Google Scholar]
  83. Sánchez, M. A., García, H. P., Acosta, G., Gianni, G. M., Gonzalez, M. A., Ariza, J. P., … Folguera, A. (2019). Thermal and lithospheric structure of the Chilean‐Pampean flat‐slab from gravity and magnetic data. In B. K.Horton & A.Folguera (Eds.), Andean Tectonics (pp. 487–507). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  84. Santosh, M. (2010). Assembling North China Craton within the Columbia supercontinent: The role of double‐sided subduction. Precambrian Research, 178(1–4), 149–167. https://doi.org/10.1016/j.precamres.2010.02.003
    [Google Scholar]
  85. Sass, J. H., Lachenbruch, A. H., Moses, T. H., & Morgan, P. (1992). Heat flow from a scientific research well at Cajon Pass, California. Journal of Geophysical Research, 97(B4), 5017–5030. https://doi.org/10.1029/91JB01504
    [Google Scholar]
  86. Schubert, G., Turcotte, D. L., & Olson, P. (2001). Mantle convection in the Earth and planets (pp. 25–26). Cambridge University Press: Cambridge.
    [Google Scholar]
  87. Sun, G., Liu, S., Santosh, M., Gao, L., Hu, Y., & Guo, R. (2019). Thickness and geothermal gradient of Neoarchean continental crust: Inference from the southeastern North China Craton. Gondwana Research, 73, 16–31. https://doi.org/10.1016/j.gr.2019.02.001
    [Google Scholar]
  88. Sun, Y., Dong, S., Zhang, H., Li, H., & Shi, Y. (2013). 3D thermal structure of the continental lithosphere beneath China and adjacent regions. Journal of Asian Earth Sciences, 62, 697–704. https://doi.org/10.1016/j.jseaes.2012.11.020
    [Google Scholar]
  89. Tesauro, M., Kaban, M. K., & Cloetingh, S. A. (2009). A new thermal and rheological model of the European lithosphere. Tectonophysics, 476(3–4), 478–495. https://doi.org/10.1016/j.tecto.2009.07.022
    [Google Scholar]
  90. Wan, T. F. (2010). The tectonics of China ‐ data, maps and evolution. Beijing: Higher Education Press.
    [Google Scholar]
  91. Wang, J. Y. (2015). Geothermal and its application. Beijing: Science Press (in Chinese).
    [Google Scholar]
  92. Wang, J. Y., & Huang, S. P. (1988). Compilation of heat flow data foe continental area of China. Scientia Geologica Sinica, 31(2), 196–204 (in Chinese with English abstract).
    [Google Scholar]
  93. Wang, J. Y., & Huang, S. P. (1990). Compilation of heat flow data foe continental area of China (2nd editor). Seismology and Geology, 12(4), 351–366 (in Chinese with English abstract).
    [Google Scholar]
  94. Wang, S. L., Shi, P., Zhang, F. D., & Qi, R. L. (2016). Petroleum geologic features and exploration discovery in Chagan sag. China Petroleum Exploration, 21(3), 108–115 (in Chinese with English abstract).
    [Google Scholar]
  95. Wang, Y., & Cheng, S. H. (2012). Lithospheric thermal structure and rheology of the eastern China. Journal of Asian Earth Sciences, 47, 51–63. https://doi.org/10.1016/j.jseaes.2011.11.022
    [Google Scholar]
  96. Wang, Y., & Cheng, S. H. (2013). Thermal state and rheological strength of the lithosphere beneath western part of China and its adjacent region. Earth Science Frontiers, 20(1), 182–189 (in Chinese with English abstract).
    [Google Scholar]
  97. Wasserburg, G. J., Macdonald, G. J., Hoyle, F., & Fowler, W. A. (1964). Relative contributions of uranium, thorium, and potassium to heat production in the Earth. Science, 143(3605), 465–467.
    [Google Scholar]
  98. Watts, A. B. (2001). Isostasy and flexure of the lithosphere. Cambridge: Cambridge University Press.
    [Google Scholar]
  99. Wei, P. S., Zhang, H. Q., & Chen, Q. L. (2006). Petroleum geological characteristics and exploration prospects in the Yingen‐Ejinaqi Basin. Beijing: Petroleum Industry Press (in Chinese).
    [Google Scholar]
  100. Wu, S. B., Bai, Y. B., & Yang, Y. Y. (2003). Sedimentary facies of the Lower Cretaceous of Yingen Basin in Inner Mongolia. Journal of Palaeogeography, 5(1), 36–43 (in Chinese with English abstract).
    [Google Scholar]
  101. Xiao, Y., Zhang, H. F., Fan, W. M., Ying, J. F., Zhang, J., Zhao, X. M., & Su, B. X. (2010). Evolution of lithospheric mantle beneath the Tan‐Lu fault zone, eastern North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 117(1–4), 229–246. https://doi.org/10.1016/j.lithos.2010.02.017
    [Google Scholar]
  102. Xu, W., Huang, S. P., Zhang, J., Yu, R. Y., Zuo, Y. H., Zhou, Y. S., & Chang, J. (2019). Present‐day geothermal regime of the Uliastai Depression, Erlian Basin, North China. Energy Exploration & Exploitation, 37(2), 770–786. https://doi.org/10.1177/0144598718785970
    [Google Scholar]
  103. Xu, W., Qiu, N. S., Wang, Y., & Chang, J. (2018). Evolution of Meso‐Cenozoic lithospheric thermal–rheological structure in the Jiyang sub‐basin, Bohai Bay Basin, eastern North China Craton. International Journal of Earth Sciences, 107(1), 153–166. https://doi.org/10.1007/s00531-016-1360-x
    [Google Scholar]
  104. Xu, Y., Zeyen, H., Hao, T., Santosh, M., Li, Z. W., Huang, S., & Xing, J. (2016). Lithospheric structure of the North China Craton: Integrated gravity, geoid and topography data. Gondwana Research, 34, 315–323. https://doi.org/10.1016/j.gr.2015.03.010
    [Google Scholar]
  105. Xu, Z. Q., Yang, J. S., Li, H. B., Ji, S. C., Zhang, Z. M., & Liu, Y. (2011). On the tectonics of the India‐Asia collision. Acta Geologica Sinica, 85(1), 1–33 (in Chinese with English abstract).
    [Google Scholar]
  106. Yamamoto, J., Nishimura, K., Ishibashi, H., Kagi, H., Arai, S., & Prikhod'Ko, V. S. (2012). Thermal structure beneath Far Eastern Russia inferred from geothermobarometric analyses of mantle xenoliths: Direct evidence for high geothermal gradient in backarc lithosphere. Tectonophysics, 554, 74–82. https://doi.org/10.1016/j.tecto.2012.06.005
    [Google Scholar]
  107. Yang, J. L. (2011). Discussion on intraland plate moving evolvement in China and the relationship with earthquake. Inland Earthquake, 25(2), 109–119 (in Chinese with English abstract).
    [Google Scholar]
  108. Zhai, M. G., & Santosh, M. (2011). The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1), 6–25. https://doi.org/10.1016/j.gr.2011.02.005
    [Google Scholar]
  109. Zhang, C., Jiang, G. Z., Shi, Y. Z., Wang, Z. T., Wang, Y., Li, S. T., … Hu, S. (2018). Terrestrial heat flow and crustal thermal structure of the Gonghe‐Guide area, northeastern Qinghai‐Tibetan plateau. Geothermics, 72, 182–192. https://doi.org/10.1016/j.geothermics.2017.11.011
    [Google Scholar]
  110. Zhang, M., Dai, S., Pan, B., Wang, L., Peng, D., Wang, H., & Zhang, X. (2014). The palynoflora of the Lower Cretaceous strata of the Yingen‐Ejinaqi Basin in North China and their implications for the evolution of early angiosperms. Cretaceous Research, 48, 23–38. https://doi.org/10.1016/j.cretres.2013.11.003
    [Google Scholar]
  111. Zhang, S. T., Wu, T. R., Xu, X., Wang, S. Q., & Li, Z. Q. (2005). The significance of discovery of Early Cretaceous Shoshonite in central Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 41(2), 212–218 (in Chinese with English abstract).
    [Google Scholar]
  112. Zhang, S. B., & Zheng, Y. F. (2013). Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Research, 23(4), 1241–1260. https://doi.org/10.1016/j.gr.2012.09.005
    [Google Scholar]
  113. Zhao, G. C., & Zhai, M. G. (2013). Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4), 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016
    [Google Scholar]
  114. Zheng, J. P., & Dai, H. K. (2018). Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin‐mountain respond in the North China Craton. Science China Earth Sciences, 61(4), 406–424. https://doi.org/10.1007/s11430-017-9166-8
    [Google Scholar]
  115. Zhong, F. P., Zhong, J. H., Wang, Y., & You, W. F. (2014). Geochemistry characteristics and origin of Early Cretaceous volcanic rocks in Suhongtu Depression, Inner Mongolia, China. Acta Mineralogica Sinica, 34(1), 107–116 (in Chinese with English abstract).
    [Google Scholar]
  116. Zhong, F. P., Zhong, J. H., & You, W. F. (2011). Characteristics of the early cretaceous mantle-derived volcanic rocks in the Suhogntu depression of Inggen-Ejin Qi Basin. Acta Geologica Sinica, 85(12), 2003–2013 (in Chinese with English abstract).
    [Google Scholar]
  117. Zhu, R., Xu, Y., Zhu, G., Zhang, H., Xia, Q., & Zheng, T. (2012). Destruction of the North China craton. Science China Earth Sciences, 55(10), 1565–1587. https://doi.org/10.1007/s11430-012-4516-y
    [Google Scholar]
  118. Zuo, Y. H., Li, J. W., Li, W. Z., & Hao, Q. Q. (2015). Mesozoic and Cenozoic “thermal” lithospheric thickness evolution in the Tarim Basin. Progress in Geophysics, 30(4), 1608–1615 (in Chinese with English abstract).
    [Google Scholar]
  119. Zuo, Y. H., Qiu, N. S., Deng, Y. X., Rao, S., Xu, S. M., & Li, J. G. (2013). Terrestrial heat flow in the Qagan sag, Inner Mongolia. Chinese Journal of Geophysics, 56(9), 3038–3050 (in Chinese with English abstract).
    [Google Scholar]
  120. Zuo, Y. H., Qiu, N. S., Hao, Q. Q., Pang, X. Q., Gao, X., Wang, X. J., … Zhao, Z. Y. (2015). Geothermal regime and source rock thermal evolution history in the Chagan Depression, Inner Mongolia. Marine and Petroleum Geology, 59(1), 245–267.
    [Google Scholar]
  121. Zuo, Y. H., Qiu, N. S., Hao, Q. Q., Zhang, Y. X., Pang, X. Q., Li, Z. C., & Gao, X. (2014). Present geothermal fields of the Dongpu sag in the Bohai Bay Basin. Acta Geologica Sinica, 88(3), 915–930. https://doi.org/10.1111/1755-6724.12246
    [Google Scholar]
  122. Zuo, Y. H., Qiu, N. S., Zhang, Y., Li, C. C., Li, J. P., Guo, Y. H., & Pang, X. Q. (2011). Geothermal regime and hydrocarbon kitchen evolution of the offshore Bohai Bay Basin, North China. AAPG Bulletin, 95, 749–769. https://doi.org/10.1306/09271010079
    [Google Scholar]
  123. Zuo, Y. H., Song, R. C., Li, Z. X., Wang, Y. X., & Yang, M. H. (2017). Lower Cretaceous source rock evaluation and thermal maturity evolution of the Chagan Depression, Inner Mongolia, Northern China. Energy Exploration & Exploitation, 35(4), 482–503. https://doi.org/10.1177/0144598717694809
    [Google Scholar]
/content/journals/10.1111/bre.12430
Loading
/content/journals/10.1111/bre.12430
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error