1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Lake Izabal Basin in Guatemala is a major pull‐apart basin along the sinistral Polochic Fault, which is part of the North American and Caribbean plate boundary. The basin infill contains information about the tectonic and sedimentological processes that have imparted a significant control on its sedimentary section. The inception of the basin has been linked to the relative importance of the Polochic Fault in the tectonic history of the plate boundary; yet, its sedimentological record and its inception age have been poorly documented. This study integrates diverse datasets, including industry reports, well logs and reports, well cuttings, vintage seismic data, outcrop observations and geochronological data to constrain the initial infill and age of inception of the basin. The integrated data show that during the Oligocene–Miocene, a marine carbonate platform was established in the region which was later uplifted and eroded in the early Miocene. The fluvial–lacustrine deposits above this carbonate platform are part of the initial infill of the basin and are constrained with zircon weighted‐mean 206Pb/238U ages of 12.060 ± 0.008 from a volcanic tuff ~30 m above the unconformity. Sandstone, mudstone and coal dominate the interval from 12 to 4 Ma, with an increase in conglomerate correlating to the uplift of the Mico Mountains and San Gil Hill at 4 Ma. Fault switch activity between the Polochic and Motagua faults has been hypothesized to explain total offset along the Polochic Fault and the geologic and geodetic slip rates along the two faults. The 12 Ma age determined for the initial infill of the basin confirms this hypothesis. Consequently, our study confirms that at ~12 Ma the Polochic Fault served as the main fault of the plate boundary with inferred slip rates ranging from 13 to 21 mm/yr with a strong possibility that the Polochic Fault was, at some point between 15 Ma and 7 Ma, the only active fault of the plate boundary. The results of this study show that tectonic records preserved in sediments of strike‐slip basins improve the understanding of the relative significance of individual faults and the implications with respect to strain partitioning throughout its tectonic history.

,

The Lake Izabal Basin initiated at 12 Ma. The Polochic Fault was the main plate boundary in the Miocene. Fault switch activity must have occurred along the plate boundary.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12431
2020-11-22
2024-03-29
Loading full text...

Full text loading...

References

  1. Armijo, R., Meyer, B., Navarro, S., King, G., & Barka, A. (2002). Asymmetric slip partitioning in the Sea of Marmara Pull‐Apart: A clue to propagation processes of the North Anatolian Fault?Terra Nova, 14, 80–86. https://doi.org/10.1046/j.1365-3121.2002.00397.x
    [Google Scholar]
  2. Authemayou, C., Brocard, G., Teyssier, C., Suski, B., Cosenza, B., Morán‐Ical, S., … Holliger, K. (2012). Quaternary seismo‐tectonic activity of the Polochic Fault, Guatemala. Journal of Geophysical Research: Solid Earth, 117. B07403. https://doi.org/10.1029/2012JB009444
    [Google Scholar]
  3. Baier, J., Audétat, A., & Keppler, H. (2008). The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 267, 290–300. https://doi.org/10.1016/j.epsl.2007.11.032
    [Google Scholar]
  4. Bartole, R., Lodolo, E., Obrist‐Farner, J., & Morelli, D. (2019). Sedimentary architecture, structural setting, and late cenozoic depocentre migration of an asymmetric transtensional basin: Lake Izabal, Eastern Guatemala. Tectonophysics, 750, 419–433. https://doi.org/10.1016/j.tecto.2018.12.004
    [Google Scholar]
  5. Ben‐Avraham, Z., Garfunkel, Z., & Lazar, M. (2008). Geology and evolution of the southern dead sea fault with emphasis on subsurface structure. Annual Review of Earth and Planetary Sciences, 36, 357–387. https://doi.org/10.1146/annurev.earth.36.031207.124201
    [Google Scholar]
  6. Ben‐Avraham, Z., & Zoback, M. D. (1992). Transform‐normal extension and asymmetric basins: An alternative to pull‐apart models. Geology, 20, 423–426. https://doi.org/10.1130/0091-7613(1992)020<0423:TNEAAB>2.3.CO;2
    [Google Scholar]
  7. Bonis, S., Bohnenberger, O. H., & Dengo, G. (1970). Mapa Geológico De La República De Guatemala. Guatemala City, Guatemala: Instituto Geografico Nacional.
    [Google Scholar]
  8. Brocard, G., Anselmetti, F. S., & Teyssier, C. (2016). Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep. Scientific Reports, 6, 36976. https://doi.org/10.1038/srep36976
    [Google Scholar]
  9. Brocard, G., Teyssier, C., Dunlap, W. J., Authemayou, C., Simon‐Labric, T., Cacao‐Chiquín, E. N., … Morán‐Ical, S. (2011). Reorganization of a deeply incised drainage: Role of deformation, sedimentation and groundwater flow. Basin Research, 23, 631–651. https://doi.org/10.1111/j.1365-2117.2011.00510.x
    [Google Scholar]
  10. Burkart, B. (1978). Offset across the Polochic fault of Guatemala and Chiapas, Mexico. Geology, 6, 328–332. https://doi.org/10.1130/0091-7613(1978)6<328:OATPFO>2.0.CO;2
    [Google Scholar]
  11. Burkart, B. (1983). Neogene North American‐Caribbean plate boundary across Northern Central America: Offset along the polochic fault. Tectonophysics, 99, 251–270. https://doi.org/10.1016/0040-1951(83)90107-5
    [Google Scholar]
  12. Burkart, B. (1994). Northern Central America. In S. K.Donova, & T. A.Jackson (Eds.), Caribbean geology: An introduction (pp. 265–284). Kingston, Jamaica: University West Indies Publishing Association.
    [Google Scholar]
  13. Burkart, B., & Self, S. (1985). Extension and rotation of crustal blocks in Northern Central America and effect on the volcanic arc. Geology, 13, 22–26. https://doi.org/10.1130/0091-7613(1985)13<22:EAROCB>2.0.CO;2
    [Google Scholar]
  14. Burke, K., Grippi, J., & Şengör, A. M. C. (1980). Neogene structures in Jamaica and the tectonic style of the Northern Caribbean plate boundary zone. The Journal of Geology, 88, 375–386. https://doi.org/10.1086/628522
    [Google Scholar]
  15. Carballo Hernandez, M. A., Banks, N. L., Franco Austin, J. C., & Lopez Aguilar, L. F. (1988). Cuenca Amatique, Guatemala: Una Cuenca Transtensional Al Sur Del Limite De Placas Norte America ‐ Caribe. V Congreso Geologico Chileno.
    [Google Scholar]
  16. Cox, K. S. (1997). A multichannel seismic approach to the kinematic evolution of the lake Izabal Basin, Guatemala, University of Texas at Arlington.
    [Google Scholar]
  17. Crowell, J. C. (1962). Displacement along the San Andreas fault, California. In J. C.Crowell (Ed.), Displacement along the San Andreas fault, California (p. 61). Boulder, CO: Geological Society of American Special Paper 71.
    [Google Scholar]
  18. Crowell, J. C. (1982). The tectonic of ridge basin, Southern California. In J. C.Crowell, & M. H.Link (Ed.), Geologic History of Ridge Basin, Southern California. Society of Economic Paleontologists and Mineralogists (pp. 25–42). Los Angeles, CA: Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  19. Crowell, J. C. (2003).Tectonics of ridge basin region, Southern California. In J. C.Crowell (Ed.), Evolution of Ridge basin, Southern California: an Interplay of sedimentation and tectonics. Boulder, CO: Geological Society of America.
    [Google Scholar]
  20. Crowley, J. L., Schoene, B., & Bowring, S. A. (2007). U‐Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35, 1123–1126. https://doi.org/10.1130/G24017A.1
    [Google Scholar]
  21. Deaton, B. C., & Burkart, B. (1984). Time of sinistral slip along the polochic fault of Guatemala. Tectonophysics, 102, 297–313. https://doi.org/10.1016/0040-1951(84)90018-0
    [Google Scholar]
  22. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x
    [Google Scholar]
  23. Dengo, G. (1969). Problems of tectonic relations between Central America and the Caribbean. Gulf Coast Association of Geological Societies Transactions, 19, 311–320.
    [Google Scholar]
  24. Dengo, G., & Bohnenberger, O. (1969). Structural development of Northern Central America. Carbonate sediments and Reefs, Yucatan Shelf, Mexico and other papers on Florida and British Honduras and tectonic relations of Northern Central America and the Western Caribbean—The Bonacca expedition. B. W. Logan, M. N. Bass, D. E. Cebulski & A. R. McBirney, American Association of Petroleum Geologists. 11, 0.
    [Google Scholar]
  25. Ellis, A., DeMets, C., McCaffrey, R., Briole, P., Cosenza Muralles, B., Flores, O., … Tikoff, B. (2019). Gps Constraints on Deformation in Northern Central America from 1999 to 2017, Part 2: block rotations and fault slip rates, fault locking and distributed deformation. Geophysical Journal International, 218, 729–754. https://doi.org/10.1093/gji/ggz173
    [Google Scholar]
  26. Fialko, Y., Simons, M., & Agnew, D. (2001). The complete (3‐D) surface displacement field in the epicentral area of the 1999 Mw7.1 hector mine earthquake, California, from space geodetic observations. Geophysical Research Letters, 28, 3063–3066.
    [Google Scholar]
  27. Franco, A., Lasserre, C., Lyon‐Caen, H., Kostoglodov, V., Molina, E., Guzman‐Speziale, M., … Manea, V. C. (2012). Fault kinematics in Northern Central America and coupling along the subduction interface of the Cocos plate, from Gps data in Chiapas (Mexico), Guatemala and El Salvador. Geophysical Journal International, 189, 1223–1236. https://doi.org/10.1111/j.1365-246X.2012.05390.x
    [Google Scholar]
  28. Garfunkel, Z. (1981). Internal structure of the dead sea leaky transform (Rift) in relation to plate kinematics. Tectonophysics, 80, 81–108. https://doi.org/10.1016/0040-1951(81)90143-8
    [Google Scholar]
  29. Gordon, M. B., & Muehlberger, W. R. (1994). Rotation of the Chortís block causes Dextral slip on the Guayape fault. Tectonics, 13, 858–872. https://doi.org/10.1029/94TC00923
    [Google Scholar]
  30. Gradstein, F. M.
    , J. G.Ogg, & A. G.Smith (Eds.) (2004). A geologic time scale 2004. New York: Cambridge University Press.
    [Google Scholar]
  31. Guzmán‐Speziale, M. (2001). Active seismic deformation in the grabens of northern Central America and its relationship to the relative motion of the North America‐Caribbean plate boundary. Tectonophysics, 337, 39–51. https://doi.org/10.1016/S0040-1951(01)00110-X
    [Google Scholar]
  32. Hauksson, E., Jones, L. M., Hutton, K., & Eberhart‐Phillips, D. (1993). The 1992 landers earthquake sequence: Seismological observations. Journal of Geophysical Research: Solid Earth, 98, 19835–19858.
    [Google Scholar]
  33. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C., & Essling, A. M. (1971). Precision measurement of half‐lives and specific activities of 235u and 238u. Physical Review C, 4, 1889–1906.
    [Google Scholar]
  34. Jordan, B. R., Sigurdsson, H., Carey, S., Lundin, S., Rogers, R. D., Singer, B., & Barquero‐Molina, M. (2007). Petrogenesis of Central American tertiary ignimbrites and associated caribbean sea Tephra. In P.Mann (Ed.), Geologic and tectonic development of the Caribbean plate boundary in Northern Central America (p. 428). Boulder, CO: Geological Society of America.
    [Google Scholar]
  35. Le Bas, M. J., Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali‐silica diagram. Journal of Petrology, 27, 745–750. https://doi.org/10.1093/petrology/27.3.745
    [Google Scholar]
  36. Le Pichon, X., Chamot‐Rooke, N., Rangin, C., & Sengör, A. M. C. (2003). The North Anatolian fault in the Sea of Marmara. Journal of Geophysical Research: Solid Earth, 108(B4), https://doi.org/10.1029/2002JB001862
    [Google Scholar]
  37. Lodolo, E., Menichetti, M., Guzmán‐Speziale, M., Giunta, G., & Zanolla, C. (2009). Deep structural setting of the North American‐Caribbean plate boundary in Eastern Guatemala. Geofísica Internacional, 48, 263–277.
    [Google Scholar]
  38. Ludwig, K. A. (2003). Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley, Berkeley Geochronology Center.
    [Google Scholar]
  39. Lyon‐Caen, H., Barrier, E., Lasserre, C., Franco, A., Arzu, I., Chiquin, L., … Wolf, R. (2006). Kinematics of the North American–Caribbean‐Cocos plates in Central America from new GPS measurements across the Polochic‐Motagua fault system. Geophysical Research Letters, 33(19), L19309. https://doi.org/10.1029/2006GL027694
    [Google Scholar]
  40. Macdonald, K. C., & Holcombe, T. L. (1978). Inversion of magnetic anomalies and sea‐floor spreading in the Cayman Trough. Earth and Planetary Science Letters, 40, 407–414. https://doi.org/10.1016/0012-821X(78)90163-2
    [Google Scholar]
  41. Malfait, B. T., & Dinkelman, M. G. (1972). Circum‐Caribbean tectonic and igneous activity and the evolution of the Caribbean plate. GSA Bulletin, 83, 251–272. https://doi.org/10.1130/0016-7606(1972)83[251:CTAIAA]2.0.CO;2
    [Google Scholar]
  42. Mann, P. (2007). Overview of the tectonic history of Northern Central America. Geologic and tectonic development of the Caribbean plate boundary in Northern Central America. Geological Society of America Special Paper, 428, 1–19.
    [Google Scholar]
  43. Mann, P., Hempton, M. R., Bradley, D. C., & Burke, K. (1983). Development of pull‐apart basins. The Journal of Geology, 91, 529–554. https://doi.org/10.1086/628803
    [Google Scholar]
  44. Mattinson, J. M. (2005). Zircon U‐Pb chemical abrasion (“Ca‐Tims”) method: Combined annealing and multi‐step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011
    [Google Scholar]
  45. McDonough, W. F., & Sun, S. (1995). The composition of the earth. Chemical Geology, 120, 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    [Google Scholar]
  46. Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, Part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic stratigraphy ‐ Applications to hydrocarbon exploration, Memoir 26. Tulsa: AAPG.
    [Google Scholar]
  47. Mota‐Vidaure, A. B. (1989). Stratigraphy of the Coal‐Bearing Strata (Miocene) in the Carboneras Region, Izabal, Guatemala, Colorado School of Mines.
  48. Pindell, J., & Dewey, J. F. (1982). Permo‐triassic reconstruction of Western Pangea and the evolution of the Gulf of Mexico &Sol; Caribbean region. Tectonics, 1, 179–211.
    [Google Scholar]
  49. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and Northern South America in the mantle reference frame: An update. In K. H.James, M. A.Lorente, & J. L.Pindell (Eds.), The origin and evolution of the Caribbean plate (p. 328). London, UK: Geological Society of London.
    [Google Scholar]
  50. Plafker, G. (1976). Tectonic aspects of the Guatemala earthquake of 4 February 1976. Science, 193, 1201. https://doi.org/10.1126/science.193.4259.1201
    [Google Scholar]
  51. Powers, S. (1918). Notes on the geology of Eastern Guatemala and Northwestern spanish honduras. The Journal of Geology, 26, 507–523. https://doi.org/10.1086/622612
    [Google Scholar]
  52. Ratschbacher, L., Franz, L., Min, M., Bachmann, R., Martens, U., Stanek, K., … Bock, P. (2009).The North American‐Caribbean plate boundary in Mexico‐Guatemala‐Honduras. In K. H.James, M. A.Lorente, & J. L.Pindell (Eds.), The origin and evolution of the Caribbean plate (Vol. 328, pp. 219–293). London: Geological Society Special Publications.
    [Google Scholar]
  53. Reading, H. G. (1980). Characteristics and recognition of strike‐slip fault systems. In P. F.Ballance, & H. G.Reading (Eds.), Sedimentation in oblique‐slip mobile zones (pp. 7–26). New York, NY: Wiley.
    [Google Scholar]
  54. Rogers, R. D., Kárason, H., & van der Hilst, R. D. (2002). Epeirogenic uplift above a detached slab in Northern Central America. Geology, 30, 1031–1034. https://doi.org/10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2
    [Google Scholar]
  55. Rogers, R. D., & Mann, P. (2007). Transtensional deformation of the Western Caribbean‐North America plate boundary zone. Special Paper of the Geological Society of America, 428, 37–64.
    [Google Scholar]
  56. Rosencrantz, E., Ross, M. I., & Sclater, J. G. (1988). Age and spreading history of the Cayman Trough as determined from depth, heat flow, and magnetic anomalies. Journal of Geophysical Research: Solid Earth, 93, 2141–2157. https://doi.org/10.1029/JB093iB03p02141
    [Google Scholar]
  57. Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., … Jung, J. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366, 346–351. https://doi.org/10.1126/science.aaz0109
    [Google Scholar]
  58. Schmitz, M. D., & Schoene, B. (2007). Derivation of isotope ratios, errors, and error correlations for U‐Pb geochronology using 205pb‐235u‐(233u)‐spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems, 8, Q08006.
    [Google Scholar]
  59. Seeber, L., Emre, O., Cormier, M. H., Sorlien, C. C., McHugh, C. M. G., Polonia, A., … Cagatay, N. (2004). Uplift and subsidence from oblique slip: The Ganos–Marmara bend of the North anatolian transform, Western Turkey. Tectonophysics, 391, 239–258. https://doi.org/10.1016/j.tecto.2004.07.015
    [Google Scholar]
  60. Seeber, L., Sorlien, C., Steckler, M., & Cormier, M.‐H. (2010). Continental transform basins: Why are they asymmetric?Eos, Transactions American Geophysical Union, 91, 29–30. https://doi.org/10.1029/2010EO040001
    [Google Scholar]
  61. Shell
    Shell . (1993). Exploradora Y Productora De Guatemala: Informe Final De Exploracion. Unpublished report.
    [Google Scholar]
  62. Sigurdsson, H., Kelley, S., Leckie, R. M., Carey, S., Bralower, T., & King, J. (2000).History of circum‐Caribbean explosive volcanism: 40ar/39ar dating of tephra layers. In R. M.Leckie, H.Sigurdsson, G. D.Acton, & G.Draper (Eds.), Proceedings of the ocean drilling program, scientific results (pp. 299–314). College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  63. Vaughan, T. W. (1919). The biologic character and geological correlation of the sedimentary formations of Panama in their relation to the geologic history of Central America and the West Indies.U.S. National Museum Bulletin, 103, 547–612.
    [Google Scholar]
  64. Vinson, G. L. (1963). Upper cretaceous and tertiary stratigraphy of Guatemala: Comment. AAPG Bulletin, 47, 705–705.
    [Google Scholar]
  65. Wadge, G., & Burke, K. (1983). Neogene Caribbean plate rotation and associated Central American tectonic evolution. Tectonics, 2, 633–643. https://doi.org/10.1029/TC002i006p00633
    [Google Scholar]
  66. White, R. A. (1984). Catalog of Historic Seismicity in the Vicinity of the Chixoy‐Polochic and Motagua Faults, Guatemala. Open‐File Report.
    [Google Scholar]
  67. White, R. A. (1985). The Guatemala earthquake of 1816 on the Chixoy‐Polochic fault. Bulletin of the Seismological Society of America, 75, 455–473.
    [Google Scholar]
  68. Ye, J., & Liu, M. (2017). How fault evolution changes strain partitioning and fault slip rates in southern california: results from geodynamic modeling. Journal of Geophysical Research: Solid Earth, 122, 6893–6909.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12431
Loading
/content/journals/10.1111/bre.12431
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error