1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Structures rooted in the crystalline basement frequently control the deformation of the host bedrock and the overlying sedimentary sequences. Here, we elucidate the structure of the c. 2‐km deep Precambrian granitic basement in the Anadarko Shelf, Oklahoma, and how the propagation of basement faults deformed the sedimentary cover. Although the basin is foreland in origin, the gently dipping shelf sequences experienced transpressional deformation in the Late Palaeozoic. We analyse a 3‐D seismic reflection data set and basement penetrating well data in an area of 824 km2. We observe: (a) pervasive deformation of the basement by basement‐bounded interconnected mafic sills, and a system of subvertical discontinuity planes (interpreted as faults) of which some penetrate the overlying sedimentary cover; (b) three large (>10 km‐long) through‐going faults, with relatively small (<100 m) vertical separation (Vsep) of the deformed stratigraphic surfaces; (c) upward propagation of the large faults characterized by faulted‐blocks near the basement, and faulted‐monoclines in the deeper sedimentary units that transition into open monoclinal flexures up‐section; (d) cumulative along‐fault deformation of the stratigraphy exhibits systematic trends that varies with offset accrual; (e) two styles of Vsep—Depth distribution which include a unidirectional decrease of Vsep from the basement through the cover rocks (Style‐1) and a bidirectional decrease of Vsep from a deep sedimentary unit towards the basement and shallower sequences (Style‐2). We find that the basement‐driven propagation (Style‐1) shows greater efficiency of driving the fault deformation to shallower depths compared to the intrasedimentary‐driven fault nucleation and propagation (Style‐2). Our study demonstrates an evolution of cumulative Vsep trends with offset accrual on the faults, and the partial inheritance of the heterogeneous intra‐basement deformation by the sedimentary cover. This contribution provides important insight into the upward propagation of basement‐driven faulting associated with structural inheritance in contractional sedimentary basins.

,

Top Left: Curvature surface map of a sedimentary unit in the Anadarko Shelf, Oklahoma, showing large basement‐rooted faults and the associated fold deformation. Top Right: NW‐SE seismic section showing how both the intra‐basement and through‐going (basement‐rooted) faults offset basement‐bounded sills. Bottom: Implications of our findings for the tectonic evolution of the Anadarko Shelf.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12433
2020-11-22
2024-03-28
Loading full text...

Full text loading...

References

  1. Anderson, H., Ellis, J. F., Muir, R., & Macaulay, E. (2015). September. 3‐D Trishear: Parameters and possibilities. AAPG‐SEG international conference and exhibition, Melbourne, Australia 13–16 September 2015 (525–525).
    [Google Scholar]
  2. Benson, W. A. (2014). The Spavinaw granite (proterozoic), Mayes County, Oklahoma. The Shale Shaker, 65, 258–264.
    [Google Scholar]
  3. Berg, R. R. (1962). Mountain flank thrusting in Rocky Mountain foreland, Wyoming and Colorado. AAPG Bulletin, 46, 2019–2032.
    [Google Scholar]
  4. Bickford, M. E., Van Schmus, W. R., Karlstrom, K. E., Mueller, P. A., & Kamenov, G. D. (2015). Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age distributions, new SIMS U-Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions. Precambrian Research, 265, 286–312.
    [Google Scholar]
  5. Brewer, J. A., Good, R., Oliver, J. E., Brown, L. D., & Kaufman, S. (1983). COCORP profiling across the Southern Oklahoma aulacogen: Overthrusting of the Wichita Mountains and compression within the Anadarko Basin. Geology, 11, 109–114. https://doi.org/10.1130/0091-7613(1983)11<109:CPATSO>2.0.CO;2
    [Google Scholar]
  6. Brown, W. G. (1983). Sequential development of the fold‐thrust model of foreland deformation. In J. D.Lowell (Ed.), Rocky Mountain foreland basins and uplifts (pp. 57–64). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  7. Burberry, C. M., & Lowe, J. B. (2019). Analog modeling of penetrative strain around laramide structures: Similarities and differences between thick and thin‐skinned styles of deformation. AAPG Annual Convention and Exhibition 2018, poster # 420–P55.
  8. Cannon, W. F. (1994). Closing of the Midcontinent rift – A far‐field effect of Grenvillian compression. Geology, 22, 155–158. https://doi.org/10.1130/0091-7613(1994)022<0155:COTMRA>2.3.CO;2
    [Google Scholar]
  9. Castro Manrique, B. J. (2018). Structural geology of the Woodford shale in the southeastern Anadarko basin, Grady county, Oklahoma. MS Thesis, University of Oklahoma, Norman.
  10. Chase, B., Atekwana, E. A., Kolawole, F., Turko, M. S., Carpenter, B. M., Evans, R. L., & Finn, C. (2018). December. The southern Oklahoma aulacogen: New insights from aeromagnetic, seismic reflection and magnetotelluric data analyses. In AGU Fall Meeting Abstract #G51E‐0523.
  11. Chopra, S., Infante‐Paez, L., & Marfurt, K. J. (2018). Intra‐basement intrusions in the STACK area of Oklahoma. AAPG Geophysical Corner, AAPG Search and Discovery #42229.
  12. Chopra, S., & Marfurt, K. J. (2005). Seismic attributes – A historical perspective. Geophysics, 70, 3SO‐28SO. https://doi.org/10.1190/1.2098670
    [Google Scholar]
  13. Chopra, S., & Marfurt, K. (2006). Seismic attributes – A promising aid for geologic prediction. CSEG Recorder, 31, 110–120.
    [Google Scholar]
  14. Chopra, S., Marfurt, K., Kolawole, F., & Carpenter, B. M. (2018). Nemaha strike‐slip fault expression on 3‐D seismic data in SCOOP trend. AAPG Explorer, Search and Discovery Article #42235.
  15. Collanega, L., Suida, K., Jackson, C.‐A.‐L., Bell, R. E., Coleman, A. J., Lenhart, A., … Breda, A. (2019). Normal fault growth influenced by basement fabrics: The importance of preferential nucleation from pre‐existing structures. Basin Research, 31, 659–687. https://doi.org/10.1111/bre.12327
    [Google Scholar]
  16. Coward, M. P. (1983). Thrust tectonics, thin skinned or thick skinned, and the continuation of thrusts to deep in the crust. Journal of Structural Geology, 5, 113–123. https://doi.org/10.1016/0191-8141(83)90037-8
    [Google Scholar]
  17. Denison, R. E. (1981). Basement rocks in northeastern Oklahoma. Oklahoma Geological Survey Circular 84. Norman, OK.
  18. Denison, R. E. (1995). Significance of air‐photograph linears in the basement rocks of the Arbuckle Mountains. Oklahoma Geological Survey Circular, 97, 119–131.
    [Google Scholar]
  19. Denison, R. E., Bickford, M. E., Lidiak, E. G., & Kisvarsanyi, E. B. (1987). Geology and geochronology of Precambrian rocks in the central interior region of the United States. U.S. Geological Survey Professional Paper 1241‐C.
  20. Denison, R. E., Hetherington, E. A.Jr., & Kenny, G. S. (1966). Isotopic-age dates from basement rocks in Oklahoma. Oklahoma Geology Notes, 26, 170–176.
    [Google Scholar]
  21. Dolton, G. L., & Finn, T. F. (1989). Petroleum geology of the Nemaha uplift, central mid‐continent. Dept. of the Interior, US Geological Survey, No. 88‐450‐D.
  22. Droege, L., & Vick, H. (2018). Redefining the STACK play from subsurface to commercialization: Identifying stacked pay sweet spots in the Northern Anadarko Basin. AAPG ACE 2018 Annual Convention & Exhibition, Salt Lake City, Utah. Search and Discovery Article #11104.
  23. Elebiju, O. O., Matson, S., Keller, G. R., & Marfurt, K. J. (2011). Integrated geophysical studies of the basement structures, the Mississippi chert, and the Arbuckle Group of Osage County region, Oklahoma. AAPG Bulletin, 95, 371–393. https://doi.org/10.1306/08241009154
    [Google Scholar]
  24. Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 24, 617–620.
    [Google Scholar]
  25. Erslev, E. A., & Koenig, N. V. (2009). Three‐dimensional kinematics of Laramide, basement‐involved Rocky Mountain deformation, USA: Insights from minor faults and GIS‐enhanced structure maps. Geological Society of America Memoirs, 204, 125–150.
    [Google Scholar]
  26. Evenick, J. C. (2006).Potential subsurface structures and hydrocarbon reservoirs in the southern Appalachian basin beneath the Cumberland Plateau and eastern Highland Rim, Tennessee, Kentucky, and southwestern Virginia. University of Tennessee, Ph.D. Dissertation, 402.
  27. Evenick, J. C., & Hatcher, R. D.Jr (2006). Trenton‐Black River suggested as common nomenclature across Appalachian basin. Oil and Gas Journal, 104, 31–36.
    [Google Scholar]
  28. Font, R. G. (2003). Layered basement, basement truncated wedges, structural patterns, tectonic evolution, and seismic expression of Montague County, West of Muenster Arch in North Texas, USA. The Professional Geologist, 40, 2–7.
    [Google Scholar]
  29. Gay, S. P.Jr. (1999). Strike‐slip, compression thrust‐fold nature of the Nemaha system in eastern Kansas and Oklahoma. In D. F.Merrian (Ed.), Transactions of the 1999 AAPG Midcontinent section meeting (pp. 39–50). Kansas Geological Survey, Open‐file Report 99‐28. Wichita, KS: American Association of Petroleum Geologists.
    [Google Scholar]
  30. Gay, S. P.Jr (2003). The Nemaha trend‐a system of compressional thrust‐fold, strike‐slip structural features in Kansas and Oklahoma (part 2, conclusion). The Shale Shaker, 54, 39–49.
    [Google Scholar]
  31. Gwon, S., & Kim, Y. S. (2016). Interpretation of deformation history and paleostress based on fracture analysis exposed in a trench. The Journal of Engineering Geology, 26, 33–49. https://doi.org/10.9720/kseg.2016.1.33
    [Google Scholar]
  32. Hardy, S., & Allmendinger, R. W. (2011). Trishear: A review of kinematics, mechanics, and applications. In K.McClay, J.Shaw, & J.Suppe (Eds.), Thrust fault‐related folding (pp. 95–119). AAPG Memoir 94. Tulsa, OK: American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  33. Hardy, S., & Ford, M. (1997). Numerical modeling of trishear fault propagation folding. Tectonics, 16, 841–854. https://doi.org/10.1029/97TC01171
    [Google Scholar]
  34. Harper, T., Fossen, H., & Hesthammer, J. (2001). Influence of uniform basement extension on faulting in cover sediments. Journal of Structural Geology, 23, 593–600. https://doi.org/10.1016/S0191-8141(00)00107-3
    [Google Scholar]
  35. Henry, M. E., & Hester, T. C. (1995). Anadarko basin province (058). In D. L.Gautier, G. L.Dolton, K. I.Takahashi, & K. L.Varnes (Eds.), 1995 National assessment of United States oil and gas resources – Results, methodology, and supporting data (pp. 1–51). U.S. Geological Survey Digital Data Series DDS‐30, Release 2. Denver, CO: United States Geological Survey.
    [Google Scholar]
  36. Iaffa, D. N., Sàbat, F., Muñoz, J. A., Mon, R., & Gutierrez, A. A. (2011). The role of inherited structures in a foreland basin evolution. The Metán Basin in NW Argentina. Journal of Structural Geology, 33, 1816–1828. https://doi.org/10.1016/j.jsg.2011.09.005
    [Google Scholar]
  37. Infante‐Paez, L., & Marfurt, K. J. (2017). Seismic expression and geomorphology of igneous bodies: A Taranaki Basin, New Zealand, case study. Interpretation, 5, SK121–SK140. https://doi.org/10.1190/INT-2016-0244.1
    [Google Scholar]
  38. Jaiswal, P., Gregg, J. M., Parks, S., Holman, R., Mohammadi, S., & Grammer, G. M. (2017). Evidence of fault/fracture “Hydrothermal” reservoirs in the southern midcontinent Mississippian carbonates. In G. M.Grammer, J. M.Gregg, J. O.Puckette, P.Jaiswal, S. J.Mazzullo, M. J.Pranter, & R. H.Goldstein (Eds.), Mississippian reservoirs of the midcontinent. AAPG Memoir 116. Tulsa, OK: American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  39. Johnson, K. S. (1989). Geologic evolution of the Anadarko basin. Oklahoma Geological Survey Circular, 90, 3–12.
    [Google Scholar]
  40. Johnson, K. S. (2008). Geologic history of Oklahoma. Earth sciences and mineral resources of Oklahoma. Oklahoma Geological Survey Educational Publication, 9, 3–5.
    [Google Scholar]
  41. Keller, G. R., & Stephenson, R. A. (2007). The Southern Oklahoma and dniepr‐donets aulacogens: A comparative analysis. In R. D.HatcherJr., M. P.Carlson, J. H.McBride, & J. R.Martínez Catalán (Eds.), 4‐D Framework of continental crust (pp. 127–143). Geological Society of America Memoir, 200. Tulsa, OK: American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  42. Kibikas, W. M., Carpenter, B. M., & Ghassemi, A. (2019). The petrophysical and mechanical properties of Oklahoma's crystalline basement. In 53rd US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, August 2019.
  43. Kim, D., & Brown, L. D. (2019). From trash to treasure: Three‐dimensional basement imaging with “excess” data from oil and gas explorations. AAPG Bulletin, 103, 1691–1701. https://doi.org/10.1306/12191817420
    [Google Scholar]
  44. Kolawole, F., Atekwana, E. A., Laó‐Dávila, D. A., Abdelsalam, M. G., Chindandali, P. R., Salima, J., & Kalindekafe, L. (2018). Active deformation of Malawi rift's north basin Hinge zone modulated by reactivation of preexisting Precambrian Shear zone fabric. Tectonics, 37, 683–704. https://doi.org/10.1002/2017TC004628
    [Google Scholar]
  45. Kolawole, F., Johnston, C. S., Morgan, C. B., Chang, J. C., Marfurt, K. J., Lockner, D. A., … Carpenter, B. M. (2019). The susceptibility of Oklahoma’s basement to seismic reactivation. Nature Geoscience, 12, 839–844. https://doi.org/10.1038/s41561-019-0440-5
    [Google Scholar]
  46. Kolawole, F., Phillips, T. B., Atekwana, E. A., & Jackson, C.‐A.‐L. (2019). Structural inheritance controls strain distribution during early continental rifting, rukwa rift. EGU General Assembly Conference Abstract EGU2019‐1849 (vol. 21).
  47. Lacombe, O., & Bellahsen, N. (2016). Thick‐skinned tectonics and basement‐involved fold–thrust belts: Insights from selected Cenozoic orogens. Geological Magazine, 153, 763–810. https://doi.org/10.1017/S0016756816000078
    [Google Scholar]
  48. Lee, J., & Kim, Y. S. (2018). Deformation history based on the characteristics of dike‐controlled faults and cross‐cutting relationship between dikes and faults. In AGU Fall Meeting Abstracts #T23A‐0326.
  49. Liao, Z., Liu, H., Jiang, Z., Marfurt, K. J., & Reches, Z. E. (2017). Fault damage zone at subsurface: A case study using 3D seismic attributes and a clay model analog for the Anadarko Basin, Oklahoma. Interpretation, 5, T143–T150. https://doi.org/10.1190/INT-2016-0033.1
    [Google Scholar]
  50. Lidiak, E. G., Denison, R. E., & Stern, R. J. (2014). Cambrian (?) mill creek diabase dike swarm, Eastern arbuckles: A glimpse of Cambrian rifting in the southern Oklahoma aulacogen. Oklahoma Geological Survey Guidebook, 38, 105–122.
    [Google Scholar]
  51. Lihou, J. C., & Allen, P. A. (1996). Importance of inherited rift margin structures in the early North Alpine Foreland Basin, Switzerland. Basin Research, 8, 425–442. https://doi.org/10.1046/j.1365-2117.1996.00244.x
    [Google Scholar]
  52. Lowell, J. D. (1995). Mechanics of basin inversion from worldwide examples. Geological Society, London, Special Publications, 88, 39–57. https://doi.org/10.1144/GSL.SP.1995.088.01.04
    [Google Scholar]
  53. Marsh, S., & Holland, A. (2016).Comprehensive fault database and interpretive fault map of Oklahoma. Oklahoma Geological Survey Open‐File Report, 15.
  54. McBee, W. (2003a). The Nemaha and other strike‐slip faults in the midcontinent USA. AAPG Mid‐Continent Section Meeting Proceedings, Tulsa, OK, 1–23.
  55. McBee, W. (2003b).Nemaha strike‐slip fault zone, paper presented at AAPG Mid‐continent section meeting. Oct. 13.
  56. McBride, J. H., Leetaru, H. E., Keach, R. W., & McBride, E. I. (2016). Fine‐scale structure of the Precambrian beneath the Illinois Basin. Geosphere, 12, 585–606. https://doi.org/10.1130/GES01286.1
    [Google Scholar]
  57. McBride, J. H., William Keach, R., Leetaru, H. E., & Smith, K. M. (2018). Visualizing Precambrian basement tectonics beneath a carbon capture and storage site, Illinois Basin. Interpretation, 6, T257–T270. https://doi.org/10.1190/INT-2017-0116.1
    [Google Scholar]
  58. McClay, K. (2011). Introduction to thrust fault‐related folding. In K.McClay, J.Shaw, & J.Suppe (Eds.), Thrust fault‐related folding. AAPG Memoir (Vol. 94, pp. 1–19). Tulsa, OK: American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  59. McClay, K. R., & Ellis, P. G. (1987). Geometries of extensional fault systems developed in model experiments. Geology, 15, 341–344. https://doi.org/10.1130/0091-7613(1987)15<341:GOEFSD>2.0.CO;2
    [Google Scholar]
  60. McNamara, D. E., Rubinstein, J. L., Myers, E., Smoczyk, G., Benz, H. M., Williams, R. A., … Earle, P. (2015). Efforts to monitor and characterize the recent increasing seismicity in central Oklahoma. The Leading Edge, 34, 628–639. https://doi.org/10.1190/tle34060628.1
    [Google Scholar]
  61. Mitra, S., & Mount, V. S. (1998). Foreland basement‐involved structures. AAPG Bulletin, 82, 70–109.
    [Google Scholar]
  62. Mohammadi, S., Gregg, J. M., Shelton, K. L., Appold, M. S., & Puckette, J. O. (2017). Influence of late diagenetic fluids on Mississippian carbonate rocks on the Cherokee‐Ozark Platform, NE Oklahoma, NW Arkansas, SW Missouri, and SE Kansas. In G. M.Grammer, J. M.Gregg, J. O.Puckette, P.Jaiswal, S. J.Mazzullo, M. J.Pranter, & R. H.Goldstein (Eds.), Mississippian Reservoirs of the Midcontinent. AAPG Memoir 116. Tulsa, OK: American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  63. Naylor, M. A., Mandl, G. T., & Supesteijn, C. H. K. (1986). Fault geometries in basement‐induced wrench faulting under different initial stress states. Journal of Structural Geology, 8, 737–752. https://doi.org/10.1016/0191-8141(86)90022-2
    [Google Scholar]
  64. Northcutt, R. A., & Campbell, J. A. (1998). Geologic Provinces of Oklahoma. In J. P.Hogan & M. C.Gilbert (Eds.), Basement Tectonics 12. Proceedings of the International Conferences on Basement Tectonics, (Vol. 6). Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  65. Phillips, T. B., Magee, C., Jackson, C. A. L., & Bell, R. E. (2018). Determining the three‐dimensional geometry of a dike swarm and its impact on later rift geometry using seismic reflection data. Geology, 46, 119–122. https://doi.org/10.1130/G39672.1
    [Google Scholar]
  66. Powers, S. (1928). Age of the folding of the Oklahoma Mountains –The Ouachita, Arbuckle, and Wichita Mountains of Oklahoma and the llano‐burnet and marathon uplifts of Texas. Bulletin of the Geological Society of America, 39, 1031–1071. https://doi.org/10.1130/GSAB-39-1031
    [Google Scholar]
  67. Prucha, J. J., Graham, J. A., & Nickelson, R. P. (1965). Basement controlled deformation in Wyoming province of Rocky Mountain foreland. AAPG Bulletin, 49, 966–992.
    [Google Scholar]
  68. Qin, Y., Chen, X., Carpenter, B. M., & Kolawole, F. (2018). Coulomb stress transfer influences fault reactivation in areas of wastewater injection. Geophysical Research Letters, 45, 11,059–11,067. https://doi.org/10.1029/2018GL079713
    [Google Scholar]
  69. Qin, Y., Chen, X., Walter, J. I., Haffener, J., Trugman, D. T., Carpenter, B., … Kolawole, F. (2019). Deciphering the stress state of seismogenic faults in Oklahoma and southern Kansas based on an improved stress map. Journal of Geophysical Research: Solid Earth, 124, 12920–12934.
    [Google Scholar]
  70. Ramsay, J. G. (1967). Folding and fracturing of rocks (p. 568). New York City, NY: Mc Graw Hill Book Company.
    [Google Scholar]
  71. Ramsay, J. G., & Huber, M. I. (1987). The techniques of modern structural geology: Folds and fractures (Vol. 2). London, UK: Academic Press.
    [Google Scholar]
  72. Reches, Z. E. (1978). Development of monoclines: Part I. Structure of the Palisades Creek branch of the East Kaibab monocline, Grand Canyon, Arizona. In V.MatthewsIII (Ed.), Laramide folding associated with basement block faulting in the western United States. Boulder, CO: Geological Society of America.
    [Google Scholar]
  73. Reeve, M. T., Bell, R. E., & Jackson, C. A. L. (2014). Origin and significance of intra‐basement seismic reflections offshore western Norway. Journal of the Geological Society, 171, 1–4. https://doi.org/10.1144/jgs2013-020
    [Google Scholar]
  74. Rogers, J. (1987). Chains of basement uplifts within cratons marginal to orogenic belts. American Journal of Science, 287, 661–692.
    [Google Scholar]
  75. Schmidt, C. J., & Hendrix, T. E. (1981). Tectonic controls for thrust belt and Rocky Mountain foreland structures in the northern Tobacco Root Mountains-Jefferson Canyon area, southwestern Montana. Tectonic controls for thrust belt and Rocky Mountain foreland structures in the northern Tobacco Root Mountains-Jefferson Canyon area, southwestern Montana, University of Michigan, Ann Arbor, Michigan, 167–180.
    [Google Scholar]
  76. Schoenball, M., & Ellsworth, W. L. (2017). Waveform‐relocated earthquake catalog for Oklahoma and southern Kansas illuminates the regional fault network. Seismological Research Letters, 88, 1252–1258. https://doi.org/10.1785/0220170083
    [Google Scholar]
  77. Shah, A. K., & Keller, G. R. (2017). Geologic influence on induced seismicity: Constraints from potential field data in Oklahoma. Geophysical Research Letters, 44, 152–161. https://doi.org/10.1002/2016GL071808
    [Google Scholar]
  78. Simpson, M. (2015) A structural re‐evaluation of the Ardmore basin. In Mid‐Continent Section. Search and Discovery Article #10795. AAPG Mid‐Continent Section meeting in Tulsa, Oklahoma, October 4–6, 2015.
  79. Smith, L. B.Jr., & Davies, G. R. (2006). Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction. AAPG Bulletin, 90, 1635–1640. https://doi.org/10.1306/intro901106
    [Google Scholar]
  80. Stearns, D. W. (1975). Laramide basement deformation in the Bighorn basin – The controlling factor for structures in the layered rocks. Geology and mineral resources of the Bighorn basin, Wyoming. Geological Association 27th Annual Field Conference Guidebook, 149–158.
  81. Stearns, D. W. (1978). Faulting and forced folding in the Rocky Mountain foreland. In V.MatthewsIII (Ed.), Laramide folding associated with basement block faulting in the western United States. Geological Society of America Memoir (Vol. 151, pp. 1–37). Boulder, CO: Geological Society of America.
    [Google Scholar]
  82. Stein, S., Stein, C. A., Elling, R., Kley, J., Keller, R., Wysession, M., … Moucha, R. (2018). Insights from North America's failed Midcontinent Rift into the evolution of continental rifts and passive continental margins. Tectonophysics, 744, 403–421. https://doi.org/10.1016/j.tecto.2018.07.021
    [Google Scholar]
  83. Stone, D. S. (1993). Basement‐involved thrust‐generated folds as seismically imaged in the subsurface of the central Rocky Mountain foreland. In C. J.Schmidt, R. B.Chase, & E. A.Erslev (Eds.), Laramide basement deformation in the Rocky Mountain foreland of the western United States. Geological Society of America Special Paper (Vol. 280, pp. 271–318). Boulder, CO: Geological Society of America.
    [Google Scholar]
  84. Suppe, J. (1983). Geometry and kinematics of fault‐bend folding. American Journal of Science, 283, 684–721. https://doi.org/10.2475/ajs.283.7.684
    [Google Scholar]
  85. Thomas, J. J., Shuster, R. D., & Bickford, M. E. (1984). A terrane of 1,350‐to 1,400‐my‐old silicic volcanic and plutonic rocks in the buried Proterozoic of the mid‐continent and in the Wet Mountains, Colorado. Geological Society of America Bulletin, 95, 1150–1157. https://doi.org/10.1130/0016-7606(1984)95<1150:ATOTMS>2.0.CO;2
    [Google Scholar]
  86. Tindall, S. E., & Davis, G. H. (1999). Monocline development by oblique‐slip fault‐propagation folding: The East Kaibab monocline, Colorado Plateau, Utah. Journal of Structural Geology, 21, 1303–1320.
    [Google Scholar]
  87. Turner, J. P., & Williams, G. A. (2004). Sedimentary basin inversion and intra‐plate shortening. Earth‐Science Reviews, 65, 277–304. https://doi.org/10.1016/j.earscirev.2003.10.002
    [Google Scholar]
  88. Van der Pluijm, B. A., & Catacosinos, P. A. (1996). Basement and basins of eastern North America. Geological Society of America Special Paper, 308.
    [Google Scholar]
  89. Van Schmus, W. R., & Hinze, W. J. (1985). The midcontinent rift system. Annual Review of Earth and Planetary Sciences, 13, 345–383. https://doi.org/10.1146/annurev.ea.13.050185.002021
    [Google Scholar]
  90. Wall, M., Cartwright, J., Davies, R., & McGrandle, A. (2010). 3D seismic imaging of a Tertiary Dyke Swarm in the Southern North Sea, UK. Basin Research, 22, 181–194. https://doi.org/10.1111/j.1365-2117.2009.00416.x
    [Google Scholar]
  91. Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the Proterozoic growth of North America. Geosphere, 3, 220–259. https://doi.org/10.1130/GES00055.1
    [Google Scholar]
  92. Widess, M. B., & Taylor, G. L. (1959). Seismic reflections from layering within the pre‐Cambrian basement complex, Oklahoma. Geophysics, 24, 417–425. https://doi.org/10.1190/1.1438603
    [Google Scholar]
  93. Yee, D., Johnston, G., Howard, D., & Ahmed, S. (2017). September. STACKing it up: An economic and geological analysis of the STACK. In Unconventional Resources Technology Conference, Austin, Texas, 24–26 July 2017, 2496–2501. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
  94. Yonkee, W. A. (1992). Basement‐cover relations, Sevier orogenic belt, northern Utah. Geological Society of America Bulletin, 104, 280–302. https://doi.org/10.1130/0016-7606(1992)104<0280:BCRSOB>2.3.CO;2
    [Google Scholar]
  95. Zaleski, E., Eaton, D. W., Milkereit, B., Roberts, B., Salisbury, M., & Petrie, L. (1997). Seismic reflections from subvertical diabase dikes in an Archean terrane. Geology, 25, 707–710. https://doi.org/10.1130/0091-7613(1997)025<0707:SRFSDD>2.3.CO;2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12433
Loading
/content/journals/10.1111/bre.12433
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error