1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The western North China Craton (W‐NCC) comprises the Alxa Terrane in the west and the Ordos Block in the east; they are separated by the Helanshan Tectonic Belt (HTB). There is an extensive debate regarding the significant Ordovician tectonic setting of the W‐NCC. Most paleogeographic reconstructions emphasized the formation and rapid subsidence of an aulacogen along the HTB during the Middle–Late Ordovician, whereas paleomagnetic and geochronologic results suggested that the Alxa Terrane and the Ordos Block were independent blocks separated by the HTB. In this study, stratigraphic and geochronologic methods were used to constrain the Ordovician tectonic processes of the W‐NCC. Stratigraphic correlations show that the Early Ordovician strata comprise ~500‐m‐thick tidal flat and lagoon carbonate successions with a progressive eastward onlap, featuring a west‐deepening shallow‐water carbonate shelf. In contrast, the Late Ordovician strata are composed of ~3,000‐m‐thick abyssal turbidites in the west and ~400‐m‐thick shallow‐water carbonates in the east, defining an eastward‐tapering basin architecture. Early Ordovician detrital zircons with ages of ~2,800–1,700 Ma were derived from the Ordos Block; the Late Ordovician turbidites were sourced from the western Alxa Terrane, based on zircon ages clustered at ~1,000–900 Ma. The petrographic modal composition and zircon age distribution imply a provenance shift from a stable craton to a recycled orogen in the Middle Ordovician. These shifts define a tectonic conversion from a passive continental margin to a foreland basin at ~467 Ma, resulting in the eastward progradation of the turbidite wedge around the HTB, the eastward backstepping of the carbonate platform in the east and the eastward expansion of orogenic thrusting in the western Alxa Terrane. This tectono‐sedimentary shift coincided with the advancing subduction of the southern Paleo‐Asian Ocean beneath the Alxa Terrane, generating the western Alxa continental arc and the paired retro‐arc foredeep in the east under a compressional tectonic regime.

,

Reconstruction model of the Ordovician tectono‐sedimentology evolution of the Northwestern Ordos Terrane.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12435
2020-11-22
2024-04-19
Loading full text...

Full text loading...

References

  1. An, T. Y. (1990). Conodont in the Ordos Basin and its surrounding. Beijing, China: Science Publishing House [in Chinese with English abstract].
    [Google Scholar]
  2. Andersen, T. (2002). Correction of common lead in U‐Pb analyses that do not report 204Pb. Chemical Geology, 192, 59–79. https://doi.org/10.1016/S0009-2541(02)00195-X
    [Google Scholar]
  3. Bao, Z. D., Li, R. F., & Feng, Z. Z. (1999). Stratigraphic division and correlation of the Ordovician in the eastern and the western Ordos Basin: A review. Geological Review, 45, 375–381 [in Chinese with English abstract].
    [Google Scholar]
  4. Belousova, E., Griffin, W., O'Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602–622. https://doi.org/10.1007/s00410-002-0364-7
    [Google Scholar]
  5. Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J., & Foudoulis, C. (2003). TEMORA 1: A new zircon standard for Phanerozoic U‐Pb geochronology. Chemical Geology, 200, 155–170. https://doi.org/10.1016/S0009-2541(03)00165-7
    [Google Scholar]
  6. Bradley, D. C., & Kidd, W. S. (1991). Flexural extension of the upper continental crust in collisional foredeeps. Geological Society of America Bulletin, 103, 1416–1438. https://doi.org/10.1130/0016-7606(1991)103<1416:FEOTUC>2.3.CO;2
    [Google Scholar]
  7. Cawood, P. A., Hawkesworth, C. J., & Dhuime, B. (2012). Detrital zircon record and tectonic setting. Geology, 40, 875–878. https://doi.org/10.1130/G32945.1
    [Google Scholar]
  8. Cawood, P. A., & Nemchin, A. A. (2000). Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134, 209–234. https://doi.org/10.1016/S0037-0738(00)00044-0
    [Google Scholar]
  9. Chen, Q. (2011). Research on the lithofacies paleogeography of the Lower Paleozoic in the southwestern margin of Ordos. PhDs thesis, Northwest University, Xi'an, China.
    [Google Scholar]
  10. Chen, S. Y. (2000). Control of sea‐level change to coal accumulation in Carboniferous‐Permian, North China. Coal Geology & Exploration, 28, 8–11 [in Chinese with English abstract].
    [Google Scholar]
  11. Chen, S. Y., & Liu, H. J. (1995). Carboniferous‐Permian sequence stratigraphy in North China. Lithofacies Paleogeography, 5, 11–20 [in Chinese with English abstract].
    [Google Scholar]
  12. Chen, S. Y., & Liu, H. J. (1999). Sequence stratigraphic framework and its characteristics of the Carboniferous‐Permian in North China. Acta Sedimentologica Sinica, 17, 63–80 [in Chinese with English abstract].
    [Google Scholar]
  13. Chen, S. Y., Xu, F. Y., & Liu, H. J. (2000). Sequence stratigraphy and coal accumulation theory of late Paleozoic in North China. Dongying, China: Petroleum University Press [in Chinese with English abstract].
    [Google Scholar]
  14. Corfu, F. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500. https://doi.org/10.2113/0530469
    [Google Scholar]
  15. Dan, W., Li, X. H., Wang, Q., Wang, X. C., & Liu, Y. (2014). Neoproterozoic S‐type granites in the Alxa Block, westernmost North China and tectonic implications: In situ zircon U‐Pb‐Hf‐O isotopic and geochemical constraints. American Journal of Science, 21, 110–153. https://doi.org/10.2475/01.2014.04
    [Google Scholar]
  16. Dan, W., Li, X. H., Wang, Q., Wang, X. C., Wyman, D. A., & Liu, Y. (2016). Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U‐Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research, 32, 105–121. https://doi.org/10.1016/j.gr.2015.02.011
    [Google Scholar]
  17. Darby, B. J., & Gehrels, G. (2006). Detrital zircon reference for the North China block. Journal of Asian Earth Sciences, 26, 637–648. https://doi.org/10.1016/j.jseaes.2004.12.005
    [Google Scholar]
  18. Darby, B. J., & Ritts, B. D. (2002). Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate Western Ordos fold‐thrust belt, China. Earth and Planetary Science Letters, 205, 13–24. https://doi.org/10.1016/s0012-821x(02)01026-9
    [Google Scholar]
  19. Dávila, F. M., Astini, R. A., Jordan, T. E., Gehrels, G., & Ezpeleta, M. (2007). Miocene forebulge development previous to broken foreland partitioning in the southern Central Andes, west‐central Argentina. Tectonics, 26, TC5016. https://doi.org/10.1029/2007TC002118
    [Google Scholar]
  20. de Jong, K., Xiao, W., Windley, B. F., Masago, H., & Lo, C. H. (2006). Ordovician 40Ar/39Ar phengite ages from the blueschist‐facies Ondor Sum subduction‐accretion complex (Inner Mongolia) and implications for the early Paleozoic history of continental blocks in China and adjacent areas. American Journal of Science, 306, 799–845. https://doi.org/10.2475/10.2006.02
    [Google Scholar]
  21. Delavault, H., Dhuime, B., Hawkesworth, C. J., Cawood, P. A., & Marschall, H. (2016). Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology, 44, 819–822. https://doi.org/10.1130/G38117.1
    [Google Scholar]
  22. Dhuime, B., Hawkesworth, C. J., Storey, C. D., & Cawood, P. A. (2011). From sediments to their source rocks: Hf and Nd isotopes in recent river sediments. Geology, 39, 407–410. https://doi.org/10.1130/G31785.1
    [Google Scholar]
  23. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G.G.Zuffa (Eds.), Provenance of arenites (pp. 333–361). Berlin, Germany: Springer Netherlands. https://doi.org/10.1007/978-94-017-2809-6_15
    [Google Scholar]
  24. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. AAPG Bulletin, 63, 2164–2182. https://doi.org/10.1306/2f9188fb-16ce-11d7-8645000102c1865d
    [Google Scholar]
  25. Ding, H. J., Meng, X. H., Ge, M., & Xue, H. Y. (2008). Ordovician contourite deposition on the northern segment of the helan aulagogen seen from the Beanch MT Section. Geology of Anhui, 18, 8–15 [in Chinese with English abstract].
    [Google Scholar]
  26. Dong, Y. P., Genser, J., Neubauer, F., Zhang, G. W., Liu, X. M., Yang, Z., & Heberer, B. (2011). U‐Pb and 40Ar/39Ar geochronological constraints on the exhumation history of the North Qinling Terrane, China. Gondwana Research, 19, 881–893. https://doi.org/10.1016/j.gr.2010.09.007
    [Google Scholar]
  27. Dong, Y. P., Liu, X. M., Neubauer, F., Zhang, G. W., Tao, N., Zhang, Y. G., … Li, W. (2013). Timing of Paleozoic amalgamation between the North China and South China Blocks: Evidence from detrital zircon U‐Pb ages. Tectonophysics, 586, 173–191. https://doi.org/10.1016/j.tecto.2012.11.018
    [Google Scholar]
  28. Dong, Y. P., & Santosh, M. (2016). Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, central China. Gondwana Research, 29, 1–40. https://doi.org/10.1016/j.gr.2015.06.009
    [Google Scholar]
  29. Dong, Y. P., Zhang, G. W., Hauzenberger, C., Neubauer, F., Yang, Z., & Liu, X. M. (2011). Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122, 39–56. https://doi.org/10.1016/j.lithos.2010.11.011
    [Google Scholar]
  30. Dong, Y. P., Zhang, G. W., Neubauer, F., Liu, X. M., Genser, J., & Hauzenberger, C. (2011). Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41, 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002
    [Google Scholar]
  31. Dong, Y. P., Zhang, X. N., Liu, X. M., Li, W., Chen, Q., Zhang, G. W., … Zhang, F. F. (2015). Propagation tectonics and multiple accretionary processes of the Qinling orogen. Journal of Asian Earth Sciences, 104, 84–98. https://doi.org/10.1016/j.jseaes.2014.10.007
    [Google Scholar]
  32. Eizenhöfer, P. R., & Zhao, G. C. (2018). Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo‐Asian Ocean. Earth‐Science Reviews, 186, 153–172. https://doi.org/10.1016/j.earscirev.2017.09.010
    [Google Scholar]
  33. Eizenhöfer, P. R., Zhao, G. C., Sun, M., Zhang, J., Han, Y. G., & Hou, W. Z. (2015). Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications. Geological Society of America Bulletin, 224–225, 240–255. https://doi.org/10.1130/b31175.1
    [Google Scholar]
  34. Eizenhöfer, P. R., Zhao, G. C., Zhang, J., Han, Y. G., Hou, W. Z., Liu, D. X., & Wang, B. (2015). Geochemical characteristics of the Permian basins and their provenances across the Solonker Suture zone: Assessment of net crustal growth during the closure of the Palaeo‐Asian Ocean. Lithos, 127, 1422–1436. https://doi.org/10.1016/j.lithos.2015.03.012
    [Google Scholar]
  35. Fei, A. W. (2001). Study of trace fossil assemblage and paleoenvironment of middle Ordovician Lashizhong Formation, Ordos Basin. Geological Journal of China Universities, 7, 35–44 [in Chinese with English abstract].
    [Google Scholar]
  36. Fei, A. W., Liu, C. L., & Gao, J. (2004). Bioturbation structures and paleogeography of mixed deposits of the Lower Ordovician Sandaokan Formation, Ordos Basin. Geology in China, 31, 347–355 [in Chinese with English abstract].
    [Google Scholar]
  37. Feng, J. Y., Xiao, W. J., Windley, B., Han, C. M., Wan, B., Zhang, J. E., … Lin, L. (2013). Field geology, geochronology and geochemistry of mafic‐ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids. Journal of Asian Earth Sciences, 78, 114–142. https://doi.org/10.1016/j.jseaes.2013.01.020
    [Google Scholar]
  38. Fu, J. H., & Zheng, C. B. (2001). Evolution between north China sea and Qilian sea of the Ordovician and the characteristics of lithofacies palaeogeography in Ordos Basin. Journal of Palaeogeography, 3, 25–34 [in Chinese with English abstract].
    [Google Scholar]
  39. Fu, L. P., Hu, Y. X., Zhang, Z. F., & Wang, S. X. (1993). The mark on the ecology of sedimentarial environment in middle and upper Ordovician at Ordos Basin. Natural Gas Geoscience, 2, 1–88.
    [Google Scholar]
  40. Gao, Z. Z., Luo, S. S., He, Y. B., Zhang, J. S., & Tang, Z. J. (1995). The middle Ordovician contourite on the west margin of Ordos. Acta Sedimentologica Sinica, 13, 16–26 [in Chinese with English abstract].
    [Google Scholar]
  41. Geng, Y. S., & Zhou, X. W. (2010). Early Neoproterozoic granite events in Alxa area of Inner Mongolia and their geological significance: Evidence from geochronology. Acta Petrologica Sinica, 29, 779–795 [in Chinese with English abstract].
    [Google Scholar]
  42. Gong, J., Zhang, J., Wang, Z., Yu, S., Li, H., & Li, Y. (2015). Origin of the Alxa Block, Western China: New evidence from zircon U‐Pb geochronology and Hf isotopes of the Longshoushan complex. Gondwana Research, 36, 359–375. https://doi.org/10.1016/j.gr.2015.06.014
    [Google Scholar]
  43. Gong, J. H., Zhang, J. X., Yu, S. Y., Li, H. K., & Hou, K. J. (2012). Ca. 2.5 Ga TTG rocks in the western Alxa block and their implications. Chinese Science Bulletin, 57, 4064–4076. https://doi.org/10.1007/s11434-012-5315-8 [in Chinese with English abstract].
    [Google Scholar]
  44. Guo, F. (2007). Sequence stratigraphy and marine source rocks of Cambrian and Ordovician, Helan Aulacogen. PhDs thesis, China University of Geosciences, Beijing, China [in Chinese with English abstract].
    [Google Scholar]
  45. Guo, F., Guo, L., & Zhao, W. W. (2011). Ordovician paleogeography in Helan Aulacogen Mar. Marine Geology and Quaternary Geology, 5, 51–58 [in Chinese with English abstract].
    [Google Scholar]
  46. Guo, Y. H., Liu, H. J., Quan, B., Wang, Z. C., & Qian, K. (1998). Late Paleozoic sedimentary system and paleogeographic evolution of Ordos area. Acta Sedimentologica Sinica, 16, 44–51 [in Chinese with English abstract].
    [Google Scholar]
  47. Guo, Y. R., Zhao, Z. Y., Fu, J. H., Xu, W. L., Shi, X. Y., Sun, L. Y., … Liu, H. (2012). Sequence lithofacies paleogeography of the Ordovician in Ordos Basin, China. Acta Petrologica Sinica, 33, 95–109 [in Chinese with English abstract].
    [Google Scholar]
  48. Guo, Y. R., Zhao, Z. Y., Xu, W. L., Shi, X. Y., Gao, J. R., Bao, H. P., … Zhang, Y. Q. (2014). Sequence stratigraphy of the Ordovician system in the Ordos Basin. Acta Sedimentologica Sinica, 32, 44–60 [in Chinese with English abstract].
    [Google Scholar]
  49. Han, P. L., Zhang, Y. Q., Feng, Q., Gao, J. R., Zhang, M. S., & Wang, H. Y. (2009). Petrofacies paleogeography and evolution of Ordovician of Qilian Sea area in Ordos Basin. Geoscience, 23, 822–827 [in Chinese with English abstract].
    [Google Scholar]
  50. Han, Y. G., Zhao, G. C., Cawood, P. A., Sun, M., Eizenhöfer, P. R., Hou, W. Z., … Liu, Q. (2016). Tarim and North China cratons linked to northern Gondwana through switching accretionary tectonics and collisional orogenesis. Geology, 44, 95–98. https://doi.org/10.1130/g37399.1
    [Google Scholar]
  51. Hou, X. B., Yin, K. M., Lin, Z. K., Han, X. Y., & Chen, W. (2014). The study of tectonic inversion, evolution, and superposition of Yinchuan basin. Geological Journal of China Universities, 20, 277–285 [in Chinese with English abstract].
    [Google Scholar]
  52. Hu, J. M., Gong, W. B., Wu, S. J., Liu, Y., & Liu, S. C. (2014). LA‐ICP‐MS Zircon U‐Pb dating of the Langshan group in the northeast margin of the Alxa Block, with tectonic implications. Precambrian Research, 255, 756–770. https://doi.org/10.1016/j.precamres.2014.08.013
    [Google Scholar]
  53. Huang, X. F., Qian, Z. Z., Lu, D. X., Wu, W. K., Lu, Y. J., & Bai, Z. M. (2010). Depositional characteristics and provenance analysis of the Miboshan Formation, Helan Mountain. Acta Sedimentologica Sinica, 28, 426–433 [in Chinese with English abstract].
    [Google Scholar]
  54. Huang, X. N., Zhang, J. S., Peng, P., & Li, T. B. (2013). Structural deformation characteristics of the Paleoproterozoic crystaline basement in the northern segment of Helan Mountain and its regional tectonic implications. Acta Petrologica Sinica, 29, 2353–2370 [in Chinese with English abstract].
    [Google Scholar]
  55. Humberto, L. S. R., João, F. S., Renato, C. S. F., & Alkmim, F. F. (2017). Ediacaran forebulge grabens of the southern São Francisco basin, SE Brazil: Craton interior dynamics during West Gondwana assembly. Precambrian Research, 302, 150–170. https://doi.org/10.1016/j.precamres.2017.09.023
    [Google Scholar]
  56. Ingersoll, R. V., Fullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54, 103–116. https://doi.org/10.1306/212f8788-2b24-11d7-8648000102c1865d
    [Google Scholar]
  57. Jian, P., Liu, D., Kröner, A., Windley, B. F., Shi, Y. R., Zhang, F. Q., … Ren, J. S. (2008). Time scale of an early to mid‐Paleozoic orogenic cycle of the long‐lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth. Lithos, 101, 233–259. https://doi.org/10.1016/j.lithos.2007.07.005
    [Google Scholar]
  58. Jin, H. J., Sun, M. L., & Li, Y. C. (2005). The “Special” turbidite measure of the Middle Ordovician Series in Zhuozishan Area, Inner Mongolia. Acta Sedimentologica Sinica, 23, 34–40.
    [Google Scholar]
  59. Li, A. R., Liu, W. J., Zhang, J. Q., Geng, A. Q., & Hao, S. M. (1993). Sedimentary characteristics and evolution of early Ordovician in Ordos Basin. Journal of Chengdu University of Technology, 1, 17–26 [in Chinese with English abstract].
    [Google Scholar]
  60. Li, B. (2009). Research on the sequence stratigraphy and lithofacies paleogeography of the Early Paleozoic in Erdos Basin. PhDs thesis, China university of Geosciences, Beijing, China [in Chinese with English abstract].
    [Google Scholar]
  61. Li, J. Y., Zhang, J., & Qu, J. F. (2012). Amalgamation of North China Craton with Alxa Block in the late of early Paleozoic: Evidence from sedimentary sequences in the Niushou Mountain, Ningxia Hui Autonomous Region, NW China. Geological Review, 58, 208–214 [in Chinese with English abstract].
    [Google Scholar]
  62. Li, R. H. (1993). Trace fossils and ichnofacies of Middle Ordovician Gongwusu Formation, Zhuozishan, Inner Mongolia. Acta Palaeontologica Sinica, 1, 88–104 [in Chinese with English abstract].
    [Google Scholar]
  63. Li, W. H., Chen, Q., Li, Z. C., Wang, R. G., Wang, Y., & Ma, Y. (2012). Lithofacies palaeogeography of the early Paleozoic in Ordos area. Journal of Palaeogeography, 14, 85–100 [in Chinese with English abstract].
    [Google Scholar]
  64. Li, W. B., Hu, C. S., Zhong, R. C., & Zhu, F. (2015). U‐Pb, 39Ar/40Ar geochronology of the metamorphosed volcanic rocks of the Bainaimiao Group in central Inner Mongolia and its implications for ore genesis and geodynamic setting. Journal of Asian Earth Sciences, 97, 251–259. https://doi.org/10.1016/j.jseaes.2014.06.007
    [Google Scholar]
  65. Li, W. Y., Tang, Z. L., Guo, Z. P., & Wang, W. (2004). Petrogenetic epoch and geochemical characteristics of mafic‐ultramafic rocks on the southern margin of Alxa massif in northern China. Acta Petrologica et Mineralogica, 23, 117–126 [in Chinese with English abstract].
    [Google Scholar]
  66. Lin, C. S., Yang, Q., Li, S. T., & Li, Z. (1991). Sedimentary characters of the Early Paleozoic deep water gravity flow systems and basin filling style in the Helan Aulacogen, northwest China. Geoscience, 3, 252–262 [in Chinese with English abstract].
    [Google Scholar]
  67. Liu, B. X., Yan, X. X., Bai, H. F., & Li, Y. (2008). Reservoir‐forming conditions of middle Ordovician Pingliang Formation, Southern margin of Ordos Basin. Natural Gas Geoscience, 19, 657–661 [in Chinese with English abstract].
    [Google Scholar]
  68. Liu, Q., Zhao, G., Sun, M., Han, Y., Eizenhöfer, P. R., Hou, W., … Xu, B. (2016). Early Paleozoic subduction processes of the Paleo‐Asian Ocean: Insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane. Lithos, 262, 546–560. https://doi.org/10.1016/j.lithos.2016.07.041
    [Google Scholar]
  69. Liu, S. F. (1998). The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China. Journal of Asian Earth Sciences, 16, 369–383. https://doi.org/10.1016/s0743-9547(98)00020-8
    [Google Scholar]
  70. Liu, S. F., Heller, P. L., & Zhang, G. W. (2003). Mesozoic basin development and tectonic evolution of the Dabieshan orogenic belt, central China. Tectonics, 22, 12-1–12-21. https://doi.org/10.1029/2002tc001390
    [Google Scholar]
  71. Liu, S. F., Steel, R., & Zhang, G. W. (2005). Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: Record of continent‐continent collision. Journal of Asian Earth Sciences, 25, 9–27. https://doi.org/10.1016/j.jseaes.2004.01.010
    [Google Scholar]
  72. Liu, S. F., & Yang, S. G. (2000). Upper Triassic‐Jurassic sequence stratigraphy and its structural controls in the western Ordos Basin, China. Basin Research, 12, 1–18. https://doi.org/10.1046/j.1365-2117.2000.00107.x
    [Google Scholar]
  73. Liu, X. M., Gao, S., Diwu, C. R., Yuan, H. L., & Hu, Z. C. (2007). Simultaneous in‐situ, determination of U‐Pb age and trace elements in zircon by LA‐ICP‐MS in 20 μm spot size. Chinese Science Bulletin, 52, 1257–1264. https://doi.org/10.1007/s11434-007-0160-x
    [Google Scholar]
  74. Liu, X. F., & Liu, S. P. (1997). Subsidence history analysis of Bayanhot Basin. Journal of Xi'an Shiyou University (Natural Science Edition), 12, 25–31 [in Chinese with English abstract].
    [Google Scholar]
  75. Liu, Z. Q. (2014). Basin‐Mountain conversion of Yinchuan Basin and its coupling relation to Helan Mountain. Journal of Hefei University of Technology, 37, 1366–1371 [in Chinese with English abstract].
    [Google Scholar]
  76. Ludwig, K. R. (2003). ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special publication, no. 4.
  77. Ma, Z. R., Bai, H. F., Liu, B. X., Wang, H. W., & Chen, D. S. (2013). Lithofacies palaeogeography of the Middle‐Late Ordovician Kelimoli and Wulalike ages in western Ordos area. Journal of Palaeogeography, 15, 751–764 [in Chinese with English abstract].
    [Google Scholar]
  78. Miao, L., Zhang, F., Fan, W. M., & Liu, D. (2007). Phanerozoic evolution of the Inner Mongolia–Daxinganling orogenic belt in North China: Constraints from geochronology of ophiolites and associated formations. Geological Society, London, Special Publications, 280, 223–237. https://doi.org/10.1144/sp280.11
    [Google Scholar]
  79. Myrow, P. M., Chen, J., Snyder, Z., Leslie, S., Fike, D. A., Fanning, C. M., … Tang, P. (2015). Depositional history, tectonics, and provenance of the Cambrian‐Ordovician boundary interval in the western margin of the North China Block. Geological Society of America Bulletin, 127(9–10), 1174–1193. https://doi.org/10.1130/b31228.1
    [Google Scholar]
  80. Pace, P., Pasqui, V., Tavarnelli, E., & Calamita, F. (2017). Foreland‐directed gravitational collapse along curved thrust fronts: Insights from a minor thrust‐related shear zone in the Umbria–Marche belt, central‐northern Italy. Geological Magazine, 154, 381–392. https://doi.org/10.1017/s0016756816000200
    [Google Scholar]
  81. Pan, B., Zhang, C. G., Chen, A. Q., Yang, S., Yue, Q., & Liu, Y. F. (2016). Features of microfacies of Kelimolo Formation in the northwestern Ordos Basin. Natural Gas Exploration and Development, 39, 6–10 [in Chinese with English abstract].
    [Google Scholar]
  82. Qian, T., Liu, S. F., Li, W. P., Gao, T. J., & Chen, X. L. (2015). Early‐middle Jurassic evolution of the northern Yangtze foreland basin: A record of uplift following Triassic continent–continent collision to form the Qinling‐Dabieshan orogenic belt. International Geology Review, 57, 327–341. https://doi.org/10.1080/00206814.2015.1006270
    [Google Scholar]
  83. Robert, W. H. B. (2009). Relationships between the Apennine thrust belt, foredeep and foreland revealed by marine seismic data, offshore Calabria. Italian Journal of Geosciences, 128, 269–278. https://doi.org/10.3301/IJG.2009.128.2.269
    [Google Scholar]
  84. Shi, X. J., Wang, T., Zhang, L., Castro, A., Xiao, X. C., Tong, Y., … Yang, Q. D. (2014). Timing, petrogenesis and tectonic setting of the late Paleozoic gabbro‐granodiorite‐granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt. Lithos, 208, 158–177. https://doi.org/10.1016/j.lithos.2014.08.024
    [Google Scholar]
  85. Shi, X. J., Zhang, L., Wang, T., Zhang, J. J., Liu, M. H., Zhou, H. S., & Yan, Y. T. (2016). Zircon geochronology and Hf isotopic compositions for the Mesoproterozoic gneisses in Zongnaishan area, northern Alxa and its tectonic affinity. Acta Petrologica Sinica, 32, 3518–3536 [in Chinese with English abstract].
    [Google Scholar]
  86. Song, D. F. (2009). Study on lithofacies paleogeography of Ordovician of Ordos. MSs thesis, Shandong University of Science and Technology, Qingdao [in Chinese with English abstract].
    [Google Scholar]
  87. Song, S. G., Niu, Y. L., Su, L., & Xia, X. (2013). Tectonics of the North Qilian orogen, NW China. Gondwana Research, 23, 1378–1401. https://doi.org/10.1016/j.jseaes.2008.11.005
    [Google Scholar]
  88. Song, S. G., Niu, Y. L., Zhang, L. F., Wei, C. J., Liou, J. G., & Su, L. (2009). Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: New perspectives. Journal of Asian Earth Sciences, 35, 334–353. https://doi.org/10.1016/j.jseaes.2008.11.005
    [Google Scholar]
  89. Sun, J. P., & Dong, Y. P. (2019a). Middle‐Late Triassic sedimentation in the Helanshan Tectonic belt: Constrain on the tectono‐sedimentary evolution of the Ordos Basin, North China. Geoscience Frontiers, 10, 213–227. https://doi.org/10.1016/j.gsf.2018.05.017
    [Google Scholar]
  90. Sun, J. P., & Dong, Y. P. (2019b). Triassic tectonic interactions between the Alxa Massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, North China. Journal of Asian Earth Sciences, 169, 162–181. https://doi.org/10.1016/j.jseaes.2018.08.002
    [Google Scholar]
  91. Sun, J. P., & Dong, Y. P. (2019c). Cambrian tectonic evolution of the northwestern Ordos Terrane, North China: Constraints of stratigraphy, sedimentology and zircon U‐Pb geochronology. International Journal of Earth Sciences, 108, 569–586. https://doi.org/10.1007/s00531-018-1669-8
    [Google Scholar]
  92. Tang, X. Y., Feng, Q., & Li, D. S. (1990). Tectonic characteristics and evolution of Bayanhot Basin, western Inner Mongolia. Geological Review, 11, 127–135 [in Chinese with English abstract].
    [Google Scholar]
  93. Tang, X. Y., Guo, Z. M., & Wang, D. Y. (1988). The characteristics and evolution of the thrust nappe Tectonic Belt and its petroleum potential in the west Ordos Basin. Oil & Gas Geology, 9, 1–10 [in Chinese with English abstract].
    [Google Scholar]
  94. Wan, Y. S., Xie, H. Q., Yang, H., Wang, Z. J., Liu, D. Y., Alfred, K., … Du, L. L. (2013). Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton. American Journal of Science, 313, 683–711. https://doi.org/10.2475/07.2013.03
    [Google Scholar]
  95. Wang, E. C., Peter, J. J. K., Xu, G. Q., Hodges, K. V., Meng, K., Chen, L., … Luo, H. (2015). Flexural bending of southern Tibet in a retro foreland setting. Scientific Reports, 5, 12076. https://doi.org/10.1038/srep12076
    [Google Scholar]
  96. Wang, T., Wang, J., & Liu, J. (1994). Igneous rock associations and geochemical characteristics of volcanic arc with continental crustal basement in Zongnaishan‐Shalazhashan. Geochimica (Beijing), 23, 162–172 [in Chinese with English abstract].
    [Google Scholar]
  97. Wang, Y. X. (1994). Tectonic framework and evolution of Ordos Massif in Paleozoic. Journal of Earth Science, 6, 778–786 [in Chinese with English abstract].
    [Google Scholar]
  98. Wang, Y. Q. (2012). Sedimentary facies characteristics of the Carboniferous in the Bayanhaote Basin. MSs Thesis, Chengdu University of Technology, Chengdu, China [in Chinese with English abstract].
    [Google Scholar]
  99. Wang, Z. Z., Han, B. F., Feng, L. X., Liu, B., Zheng, B., & Kong, L. J. (2016). Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean‐Paleoproterozoic evolution of the Western North China Craton: Evidence from LA‐ICP‐MS zircon U‐Pb dating of the Langshan basement. Lithos, 261, 278–295. https://doi.org/10.1016/j.lithos.2016.03.005
    [Google Scholar]
  100. Wang, Z. T., Zhou, H. R., Wang, X. L., Zheng, M. P., Santosh, M., Jing, X. C., … Zhang, Y. S. (2016). Detrital zircon fingerprints link western North China Craton with East Gondwana during Ordovician. Gondwana Research, 40, 58–76. https://doi.org/10.1016/j.gr.2016.08.007
    [Google Scholar]
  101. Wei, K. S., Xu, H. D., & Ye, S. F. (1996). Carbonate sequence stratigrapyh of Ordovician in the northern Ordos Basin. Journal of Earth Science, 1, 1–10 [in Chinese with English abstract].
    [Google Scholar]
  102. Wu, S. J., Hu, J. M., Ren, M. H., Gong, W. B., Liu, Y., & Yan, J. Y. (2014). Petrography and zircon U‐Pb isotopic study of the Bayanwulashan complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton. Journal of Asian Earth Sciences, 94, 226–239. https://doi.org/10.1016/j.jseaes.2014.05.011
    [Google Scholar]
  103. Xi, Y. H. (1998). New materials of early‐middle Ordovician gastropods from Zhuozishan district, Inner Mongolia. Acta Palaeontologica Sinica, 4, 477–488 [in Chinese with English abstract].
    [Google Scholar]
  104. Xia, X., Song, S. G., & Niu, Y. (2012). Tholeiite‐Boninite terrane in the North Qilian suture zone: Implications for subduction initiation and back‐arc basin development. Chemical Geology, 328, 259–277. https://doi.org/10.1016/j.chemgeo.2011.12.001
    [Google Scholar]
  105. Xiao, B., He, Y. B., Luo, J. X., & Yuan, B. C. (2014). Submarine channel complex deposits of the middle Ordovician Lashizhong Formation in Zhuozishan area, Inner Mongolia. Geological Review, 60, 321–331 [in Chinese with English abstract].
    [Google Scholar]
  106. Xiao, W. J., Windley, B. F., Hao, J., & Zhai, M. (2003). Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22, 8-1–8-20. https://doi.org/10.1029/2002tc001484
    [Google Scholar]
  107. Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., … Chen, H. L. (2015). A Tale of amalgamation of three Permo‐Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43, 477–507. https://doi.org/10.1146/annurev-earth-060614-105254
    [Google Scholar]
  108. Xiao, W., Windley, B. F., Yong, Y., Yan, Z., Yuan, C., Liu, C., & Li, J. (2009). Early Paleozoic to Devonian multiple‐accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35, 323–333. https://doi.org/10.1016/j.jseaes.2008.10.001
    [Google Scholar]
  109. Xiong, B. X., Chen, W. X., Chen, W. L., & Cao, X. Y. (2001). Formation and evolution of the Bayanhaote prototype Basins. Petroleum Exploration and Developmen, 23, 19–22 [in Chinese with English abstract].
    [Google Scholar]
  110. Xu, Q., Chen, H. D., Zhao, J. X., Chen, A. Q., Su, Z. T., & Wang, F. (2010). The features of Middle Ordovician Yingtaogou deep‐sea gravitational current deposits at Hujitai Area in the Helan Aulacogen, Ordos BASIN. Marine Origin Petroleum Geology, 15, 14–19 [in Chinese with English abstract].
    [Google Scholar]
  111. Xu, S. M., Feng, H. W., Li, S. Z., Li, M., Ian, S., Bi, H. M., … Ye, Q. (2015). Closure time in the East Qilian Ocean and Early Paleozoic ocean‐continent configuration in the Helan Mountains and adjacent regions, NW China. Journal of Asian Earth Sciences, 113, 575–588. https://doi.org/10.1016/j.jseaes.2015.07.031
    [Google Scholar]
  112. Xu, Y. J., Du, Y. S., Cawood, P. A., & Yang, J. H. (2010). Provenance record of a foreland basin: Detrital zircon U‐Pb ages from Devonian strata in the North Qilian Orogenic Belt, China. Tectonophysics, 495, 337–347. https://doi.org/10.1016/j.tecto.2010.10.001
    [Google Scholar]
  113. Yang, C. (2013). Structural study of the northern part of Bayanhaote Basin, Inner Mongolia. MSs thesis, Chengdu University of Technology, Chengdu [in Chinese with English abstract].
    [Google Scholar]
  114. Yang, X. Y. (2018). The study of the deformation characteristic of the Helanshan Tectonic Belts. PhDs thesis, Northwest University, Xi'an, China [in Chinese with English abstract].
    [Google Scholar]
  115. Yang, X. Y., & Dong, Y. P. (2018). Mesozoic and Cenozoic multiple deformation in the Helanshan Tectonic Belt, Northern China. Gondwana Research, 60, 34–53. https://doi.org/10.1016/j.gr.2018.03.020
    [Google Scholar]
  116. Yang, X. Y., Dong, Y. P., Sun, S. S., Zhang, F. F., Sun, J. P., & Wang, Z. N. (2018). Mesozoic‐Cenozoic deformation characteristics of the Zhuozishan Mountain in the northern Helanshan tectonic belt. Chinese Journal of Geology, 53, 799–818 [in Chinese with English abstract].
    [Google Scholar]
  117. Yuan, W., & Yang, Z. Y. (2014). The Alashan Terrane did not amalgamate with North China block by the Late Permian: Evidence from Carboniferous and Permian paleomagnetic results. Journal of Asian Earth Sciences, 104, 145–159. https://doi.org/10.1016/j.jseaes.2014.02.010 [in Chinese with English abstract].
    [Google Scholar]
  118. Yuan, W., & Yang, Z. Y. (2015). The Alashan terrane was not part of North China by the late Devonian: Evidence from detrital zircon U‐Pb geochronology and Hf isotopes. Gondwana Research, 27, 1270–1282. https://doi.org/10.1016/j.gr.2013.12.009
    [Google Scholar]
  119. Yuan, X. Q., & Geng, G. C. (1992). Discovery of Paleozoic sediments in east Bayanhot Basin and its tectonic significance. Oil & Gas Geology, 13, 381–389 [in Chinese with English abstract].
    [Google Scholar]
  120. Zhang, B., Zhang, J., Zhang, Y., Zhao, H., Wang, Y., & Nie, F. (2016). Tectonic affinity of the Alxa Block, northwest China: Constrained by detrital zircon U‐Pb ages from the Early Paleozoic strata on its southern and eastern margins. Sedimentary Geology, 339, 289–303. https://doi.org/10.1016/j.sedgeo.2016.02.017
    [Google Scholar]
  121. Zhang, B. H., Zhang, J., Zhao, H., Nie, F., Wang, Y. N., & Zhang, Y. P. (2018). Tectonic evolution of the western Ordos Basin during the Palaeozoic‐Mesozoic time as constrained by detrital zircon ages. International Geology Review, 61, 461–480. https://doi.org/10.1080/00206814.2018.1431963
    [Google Scholar]
  122. Zhang, C. G. (2013). Forming evolution and sediments accumulation & distribution regularity of central paleouplift in Eopaleozoic, Ordos Basin. PhDs thesis, Chengdu University of Technology, Chengdu.
    [Google Scholar]
  123. Zhang, C. L., Diwu, C. R., Kröner, A., Sun, Y., Luo, J. H., Li, Q., … Zhao, W. J. (2015). Archean‐paleoproterozoic crustal evolution of the Ordos block in the North China Craton: Constraints from zircon U‐Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Research, 267, 121–136. https://doi.org/10.1016/j.precamres.2015.06.001
    [Google Scholar]
  124. Zhang, J. X., & Gong, J. H. (2018). Revisiting the nature and affinity of the Alxa Block. Acta Petrologica Sinica, 34, 940–962 [in Chinese with English abstract].
    [Google Scholar]
  125. Zhang, J. X., Gong, J. H., Yu, S. Y., Li, H., & Hou, K. (2013). Neoarchean–paleoproterozoic multiple tectonothermal events in the western Alxa Block, North China Craton and their geological implication: Evidence from zircon U‐Pb ages and Hf isotopic composition. Precambrian Research, 235, 36–57. https://doi.org/10.1016/j.precamres.2013.05.002
    [Google Scholar]
  126. Zhang, J., Li, J. Y., Li, Y., & Ma, Z. J. (2009). How did the Alxa Block respond to the Indo‐Eurasian collision?International Journal of Earth Sciences, 98, 1511–1527. https://doi.org/10.1007/s00531-008-0404-2
    [Google Scholar]
  127. Zhang, J., Li, J. Y., Liu, J. F., & Feng, Q. W. (2011). Detrital zircon U‐Pb ages of Middle Ordovician flysch sandstones in the western Ordos margin: New constraints on their provenances, and tectonic implications. Journal of Asian Earth Sciences, 42, 1030–1047. https://doi.org/10.1016/j.jseaes.2011.03.009
    [Google Scholar]
  128. Zhang, J., Li, J. Y., Liu, J. F., Li, R. Y., Qu, J. F., & Feng, Q. W. (2012). The relationship between the Alxa Block and the North China Plate: New information from the Middle Ordovician detrital zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28, 2912–2934 [in Chinese with English abstract].
    [Google Scholar]
  129. Zhang, J., Li, J., Xiao, W., Wang, Y., & Qi, W. (2013). Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: New constraints on the relationship between the North China Plate and the Alxa block. Journal of Structural Geology, 57, 38–57. https://doi.org/10.1016/j.jsg.2013.10.002
    [Google Scholar]
  130. Zhang, J. J., Wang, T., Zhang, L., Tong, Y., Zhang, Z. C., Shi, X. J., … Hou, J. Y. (2015). Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: Constraints on the southern boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108, 150–169. https://doi.org/10.1016/j.jseaes.2015.04.019
    [Google Scholar]
  131. Zhang, J., Zhang, B. H., & Zhao, H. (2016). Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U‐Pb ages and sedimentologic and structural evidence. Tectonophysics, 668–669, 65–81. https://doi.org/10.1016/j.tecto.2015.12.006
    [Google Scholar]
  132. Zhang, J., Zhang, Y. P., Xiao, W. X., Wang, Y. N., & Zhang, B. H. (2015). Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic: Constraints from detrital zircon U‐Pb ages and Cambrian sedimentary records. Gondwana Research, 28, 1168–1182. https://doi.org/10.1016/j.gr.2014.09.012
    [Google Scholar]
  133. Zhang, K. (1992). Olistostrome in Ordovician system, western and southern margin of Ordos Basin. Acta Sedimentologica Sinica, 10, 11–18 [in Chinese with English abstract].
    [Google Scholar]
  134. Zhang, M. J., Kamo, S. L., Li, C. S., Hu, P. Q., & Ripley, E. M. (2010). Precise U‐Pb zircon‐addeleyite age of the Jinchuan sulfide ore‐bearing ultramafic intrusion, western China. Mineralium Deposita, 45, 3–9. https://doi.org/10.1007/s00126-009-0259-x
    [Google Scholar]
  135. Zhang, S. H., Zhao, Y., Liu, J. M., & Hu, Z. C. (2016). Different sources involved in generation of continental arc volcanism: The Carboniferous‐Permian volcanic rocks in the northern margin of the North China Block. Lithos, 240, 382–401. https://doi.org/10.1016/j.lithos.2015.11.027
    [Google Scholar]
  136. Zhang, S. H., Zhao, Y., Song, B., Hu, J. M., Liu, S. W., Yang, Y. H., … Liu, J. (2009). Contrasting Late Carboniferous and Late Permian‐Middle Triassic intrusive suites from the northern margin of the North China Craton: Geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin, 121, 181–200. https://doi.org/10.1130/b26157.1
    [Google Scholar]
  137. Zhang, S. H., Zhao, Y., Song, B., Yang, Z. Y., Hu, J. M., & Wu, H. (2007). Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Palaeozoic active continental margin. Journal of the Geological Society, 164, 451–463. https://doi.org/10.1144/0016-76492005-190
    [Google Scholar]
  138. Zhang, S. H., Zhao, Y., Ye, H., Liu, J. M., & Hu, Z. C. (2014). Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geological Society of America Bulletin, 126, 1275–1300. https://doi.org/10.1130/b31042.1
    [Google Scholar]
  139. Zhang, W. H., Su, J. X., & Wei, W. J. (2001). Viewing the Ordovician system of western fringe of Northern China platform from Zhuozi Mountain. Journal of Northeast Petroleum University, 25, 28–31.
    [Google Scholar]
  140. Zhang, Y. S., Xing, E. Y., Wang, Z. Z., Zheng, M. P., Shi, L. Z., Su, K., … Zhu, C. W. (2015). Evolution of Lithofacies paleogeography in the Ordos Basin and its implication of potash formation. Acta Geologica Sinica, 89, 1921–1935 [in Chinese with English abstract].
    [Google Scholar]
  141. Zhao, G., Cawood, P. A., Li, S., Wilde, S. A., Sun, M., Zhang, J., … Yin, C. (2012). Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222–223, 55–76. https://doi.org/10.1016/j.precamres.2012.09.016
    [Google Scholar]
  142. Zhao, J., He, Y. B., Wang, N., Xiao, B., Yuan, Z. C., & Luo, J. X. (2013). Characteristics and genesis of calcirudite in the Wulalike Formation of middle Ordovician, Zhuozi Mountain area of Inner Mongolia. Scientific Journal of Earth Science, 4, 119–127 [in Chinese with English abstract].
    [Google Scholar]
  143. Zheng, Z. C., & Li, Y. Z. (1991). The new advances in the study in the Ordovician system of Helanshan area. Geoscience, 2, 119–137 [in Chinese with English abstract].
    [Google Scholar]
  144. Zhou, X. C. (2013). Petrogenesis of granitoids in BeiDashan, Alxa Block and tectonic implication. MSs thesis, China University of Geosciences, Wuhan, China [in Chinese with English abstract].
    [Google Scholar]
  145. Zhu, R. K. (1993). Cyclic sequences of the Early Palaeozoic strata in the middle part of the Helan Mountain area. Lithofacies Paleogeography, 6, 26–33 [in Chinese with English abstract].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12435
Loading
/content/journals/10.1111/bre.12435
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error