1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

We integrated new field observations, two‐dimensional (2‐D) seismic profiles and new and previously reported chronological data to understand the effects of pre‐orogenic structures on the tectonic evolution of the Salar de Punta Negra in the Central Andes. For first time a series of restored geological cross‐sections are presented, thus showing the pre‐orogenic tectonic architecture of the region and new ideas about the tectonic evolution of the inner forearc of the Central Andes. Our results show a series of east‐dipping normal faults as the main pre‐orogenic structures in the region, which resulted from lithospheric stretching of the western continental margin during the Paleozoic to Mesozoic (Triassic–Jurassic). These were later incorporated into the Andean orogen by tectonic inversion, forming west‐verging inversion anticlines. The beginning of the tectonic inversion is constrained by the first on‐lap of the Upper Cretaceous‐Palaeocene syn‐kinematic deposits on the top of the Mesozoic syn‐rift successions, highlighting that inversion occurred during this period. These syn‐kinematic deposits display zircons with older age peaks between ca. 200 and 300 Ma, thus indicating that some Carboniferous to Triassic sources of sediments were eroded during the uplift of the orogen. Other basement reverse faults affect the footwalls of normal inverted faults and the shoulders of ancient half‐graben structures. These truncate and decapitate previous inverted faults and completely cut the infill of the basin, leading to exhumation of the pre‐rift basement rocks. We propose that the propagation of these structures was favoured by the modified thermal‐tectonic state of the lithosphere from the eastward migration of the volcanic arc, and not by the previous pre‐orogenic structures. The structural and stratigraphic relationships recognized both in the field and 2‐D seismic profiles indicate that many reverse faults originated after the initial tectonic inversion and continued to be active from the Eocene until the Pleistocene period.

,

Geological cross‐section elaborated from the integration of field data and the two‐dimensional seismic and structural interpretation the 2F002 seismic profile and pre‐shortening restoration showing the initial geometry of the west‐dipping pre‐orogenic Paleozoic and Mesozoic extensional system under the Salar de Punta Negra Basin. Pz: Paleozoic pre‐rift basement, Per: Permian syn‐rift, Tr: Triassic syn‐rift, Jr: Jurassic syn‐rift, UC: Upper‐Cretaceous syn‐ kinematic, P: Paleocene syn‐kinematic, O‐M: Oligocene‐Miocene synkinematic.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12436
2020-11-22
2021-01-18
Loading full text...

Full text loading...

References

  1. Allmendinger, R., Jordan, T., Kay, S. M., & Isacks, B. (1997). The evolution of the Altiplano‐puna plateau of the central Andes. Annual Review of Earth and Planetary Sciences, 25, 139–174. https://doi.org/10.1146/annurev.earth.25.1.139
    [Google Scholar]
  2. Amilibia, A., Sàbat, F., McClay, K. R., Muñoz, J. A., Roca, E., & Chong, G. (2008). The role of inherited tectono‐sedimentary architecture in the development of the central Andean mountain belt: Insights from the Cordillera de Domeyko. Journal of Structural Geology, 30, 1520–1539. https://doi.org/10.1016/j.jsg.2008.08.005
    [Google Scholar]
  3. Ardill, J., Flint, S., Chong, G., & Wilke, H. (1998). Sequence stratigraphy of the Mesozoic Domeyko basin, northern Chile. Journal of the Geological Society, 155, 71–88. https://doi.org/10.1144/gsjgs.155.1.0071
    [Google Scholar]
  4. Arriagada, C., Cobbold, P. R., & Roperch, P. (2006). The Salar de Atacama basin: A record of cretaceous to paleogene compressional tectonics in the central Andes. Tectonics, 25, TC1008.
    [Google Scholar]
  5. Arriagada, C., Roperch, P., & Mpodozis, C. (2000). Clockwise block rotations along the eastern border of the Cordillera de Domeyko, Northern Chile (22º45’–23º30’S). Tectonophysics, 326, 153–171.
    [Google Scholar]
  6. Baby, P., Rochat, P., Herail, H., & Mascle, G. (1997). Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology, 25, 883–886.
    [Google Scholar]
  7. Bahlburg, H., & Breitkreuz, C. (1991). Paleozoic evolution of active margin basins in the Southern Central Andes. Journal of South American Earth Sciences, 4, 171–188.
    [Google Scholar]
  8. Bascuñan, S., Arriagada, C., Le Roux, J., & Deckart, K. (2015). Unraveling the Peruvian phase of the central Andes: Stratigraphy, sedimentology and geochronology of the Salar de Atacama basin (22°30‐23°S), northern Chile. Basin Research, 28(3), 365–392. https://doi.org/10.1111/bre.12114
    [Google Scholar]
  9. Bascuñan, S., Maksymowicz, A., Martínez, F., Becerra, J., Arriagada, C., & Deckart, K. (2019). Geometry and late Mesozoic‐Cenozoic evolution of the Salar de Atacama Basin (22°30′‐24°30′S) in the northern Central Andes: New constraints from geophysical, geochronological and field data. Tectonophysics, 759, 58–78. https://doi.org/10.1016/j.tecto.2019.04.008
    [Google Scholar]
  10. Bloch, W., Kummerow, J., Salazar, P., Wigger, P., Shapiro, S. A. (2014). High‐resolution image of the North Chilean subduction zone: Seismicity, reflectivity and fluids. Geophysical Journal International., 197, 1744–1749. https://doi.org/10.1093/gji/ggu084
    [Google Scholar]
  11. Breitkreuz, C., & Van Schmus, W. R. (1996). U‐Pb geochronology and significance of Late Permian ignimbrites timing of the magmatism of the paleo‐pacific border of Gondwana: U‐pb geochronology in Northern Chile. Journal of South American Earth Sciences, 9, 281–293.
    [Google Scholar]
  12. Butler, R. (1989). The influence of pre‐existing basin structure on thrust system evolution in the Western Alps. In Inversion Tectonics (Cooper, M.; Williams, G.; editors). Geological Society of London, Special Publication, 44, 105–122.
    [Google Scholar]
  13. Carrapa, B., & DeCelles, P. G. (2008). Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics, 27, TC1015. https://doi.org/10.1029/2007TC002127
    [Google Scholar]
  14. Carrera, N., Muñoz, J. A., Sábat, F., Mon, R., & Roca, E. (2006). The role of inversion tectonics in the structure of the Cordillera Oriental (NW Argentinean Andes). Journal of Structural Geology, 28, 1921–1932.
    [Google Scholar]
  15. Cecioni, A., & Frutos, J. (1975). Primera noticia sobre el hallazgo de Paleozoico Inferior marino en la Sierra de Almeida, Norte de Chile. Congreso Argentino De Paleontología Y Bioestratigrafía, 1(1), 191–207.
    [Google Scholar]
  16. Chong, G. (1973). Reconocimiento geológico del área Catalina‐Sierra de Varas y estratigrafía del Jurásico del Profeta, provincial de Antofagasta Memoria de prueba (p. 284). Santiago: Departamento de Geología, Universidad de Chile.
    [Google Scholar]
  17. Cobbold, P., Davy, P., Gapais, D., Rossello, E., Sadybakasov, E., Thomas, J. C., … de Urreiztieta, M. (1993). Sedimentary basins and crustal thickening. Sedimentary Geology, 86, 77–89. https://doi.org/10.1016/0037-0738(93)90134-Q
    [Google Scholar]
  18. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36(3), 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
    [Google Scholar]
  19. Coira, B., Davidson, J., Mpodozis, C., & Ramos, V. (1982). Tectonic and magmatíc evolution of the Andes of northern Argentina and Chile. Earth‐Science Reviews, 18, 303–332. Special Issue.
    [Google Scholar]
  20. Cooper, M., Warren, M. J. (2010). The geometric characteristics, genesis and petroleum significance of inversion structures. Geological Society, London, Special Publications, 335, 827–846. https://doi.org/10.1144/SP335.33
    [Google Scholar]
  21. Cornejo, P., & Mpodozis, A. C. (1996). Geología de la región de Sierra Exploradora (25°–26ºS). Servicio Nacional de Geología y. Minería, SERNAGEOMIN, Registered Report, IR‐96‐09.
  22. Coutand, I., Cobbold, P., Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., … Gamundi, O. (2001). Style and history of Andean deformation, Puna plateau, Northwestern Argentina. Tectonics, 20, 210–234. https://doi.org/10.1029/2000TC900031
    [Google Scholar]
  23. Coward, M. P., Gillcrist, R., & Trudgill, B. (1991). Extensional structures and their tectonic inversion in the Western Alps. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The Geometry of Normal Faults (pp. 93–112). London: Geological Society of London, Special Publication no. 56.
    [Google Scholar]
  24. Cristallini, E., Comínguez, A., Ramos, V., & Mercerat, E. D. (2004). Basement double wedge thrusting in the northern Sierras Pampeanas of Argentina (27°S) – Constraints from deep seis mic reflection. In K. R.McClay (Ed.), Thrust Tectonics and Hydrocarbon Systems (Vol. 82, pp. 1–26). AAPG Memoir.
    [Google Scholar]
  25. Eichelberger, N., & McQuarrie, N. (2015). Kinematic Reconstruction of the Bolivian oro‐cline. Geosphere, 11(2), 445–462. https://doi.org/10.1130/GES01064.1
    [Google Scholar]
  26. Espinoza, M., Montecino, D., Oliveros, V., Astudillo, N., Vásquez, P., Reyes, R., … Martinez, A. (2018). The synrift phase of the early Domeyko Basin (Triassic, northern Chile): Sedimentary, volcanic and tectonic interplay in the evolution of an ancient subduction‐related rift basin. Basin Research, 31, 4–32.
    [Google Scholar]
  27. Fuentes, G., Martínez, F., Bascuñán, S., Arriagada, C., & Muñoz Mardones, R. (2018). Tectonic architecture of the Tarapacá Basin in the northern Central Andes: New constraints from field and 2D seismic data. Geosphere, 14(6), 2430–2446. https://doi.org/10.1130/GES01697.1
    [Google Scholar]
  28. Gardeweg, M., Pino, H., Ramírez, C. F., & Davidson, J. (1994). Mapa Geológico del área de Imilac y Sierra Almeida, Región de Antofagasta. Santiago, Chile: Serv. Nac. Geol. Min. Doc. Trab.
  29. Gehrels, G., Valencia, V., & Pullen, A. (2006). Detriral zircon geochronology by laser‐ablation multicollector ICPMS at the Arizona Laserchron Center. Geochronology: Emerging Opportunities, Paleontological Society Short Course, 12, 67–76.
    [Google Scholar]
  30. González, R., Wilke, G. H., Menzies, A. H., Riquelme, R., Herrera, C., Matthews, S., …Cornejo, P. (2015). Carta Sierra de Varas, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile. Serie Geologia Básica, 178, 1 mapa escala 1:100.000.
  31. Granado, P., Urgeles, R., Sàbat, F., Villanueva, E. A., Roca, E., Muñoz, J., … Gambini, R. (2016). Geodynamical framework and hydrocarbon plays of a salt giant: The NW Mediterranean Basin. Petroleum Geoscience., 22, 309–321. https://doi.org/10.1144/petgeo2015-084
    [Google Scholar]
  32. Grier, M. E., Salfity, J. A., & Allmendinger, R. (1991). Andean reactivation of Cretaceous Salta rift northwestern Argentina. Journal of South American Earth Sciences, 4, 351–372.
    [Google Scholar]
  33. Henriquez, S., DeCelles, P. G., & Carrapa, B. (2019). Cretaceous to middle Cenozoic exhumation history of the Cordillera de Domeyko and Salar de Atacama basin, northern Chile. Tectonics, 38, 395–416. https://doi.org/10.1029/2018TC005203
    [Google Scholar]
  34. Horton, B. K. (2018). Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37, 402–429. https://doi.org/10.1002/2017TC004624
    [Google Scholar]
  35. Iaffa, D., Sàbat, F., Muñoz, J., Mon, R., & Gutierrez, A. (2011). The role of inherited structures in a foreland basin evolution. The Metán Basin in NW Argentina. Journal of Structural Geology – J STRUCT GEOL., 33, https://doi.org/10.1016/j.jsg.2011.09.005
    [Google Scholar]
  36. Jordan, T., & Allmendinger, R. (1986). The sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain fore land de formation. American Journal of Science, 286, 737–764. https://doi.org/10.2475/ajs.286.10.737
    [Google Scholar]
  37. Jordan, T. E., Mpodozis, C., Muñoz, N., Blanco, P., Pananont, M., & Gardeweg, M. (2007). Cenozoic subsurface stratigraphy and structure of the Salar de Atacama basin, northern Chile. Journal of South American Earth Sciences, 23, 122–146. https://doi.org/10.1016/j.jsames.2006.09.024
    [Google Scholar]
  38. Jourdon, A., Le Pourhiet, L., Mouthereau, F., & Masini, E. (2019). Role of rift maturity on the architecture and shortening distribution in mountain belts. Earth and Planetary Science Letters, 512, 89–99. https://doi.org/10.1016/j.epsl.2019.01.057
    [Google Scholar]
  39. Kley, J. (1999). Geologic and geometric constraints on a kinematic model of the Bolivian orocline. Journal of South American Earth Sciences, 12, 221–235.
    [Google Scholar]
  40. Kley, J., & Monaldi, C. R. (1998). Tectonic shortening and crustal thickness in the central Andes: How good is the correlation?Geology, 26, 723–726. https://doi.org/10.1130/0091-7613(1998)026<0723:TSACTI>2.3.CO;2
    [Google Scholar]
  41. Kley, J., Rossello, E., Monaldi, C. R., & Habighorst, B. (2005). Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophysics, 399(1‐4), 155–172. https://doi.org/10.1016/j.tecto.2004.12.020
    [Google Scholar]
  42. Lacombe, O., & Bellahsen, N. (2016). Thick‐skinned tectonics and basement‐involved fold‐thrust belts. Insights from selected Cenozoic orogens. Geological Magazine, 1, 1–48. https://doi.org/10.1017/S0016756816000078
    [Google Scholar]
  43. Letouzey, J. (1990). Fault reactivation, inversion and foldthrust belts. In J.Letouzey (Ed.), Petroleum and tectonics in mobile belts (pp. 101–128). Paris: Editions Technip.
    [Google Scholar]
  44. López, C., Martínez, F., Maksymowicz, A., Giambiagi, L., & Riquelme, R. (2019). What is the structure of the forearc region in the Central Andes of northern Chile? An approach from field data and 2-D reflection seismic data. Tectonophysics, https://doi.org/10.1016/j.tecto.2019.228187
    [Google Scholar]
  45. Maksaev, V., & Zentilli, M. (1999). Fission track thermochronology of the Domeyko Cordillera, northern Chile; implications for Andean tectonics and porphyry copper metallogenesis. Exploration and Mining Geology, 8, 65–89.
    [Google Scholar]
  46. Marinovic, N., Smoje, I., Maksaev, V., Herv!e, M., Mpodozis, C. (1995). Hoja Aguas Blancas, región de Antofagasta (p. 70). Trab: Serv. Nac. Geol. Min. Doc.
    [Google Scholar]
  47. Marquillas, R. A., & Salfity, J. A. (1994). Tectonic and sedimentary evolution of the Cretaceous‐Eocene Salta Group, Argentina. In J. A.Salfity (Ed.), Cretaceous Tectonics of the Andes (Vol. 6, pp 266–315). Berlin: Earth Evolution Science.
    [Google Scholar]
  48. Martínez, F., Arriagada, C., Valdivia, R., Deckart, K., & Peña, M. (2015). Geometry and kinematics of the andean thick‐skinned thrust systems: Insights from the Chilean frontal Cordillera (28°–28.5°S), central Andes. Journal of South American Earth Sciences, 64, 307–324. https://doi.org/10.1016/j.jsames.2015.05.001
    [Google Scholar]
  49. Martínez, F., González, R., Bascuñan, S., & Arriagada, C. (2017). Structural styles of the Salar de Punta Negra Basin in the preandean depression (24°‐25°S) of the central Andes. Journal of South American Earth Sciences, 87, 188–199. https://doi.org/10.1016/j.jsames.2017.08.004
    [Google Scholar]
  50. Martínez, F., López, C., Bascuñan, S., & Arriagada, C. (2018). Tectonic interaction between mesozoic to cenozoic extensional and contractional structures in the preandean depression (23°–25° S): Geologic implications for the central Andes. Tectonophysics, 744, 333–349. https://doi.org/10.1016/j.tecto.2018.07.016
    [Google Scholar]
  51. Martínez, F., López, C., Parra, M., & Espinoza, D. (2019). Testing the occurrence of thick‐skinned triangle zones in the Central Andes forearc: Example from the Salar de Punta Negra Basin in northern Chile. Journal of Structural Geology, 120, 14–28. https://doi.org/10.1016/j.jsg.2018.12.009
    [Google Scholar]
  52. Martinod, J., Regard, V., Letourmy, Y., Henry, H., Hassani, R., Baratchart, S., & Carretier, S. (2016). How do subduction processes contribute to forearc Andean uplift? Insights from numerical models. Journal of Geodynamics. 96, 6–18. https://doi.org/10.1016/j.jog.2015.04.001
    [Google Scholar]
  53. Mescua, J., & Giambiagi, L. (2012). Fault inversion vs. new thrust generation: A case study in the Malargüe fold‐and‐thrust belt, Andes of Argentina. Journal of Structural Geology, 35, 51–63.
    [Google Scholar]
  54. Monaldi, C. R., Salfity, J., & Kley, J. (2008). Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for fault reactivation. Tectonics, 27, 1–21. https://doi.org/10.1029/2006TC001993
    [Google Scholar]
  55. Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P., & Reich, M. (2005). Late Mesozoic to Paleogene stratigraphy of the Salar the Atacama basin, Antofagasta, northern Chile: Implications for the tectonic evolution of the central Andes. Tectonophysics, 399, 125–154.
    [Google Scholar]
  56. Mpodozis, C., & Ramos, V. A. (1989). The Andes of Chile and Argentina. In G. E.Ericksen, M. T.Cañas, & J. A.Reinemund (Eds.), Geology of the Andes and its relation to hydrocarbon and energy resources. Circum‐Pacific council for energy and hydrothermal resources, American Association of Petroleum Geologists (Vol. 11, pp. 59–90). Houston, TX: Earth Science Series.
    [Google Scholar]
  57. Mpodozis, C., & Ramos, V. A. (2008). Tectónica jurásica en Argentina y Chile: Extensión, Subducción Oblicua, Rifting, Deriva y Colisiones?Revista De La Asociación Geológica Argentina, 63, 479–495.
    [Google Scholar]
  58. Muñoz, N., Charrier, R., & Jordan, T. (2002). Interactions between basement and cover during the evolution of the Salar de Atacama basin, northern Chile. Revista Geologica De Chile, 29, 55–80. https://doi.org/10.4067/S0716-02082002000100004
    [Google Scholar]
  59. Niemeyer, H., Urzua, F., & Rubinstein, C. (1997). Nuevos antecedentes estratigraficos y sedimentológicos de la Formacion Zorritas, Devonico‐Carbonifero de Sierra Almeida region de Antofagasta, Chile. Revista Geologica De Chile, 24(1), 25–43.
    [Google Scholar]
  60. Pardo‐Casas, F., & Molnar, P. (1987). Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics, 6, 233–248. https://doi.org/10.1029/TC006i003p00233
    [Google Scholar]
  61. Perez, N., Horton, B., & Carlotto, V. (2016). Structural inheritance and selective reactivation in the central Andes: Cenozoic deformation guided by pre‐Andean structures in southern Peru. Tectonophysics, 671, 264–280. https://doi.org/10.1016/j.tecto.2015.12.031
    [Google Scholar]
  62. Pindell, J., & Dewey, J. F. (1982). Permo‐Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean Region. Tectonics, 1(2), 179–211.
    [Google Scholar]
  63. Poblet, J., & Lisle, R. J. (Eds.) (2011). Kinematic Evolution and Structural Styles of Fold‐and‐Thrust Belts. Geological Society London, Special Publications. 349(1), 1–24. https://doi.org/10.1144/SP349.1
    [Google Scholar]
  64. Ramírez, C. F., & Gardeweg, M. C. (1982). Hoja Toconao, Región de Antofagasta. Servicio Nacional De Geología Y. Minería, Carta Geológica De Chile, 54(1:250.000), 1–122.
    [Google Scholar]
  65. Ramos, V. A. (2009). Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. Memoir – Geological Society of America, 204, 31–65.
    [Google Scholar]
  66. Ramos, V. A., & Aleman, A. (2000). Tectonic evolution of the Andes. In U. G.Cordani, E. J.Milani, A.Thomaz Filho, & D. A.Campos (Eds.), Tectonic evolution of South America (pp 635–685). Rio de Janeiro.
    [Google Scholar]
  67. Ramos, V. A., Cristallini, E. O., & Pérez, D. J. (2002). The Pampean flat‐slab of the Central Andes. Journal of South American Earth Sciences, 15, 59–78. https://doi.org/10.1016/S0895-9811(02)00006-8
    [Google Scholar]
  68. Reiners, P. W., Thomson, S. N., Vernon, A., Willett, S. D., Zattin, M., Einhorn, J. et al (2015). Low‐temperature thermochronologic trends across the central Andes, 21 S–28 S. Geological Society of America Memoirs, 212, 215–249. https://doi.org/10.1130/2015.1212(12)
    [Google Scholar]
  69. Roeder, D. (1988). Andean‐age structure of Eastern Cordillera (Province of La Paz, Bolivia). Tectonics, 7(1), 23–39.
    [Google Scholar]
  70. Rubilar, J., Martínez, F., Arriagada, C., Becerra, J., & Bascuñán, S. (2017). Structure of the Cordillera de la Sal: A key tectonic element for the Oligocene‐Neogene evolution of the Salar de Atacama basin, Central Andes, northern Chile. Journal of South American Earth Sciences, 87, 200–210. https://doi.org/10.1016/j.jsames.2017.11.013
    [Google Scholar]
  71. Sampere, T., Carlier, G., Soler, P., Fornari, M., Carlotto, V., Jacay, J., … Jiménez, N. (2002). Late Permian‐Middel Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean‐age tectonics. Tectonophysics, 345, 153–181.
    [Google Scholar]
  72. Scisciani, V. (2009). Styles of positive inversion tectonics in the central Apennines and in the Adriatic foreland: Implications for the evolution of the Apennine chain (Italy). Journal of Structural Geology, 31(11), 1276–1294. https://doi.org/10.1016/j.jsg.2009.02.004
    [Google Scholar]
  73. Solari, M., Venegas, C., Montecino, D., Astudillo, N., Cortés, J., Bahamondes, B., & Espinoza, F. (2017). Geología del área Imilac‐Quebrada Guanaqueros, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile. Serie Geologica De Básica, 191, 1 mapa escala 1:100.000.
    [Google Scholar]
  74. Somoza, R., Tomlinson, A. J., Caffe, P. J., & Vilas, J. F. (2012). Paleomagnetic evidence of earliest Paleocene deformation in Calama (~22°S), northern Chile: Andean‐type or ridge‐collision tectonics?Journal of South American Earth Sciences, 37, 208–213. https://doi.org/10.1016/j.jsames.2012.04.001
    [Google Scholar]
  75. Soto, R., Martinod, J., Riquelme, R., Hérail, G., & Audin, L. (2005). Using geomorphological markers to discriminate Neogene tectonic activity of North Chilean forearc (24°‐25°S). Tectonophysics, 41, 41–55.
    [Google Scholar]
  76. Taylor, G. K., Grocott, J., Daswood, B., Gipson, M., & Arévalo, C. (2007). Implications for crustal rotation and tectonic evolution in the Central Andes fore‐arc: New paleomagnetic results from the Copiapó region of northern Chile, 26º to 28ºS. Journal of Geophysical Research, 112, 1–22. https://doi.org/10.1029/2005JB003950
    [Google Scholar]
  77. Tomlinson, A. J., & Blanco, N. (1997). Structural evolution and displacement history of the west fault system, Precordillera: Part 1. Synmineral history. Proceedings of VIII Congreso Geológico Chileno, 3, 1873–1877.
    [Google Scholar]
  78. Vermeesch, P. (2012). On the visualization of detrital age distributions. Chemical Geology, 312–313, 190–194.
    [Google Scholar]
  79. Welbon, A. I., & Butler, R. W. H. (1992). Structural styles in thrust belts developed through rift basins: a view from the western Alps. In R. M.Larsen (Ed.), Structural and Tectonic Modeling and its Application to Petroleum Geology 1 (pp. 469–479). Amsterdam: Norwegian Petroleum Society Special Publication.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12436
Loading
/content/journals/10.1111/bre.12436
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error