1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

A general shift towards higher mineralogical and textural maturity changes the reservoir character across the Triassic–Jurassic transition in the southwestern Barents Sea basin (SWBSB), largely affecting the hydrocarbon prospectivity in the region. Petrographic and geochronological provenance data presented in this paper suggest that the shift from mineralogically immature to mature sandstones initiated during the deposition of the Norian–Rhaetian Fruholmen Formation, and varies with basin location. Strong contrasts between the Fruholmen Formation and underlying formations are associated with proximity to the rejuvenated Caledonian and Fennoscandian hinterlands and are mainly restricted to the southern basin margins. In the basin interior, subtle petrographic variations between the Fruholmen Formation and older Triassic sandstones reflect a distal position relative to the southern hinterland. The long‐lived misconception of a regional compositional contrast in the Arctic at the turn of the Norian can be attributed to higher sampling frequency associated with hydrocarbon exploration activity along the southern basin margins, and masking by increased annual precipitation and subsequent reworking during the Jurassic. Geothermal signatures and rearrangement of ferric clay material across the Carnian–Norian transition support a recycled origin for the Fruholmen Formation in the basin interior. As the closest tectonically active region at the time, the Novaya Zemlya fold‐and‐thrust belt represents the best provenance candidate for polycyclic components in Norian–Rhaetian strata. In addition to recycling in the hinterland during the Late Triassic, local erosion of exposed intrabasinal highs and platforms at the Triassic–Jurassic transition represents a second process where thermodynamically unstable mineral components originally sourced from the Uralides may be removed. Textural and mineralogical modification may also have occurred in marginal‐marine depositional environments during periods with elevated sea level. Mature sediment supply from the rejuvenated hinterland in the south, multiple cycles of reworking and gradual accumulation of polycyclic grains have likely led to the extreme compositional maturity registered in the Tubåen, Nordmela and Stø formations in the SWBSB. It is likely that increased annual precipitation since the latest Carnian had an amplifying effect on sandstone maturation across the Triassic–Jurassic boundary, but we consider the effect to be inferior compared to provenance shifts and reworking. Findings from this study are important for understanding compositional and textural maturity enhancement processes in siliciclastic sedimentary basins.

,

Structural reorganization of the western Barents Sea basin and surrounding hinterland terrains resulted in a shift from compositionally immature to mature sandstones during the Late Triassic.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12437
2020-11-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/6/bre12437.html?itemId=/content/journals/10.1111/bre.12437&mimeType=html&fmt=ahah

References

  1. Arctic Ocean relief location map.png.
    Arctic Ocean relief location map.png. (2014, August 21). Wikimedia Commons, the free media repository. Retrieved from https://commons.wikimedia.org/w/index.php?title=File:Arctic_Ocean_relief_location_map.png&oldxml:id=132249753
  2. Bergan, M., & Knarud, R. (1993). Apparent changes in clastic mineralogy of the Triassic–Jurassic succession, Norwegian Barents Sea: Possible implications for palaeodrainage and subsidence. Norwegian Petroleum Society Special Publications, 2, 481–493. https://doi.org/10.1016/B978-0-444-88943-0.50034-4
    [Google Scholar]
  3. Bue, E. P., & Andresen, A. (2014). Constraining depositional models in the Barents Sea region using detrital zircon U‐Pb data from Mesozoic sediments in Svalbard. Geological Society, London, Special Publications, 386(1), 261–279. https://doi.org/10.1144/SP386.14
    [Google Scholar]
  4. Cohen, K. M., Harper, D. A. T., & Gibbard, P. L. (2018). ICS international chronostratigraphic chart 2018/08. International Commission on Stratigraphy, IUGS. Retrieved from www.stratigraphy.org (visited: 2018).
  5. Decou, A., Andrews, S. D., Alderton, D. H., & Morton, A. (2017). Triassic to Early Jurassic climatic trends recorded in the Jameson Land Basin, East Greenland: Clay mineralogy, petrography and heavy mineralogy. Basin Research, 29(5), 658–673. https://doi.org/10.1111/bre.12194
    [Google Scholar]
  6. Dott, R. H. (1964). Wacke, graywacke and matrix; what approach to immature sandstone classification?Journal of Sedimentary Research, 34(3), 625–632.
    [Google Scholar]
  7. Eide, C. H., Howell, J. A., Buckley, S. J., Martinius, A. W., Oftedal, B. T., & Henstra, G. A. (2016). Facies model for a coarse‐grained, tide‐influenced delta: Gule Horn Formation (Early Jurassic), Jameson Land. Greenland. Sedimentology, 63(6), 1474–1506. https://doi.org/10.1111/sed.12270
    [Google Scholar]
  8. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2017). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. GSA Bulletin, 130(1‐2), 263–283. https://doi.org/10.1130/B31639.1
    [Google Scholar]
  9. Faleide, J. I., Gudlaugsson, S. T., & Jacquart, G. (1984). Evolution of the western Barents Sea. Marine and Petroleum Geology, 1(2), 123–150. https://doi.org/10.1016/0264-8172(84)90082-5
    [Google Scholar]
  10. Faleide, J. I., Pease, V., Curtis, M., Klitzke, P., Minakov, A., Scheck‐Wenderoth, M., … Zayonchek, A. (2018). Tectonic implications of the lithospheric structure across the Barents and Kara shelves. Geological Society, London, Special Publications, 460(1), 285–314. https://doi.org/10.1144/SP460.18
    [Google Scholar]
  11. Fleming, E. J., Flowerdew, M. J., Smyth, H. R., Scott, R. A., Morton, A. C., Omma, J. E., … Whitehouse, M. J. (2016). Provenance of Triassic sandstones on the southwest Barents Shelf and the implication for sediment dispersal patterns in northwest Pangaea. Marine and Petroleum Geology, 78, 516–535. https://doi.org/10.1016/j.marpetgeo.2016.10.005
    [Google Scholar]
  12. Flowerdew, M. J., Fleming, E. J., Morton, A. C., Frei, D., Chew, D. M., & Daly, J. S. (2019). Assessing mineral fertility and bias in sedimentary provenance studies: Examples from the Barents Shelf. Geological Society, London, Special Publications, 484, SP484‐11. https://doi.org/10.1144/SP484.11
    [Google Scholar]
  13. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27(7), 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  14. Gudlaugsson, S. T., Faleide, J. I., Johansen, S. E., & Breivik, A. J. (1998). Late Palaeozoic structural development of the south‐western Barents Sea. Marine and Petroleum Geology, 15(1), 73–102. https://doi.org/10.1016/S0264-8172(97)00048-2
    [Google Scholar]
  15. Haile, B. G., Klausen, T. G., Czarniecka, U., Xi, K., Jahren, J., & Hellevang, H. (2018). How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard. Marine and Petroleum Geology, 92, 519–546. https://doi.org/10.1016/j.marpetgeo.2017.11.019
    [Google Scholar]
  16. Henriksen, E., Ryseth, A. E., Larssen, G. B., Heide, T., Rønning, K., Sollid, K., & Stoupakova, A. V. (2011). Tectonostratigraphy of the greater Barents Sea: Implications for petroleum systems. Geological Society, London, Memoirs, 35(1), 163–195. https://doi.org/10.1144/M35.10
    [Google Scholar]
  17. Herriott, T. M., Crowley, J. L., Schmitz, M. D., Wartes, M. A., & Gillis, R. J. (2019). Exploring the law of detrital zircon: LA‐ICP‐MS and CA‐TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA. Geology, 47(11), 1044–1048. https://doi.org/10.1130/G46312.1
    [Google Scholar]
  18. Hochuli, P. A., & Vigran, J. O. (2010). Climate variations in the Boreal Triassic – Inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1–4), 20–42. https://doi.org/10.1016/j.palaeo.2009.08.013
    [Google Scholar]
  19. Klausen, T. G., Müller, R., Poyatos‐Moré, M., Olaussen, S., & Stueland, E. (2019). Tectonic, provenance and sedimentological controls on reservoir characteristics in the Upper Triassic to Middle Jurassic Realgrunnen Subgroup‐Southwest Barents Sea. Geological Society, London, Special Publications, 495, SP495‐2018. https://doi.org/10.1144/SP495-2018-165
    [Google Scholar]
  20. Klausen, T. G., Müller, R., Slama, J., & Helland‐Hansen, W. (2017). Evidence for Late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea. Lithosphere, 9(1), 14–28. https://doi.org/10.1130/L556.1
    [Google Scholar]
  21. Klausen, T. G., Müller, R., Sláma, J., Olaussen, S., Rismyhr, B., & Helland-Hansen, W. (2018). Depositional history of a condensed shallow marine reservoir succession: Stratigraphy and detrital zircon geochronology of the Jurassic Stø Formation, Barents Sea. Journal of the Geological Society, 175(1), 130–145.
    [Google Scholar]
  22. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2014). Spatial and temporal changes in geometries of fluvial channel bodies from the Triassic Snadd Formation of offshore Norway. Journal of Sedimentary Research, 84(7), 567–585. https://doi.org/10.2110/jsr.2014.47
    [Google Scholar]
  23. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  24. Line, L. H., Jahren, J., & Hellevang, H. (2018). Mechanical compaction in chlorite‐coated sandstone reservoirs – Examples from Middle‐Late Triassic channels in the southwestern Barents Sea. Marine and Petroleum Geology, 96, 348–370. https://doi.org/10.1016/j.marpetgeo.2018.05.025
    [Google Scholar]
  25. Lopatin, B. G., Pavlov, L. G., Orgo, V. V., & Shkarubo, S. I. (2001). Tectonic structure of Novaya Zemlya. Polarforschung, 69, 131–135.
    [Google Scholar]
  26. Ludwig, K. R. (2008). Isoplot 3.70: A geochronological toolkit for Microsoft Excel (Vol. 4, p. 77). Berkeley, CA: Berkeley Geochronology Center, Special Publication.
    [Google Scholar]
  27. Mangerud, G., & Rømuld, A. (1991). Spathian‐Anisian (Triassic) palynology at the Svalis Dome, southwestern Barents Sea. Review of Palaeobotany and Palynology, 70(3), 199–216. https://doi.org/10.1016/0034-6667(91)90002-K
    [Google Scholar]
  28. Mørk, A., Knarud, R., & Worsley, D. (1982). Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. Arctic Geology and Geophysics: Proceedings of the Third International Symposium on Arctic Geology, 8, 371–398.
    [Google Scholar]
  29. Mørk, M. B. E. (1999). Compositional variations and provenance of Triassic sandstones from the Barents Shelf. Journal of Sedimentary Research, 69(3), 690–710. https://doi.org/10.2110/jsr.69.690
    [Google Scholar]
  30. Müller, R. (2003). Basin infill dynamics of the Triassic of the northern North Sea and Mid‐Norwegian shelf: Control of autogenic and allogenic factors. Doctoral dissertation. University of Oslo.
    [Google Scholar]
  31. Müller, R., Klausen, T. G., Faleide, J. I., Olaussen, S., Eide, C. H., & Suslova, A. (2019). Linking regional unconformities in the Barents Sea to compression‐induced forebulge uplift at the Triassic‐Jurassic transition. Tectonophysics, 20, 35–51. https://doi.org/10.1016/j.tecto.2019.04.006
    [Google Scholar]
  32. Norwegian Petroleum Directorate
    Norwegian Petroleum Directorate . (2019, March 8).NPD factmaps. Retrieved from http://gis.npd.no/factmaps/html_21/
  33. Powers, M. C. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Research, 23(2), 117–119. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D
    [Google Scholar]
  34. Puchkov, V. N. (2009). The evolution of the Uralian orogen. Geological Society, London, Special Publications, 327(1), 161–195. https://doi.org/10.1144/SP327.9
    [Google Scholar]
  35. Ryseth, A. (2014). Sedimentation at the Jurassic‐Triassic boundary, south‐west Barents Sea: Indication of climate change. From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin, 46, 187–214.
    [Google Scholar]
  36. Scotese, C. R. (2004). A continental drift flipbook. The Journal of Geology, 112(6), 729–741. https://doi.org/10.1086/424867
    [Google Scholar]
  37. Sømme, T. O., Doré, A. G., Lundin, E. R., & Tørudbakken, B. O. (2018). Triassic‐Paleogene paleogeography of the Arctic: Implications for sediment routing and basin fill. AAPG Bulletin, 102(12), 2481–2517. https://doi.org/10.1306/05111817254
    [Google Scholar]
  38. Vigran, J. O. (2014). Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Norges Geologiske undersøkelse.
    [Google Scholar]
  39. Wilson, M. D., & Pittman, E. D. (1977). Authigenic clays in sandstones; recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Research, 47(1), 3–31.
    [Google Scholar]
  40. Worsley, D. (2008). The post‐Caledonian development of Svalbard and the western Barents Sea. Polar Research, 27(3), 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12437
Loading
/content/journals/10.1111/bre.12437
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Barents sea; Jurassic; petrography; provenance; Triassic

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error