1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The role of sea‐bottom topography in the dispersal of shallow water‐derived calciturbidites across a submarine rift, as determined by the local extensional architecture, is under‐investigated, namely with pelagic settings along ancient passive continental margins. A comparison with modern carbonate platform/basin analogues, or with siliciclastic systems, is not always feasible, as ancient carbonate systems were commonly home to anachronistic environments (e.g. the Western Tethyan Mesozoic). Our study focuses on: (a) a reconstruction of the palaeotectonic architecture of the Umbria‐Marche Basin in the Jurassic and on (b) how this architecture produced a submarine topography which governed the dispersal of sediment, shed by the neighbouring Lazio‐Abruzzo Carbonate Platform, for >40 million years. A geological mapping project was performed in the Apennines of Central Italy, a region which in the Jurassic displayed a pattern of intrabasinal highs (pelagic carbonate platforms) and intervening basins which was exceedingly complex due to the high density, and oddly variable trends, of faults rooted in a shallow detachment layer corresponding to thick Triassic salt. A map pairing the occurrences of these resedimented beds with an updated palaeogeography becomes the natural descriptor of the itineraries followed by sediment gravity flows. This qualitative method represents a companion, or even alternative, approach to the one strictly based on physical stratigraphy, and it greatly improves our knowledge of regional geology and rift‐basin analysis. Our case history potentially represents the analogue of hydrocarbon fields both inland and in the offshore. Geological mapping shows that the marginal palaeoescarpments of pelagic carbonate platforms formed obstacles to the gravity flows as sediment load was discharged at their toes. While turbidity flows were locally vigorous enough to climb the escarpments, leaving overbank deposits on the pelagic carbonate platform‐tops, a ‘shelter’ effect is evidenced by the resediment‐free nature of those basins lying downflow, which were shielded by the highs.

,

3D (A, B) and 2D (A’, B’) block diagrams illustrating: A‐A’) a hypothetic extensional structure, with stripped‐off post‐Calcare Massiccio sediments, and B‐B’) the possible pathways (dark arrows) of allochthonous shallow‐water material in a pelagic carbonate platform/marginal step/basin depositional system. Not to scale.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12438
2020-11-22
2024-04-19
Loading full text...

Full text loading...

References

  1. Alexander, J., & Morris, S. (1994). Observations on experimental, nonchannelized, high‐concentration turbidity currents and variations in deposits around obstacles. Journal of Sedimentary Research, 64(4a), 899–909. https://doi.org/10.1306/D4267F00‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  2. Al‐Mojel, A., Dera, G., Razin, P., & Le Nindre, Y. M. (2018). Carbon and oxygen isotope stratigraphy of Jurassic platform carbonates from Saudi Arabia: Implications for diagenesis, correlations and global paleoenvironmental changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 388–402. https://doi.org/10.1016/j.palaeo.2018.09.005
    [Google Scholar]
  3. Alvarez, W. (1989a). Evolution of the Monte Nerone seamount in the Umbria‐Marche Apennines: Jurassic‐Tertiary stratigraphy. Bollettino della Società Geologica Italiana, 108(1), 3–21.
    [Google Scholar]
  4. Alvarez, W. (1989b). Evolution of the Monte Nerone seamount in the Umbria‐Marche Apennines: Tectonic control of the seamount‐basin transition. Bollettino della Società Geologica Italiana, 108(1), 23–39.
    [Google Scholar]
  5. Andresen, N., Reijmer, J. J. G., & Droxler, A. W. (2003). Timing and distribution of calciturbidites around a deeply submerged carbonate platform in a seismically active setting (Pedro Bank, Northern Nicaragua Rise, Caribbean Sea). International Journal of Earth Sciences, 92, 573–592. https://doi.org/10.1007/s00531‐003‐0340‐0
    [Google Scholar]
  6. Athmer, W., Groenenberg, R. M., Luthi, S. M., Donselaar, M. E., Sokoutis, D., & Willingshofer, E. (2010). Relay ramps as pathways for turbidity currents: A study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3), 806–823. https://doi.org/10.1111/j.1365‐3091.2009.01120.x
    [Google Scholar]
  7. Athmer, W., & Luthi, S. M. (2011). The effect of relay ramps on sediment routes and deposition: A review. Sedimentary Geology, 242(1), 1–17. https://doi.org/10.1016/j.sedgeo.2011.10.002
    [Google Scholar]
  8. Bartoccini, P., & Rettori, R. (1991). Calcareniti oolitiche a Protopeneroplis striata nei Calcari Diasprigni della successione umbro‐marchigiana (Appennino Settentrionale). Bollettino della Società Geologica Italiana, 110, 77–83.
    [Google Scholar]
  9. Bartolini, A., Baumgartner, P. O., & Hunziker, J. (1996). Middle and Upper Jurassic carbon stable‐isotope stratigraphy and radiolarite sedimentation of the Umbria‐Marche basin (Central Italy). Eclogae Geologicae Helvetiae, 89(2), 811–844.
    [Google Scholar]
  10. Beccaro, P., Diserens, M. O., Gorican, S., & Martire, L. (2008). Callovian radiolarians from the lowermost Calcare Selcifero di Fonzaso at Ponte Serra (Trento Plateau, Southern Alps, Italy). Rivista Italiana di Paleontologia e Stratigrafia, 114(3), 489–504. https://doi.org/10.13130/2039‐4942/5913
    [Google Scholar]
  11. Bell, D., Stevenson, C. J., Kane, I. A., Hodgson, D. M., & Poyatos‐Moré, M. (2018). Topographic controls on the development of contemporaneous but contrasting basin‐floor depositional architectures. Journal of Sedimentary Research, 88, 1166–1189. https://doi.org/10.2110/jsr.2018.58
    [Google Scholar]
  12. Bernoulli, D., & Renz, O. (1970). Jurassic carbonate facies and new ammonite faunas from western Greece. Eclogae Geologicae Helvetiae, 63(2), 573–607. https://doi.org/10.5169/seals‐163861
    [Google Scholar]
  13. Berra, F. (2007). Sedimentation in shallow to deep water carbonate environments across a sequence boundary: Effects of a fall in sea‐level on the evolution of a carbonate system (Ladinian‐Carnian, eastern Lombardy, Italy). Sedimentology, 54(4), 721–735. https://doi.org/10.1111/j.1365‐3091.2006.00850.x
    [Google Scholar]
  14. Bertotti, G., Picotti, V., Bernoulli, D., & Castellarin, A. (1993). From rifting to drifting: Tectonic evolution of the South‐Alpine upper crust from the Triassic to the Early Cretaceous. Sedimentary Geology, 86(1–2), 53–76. https://doi.org/10.1016/0037‐0738(93)90133‐P
    [Google Scholar]
  15. Bigi, S., Mandrone, S., Pierantoni, P. P., & Rossi, D. (2000). Structural analyses and restoration of structural cross‐section in the northern central sector of the Narni‐Amelia ridge (Central Apennines). Memorie della Società Geologica Italiana, 55, 185–192.
    [Google Scholar]
  16. Bosellini, A. (1981). The Emilia Fault: A Jurassic fracture zone that evolved into a Cretaceous‐Paleogene sinistral wrench fault. Bollettino della Società Geologica Italiana, 100(1), 161–169.
    [Google Scholar]
  17. Cannata, D. (2007). Rilevamento Geologico e Analisi di Facies in due Aree—Campione dell'Appennino Umbro–Marchigiano–Sabino: Paleogeografia di Dettaglio e Tettonica Giurassica, e loro impatto sulle fasi deformative successive. Ph.D. Thesis, unpublished, “Sapienza” University of Rome, pp. 247.
  18. Cantelli, C., Castellarin, A., & Praturlon, A. (1978). Tettonismo giurassico lungo l'Ancona‐Anzio nel settore Monte Terminillo‐Antrodoco. Geologica Romana, 17, 85–97.
    [Google Scholar]
  19. Capotorti, F., Berti, D., D'Ambrogi, C., Marino, M., Muraro, C., Perini, P., …Silvestri, S. (2018). Stratigraphic and structural complexity in the Northern‐Central Apennines: The record of the geological sheet Antrodoco, 1:50.000 scale. SGI‐SIMP Congress, Abstract Book. 12–14 September, Catania, Italy. p. 138. https://doi.org/10.3301/ABSGI/2018.02
  20. Carminati, E., & Santantonio, M. (2005). Control of differential compaction on the geometry of sediments onlapping paleoescarpments: Insights from field geology (Central Apennines, Italy) and numerical modeling. Geology, 33(5), 353–356. https://doi.org/10.1130/G21262.1
    [Google Scholar]
  21. Casabianca, D., Bosence, D., & Beckett, D. (2002). Reservoir potential of Cretaceous platform‐margin breccias, Central Italian Apennines. Journal of Petroleum Geology, 25(2), 179–202. https://doi.org/10.1111/j.1747‐5457.2002.tb00003.x
    [Google Scholar]
  22. Catalano, R., Channel, J. E. T., D'Argenio, B., & Napoleone, G. (1976). Mesozoic paleogeography of the Southern Apennines and Sicily. Problems of paleotectonics and paleomagnetism. Memorie della Società Geologica Italiana, 15, 95–118.
    [Google Scholar]
  23. Cecca, F., Cresta, S., Pallini, G., & Santantonio, M. (1990). Il Giurassico di Monte Nerone (Appennino marchigiano, Italia Centrale): Biostratigrafia, litostratigrafia ed evoluzione paleogeografica. In G.Pallini, F.Cecca, S.Cresta, & M.Santantonio (Eds.), Atti II Convegno Internazionale “Fossili, Evoluzione, Ambiente” 1987, (pp. 63–139). Pergola, Italy.
    [Google Scholar]
  24. Centamore, E., Chiocchini, M., Deiana, G., Micarelli, A., & Pieruccini, U. (1971). Contributo alla conoscenza del Giurassico dell'Appennino umbro‐marchigiano. Studi Geologici Camerti, 1, 7–89.
    [Google Scholar]
  25. Chiocchini, M., Farinacci, A., Mancinelli, A., Molinari, V., & Potetti, F. (1994). Biostratigrafia a foraminiferi, dasicladali e calpionelle delle successioni carbonatiche mesozoiche dell'Appennino centrale (Italia). Studi Geologici Camerti, Volume Speciale “Biostratigrafia dell'Italia Centrale”, 9–129.
    [Google Scholar]
  26. Cipriani, A. (2016). Geology of the Mt. Cosce sector (Narni Ridge, Central Apennines, Italy). Journal of Maps, 12(1), 328–340. https://doi.org/10.1080/17445647.2016.1211896
    [Google Scholar]
  27. Cipriani, A. (2019). Geological map of the central part of Narni‐Amelia Ridge (Central Apennines, Italy). Geological Field Trips and Maps, 11(2.2), 1–26. https://doi.org/10.3301/GFT.2019.04
    [Google Scholar]
  28. Cipriani, A., & Bottini, C. (2019a). Early Cretaceous tectonic rejuvenation of an Early Jurassic margin in the Central Apennines: The “Mt. Cosce Breccia”. Sedimentary Geology, 387, 57–74. https://doi.org/10.1016/j.sedgeo.2019.03.002
    [Google Scholar]
  29. Cipriani, A., & Bottini, C. (2019b). Unconformities, neptunian dykes and mass‐transport deposits as an evidence for Early Cretaceous syn‐sedimentary tectonics: New insights from the Central Apennines. Italian Journal of Geosciences, 138(3), 333–354. https://doi.org/10.3301/IJG.2019.09
    [Google Scholar]
  30. Cipriani, A., Cannata, D., & Santantonio, M. (2016). The Terni “corridor”: New stratigraphic constraints for the reconstruction of the Jurassic paleogeography of Central Apennines. Rendiconti Online della Società Geologica Italiana, 40(1), 522. https://doi.org/10.3301/ROL.2016.79
    [Google Scholar]
  31. Cipriani, A., Caratelli, M., & Santantonio, M. (2019). Geological mapping reveals the role of Early Jurassic rift architecture in the dispersal of calciturbidites: New insights from the Central and Northern Apennines. Mendeley Data, V2. https://doi.org/10.17632/5j66smvyzf.2
    [Google Scholar]
  32. Cipriani, A., Citton, P., Romano, M., & Fabbi, S. (2016). Testing two open‐source photogrammetry software as a tool to digitally preserve and objectively communicate significant geological data: The Agolla case study (Umbria‐Marche Apennines). Italian Journal of Geosciences, 135(2), 199–209. https://doi.org/10.3301/IJG.2015.21
    [Google Scholar]
  33. Cipriani, A., Fabbi, S., Lathuilière, B., & Santantonio, M. (2019). A reef coral in the condensed Maiolica facies on the Mt Nerone pelagic carbonate platform (Marche Apennines): The enigma of ancient pelagic deposits. Sedimentary Geology, 385, 45–60. https://doi.org/10.1016/j.sedgeo.2019.03.007
    [Google Scholar]
  34. Cipriani, A., Zuccari, C., Innamorati, G., Marino, M. C., & Petti, F. M. (2020). Mass‐transport deposits from the Toarcian of the Umbria‐Marche‐Sabina Basin (Central Italy). Italian Journal of Geosciences, 139(1), 9–29. https://doi.org/10.3301/IJG.2019.14
    [Google Scholar]
  35. Cita, M. B., Abbate, E., Aldighieri, B., Balini, M., Conti, M. A., Falorni, P., … Petti, F. M. (2007). Carta Geologica d'Italia 1: 50.000. Catalogo delle formazioni – Unità tradizionali (1) Fascicolo VI. Quaderni del Servizio Geologico d'Italia, Serie III, 7(6), 318 pp.
    [Google Scholar]
  36. Citton, P., Fabbi, S., Cipriani, A., Jansen, M., & Romano, M. (2019). Hybodont dentition from the Upper Jurassic of Monte Nerone Pelagic Carbonate Platform (Umbria‐Marche Apennine, Italy) and its ecological implications. Geological Journal, 54, 278–290. https://doi.org/10.1002/gj.3174
    [Google Scholar]
  37. Colacicchi, R., & Baldanza, A. (1986). Carbonates turbidites in a Mesozoic pelagic basin: Scaglia Formation, Apennines‐Comparison with siliciclastic depositional models. Sedimentary Geology, 48, 81–105. https://doi.org/10.1016/0037‐0738(86)90081‐3
    [Google Scholar]
  38. Colacicchi, R., & Bigozzi, A. (1995). Event stratigraphy and carbonate platform‐basin interrelations during the Jurassic in the Central Apennines. Palaeopelagos, 5, 111–128.
    [Google Scholar]
  39. Colacicchi, R., & Monaco, P. (1994). Pure carbonate gravity flow deposits of the Scaglia basin compared with Central Apennine siliciclastics (Marnoso‐Arenacea and Laga): Analogies and differences. Memorie della Società Geologica e Paleontologica dell'Università di Padova, 46, 23–41.
    [Google Scholar]
  40. Coltorti, M., & Bosellini, A. (1980). Sedimentazione e tettonica nel Giurassico della dorsale marchigiana. Studi Geologici Camerti, 6, 13–21.
    [Google Scholar]
  41. Cook, H. E., Hine, A. C., & Mullins, H. T. (1983). Platform margin and deep‐water carbonates. Society of Economic Paleontologists and Mineralogists Short Course, 12, 573. https://doi.org/10.2110/scn.83.03
    [Google Scholar]
  42. Corda, L., & Mariotti, G. (1986). Il Bacino sabino: 1) Fenomeni di risedimentazione nella serie di Osteria Tancia. Bollettino della Società Geologica Italiana, 105, 41–63.
    [Google Scholar]
  43. Cosentino, D., Mariotti, G., & Parotto, M. (1982). Megabrecce, flussotorbiditi e serie ridotta di Forca Canapine (F. 132 Norcia). Rendiconti della Società Geologica Italiana, 5, 45–50.
    [Google Scholar]
  44. Cosentino, D., & Parotto, M. (1989). Assetto strutturale dei Monti Lucretili settentrionali (Sabina): Nuovi dati e schema tettonico preliminare. Geologica Romana, 25, 187–213.
    [Google Scholar]
  45. Courgeon, S., Jorry, S. J., Camoin, G. F., BouDagher‐Fadel, M. K., Jouet, G., Révillon, S., … Droxler, A. W. (2016). Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean). Marine Geology, 380, 90–105. https://doi.org/10.1016/j.margeo.2016.07.006
    [Google Scholar]
  46. Courgeon, S., Jorry, S. J., Jouet, G., Camoin, G., BouDagher‐Fadel, M. K., Bachèlery, P., … Guérin, C. (2017). Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean). Sedimentary Geology, 355, 114–131. https://doi.org/10.1016/j.sedgeo.2017.04.008
    [Google Scholar]
  47. Damiani, A. V., Chiocchini, M., Colacicchi, R., Mariotti, G., Parotto, M., Passeri, L., & Praturlon, A. (1991). Elementi litostratigrafici per una sintesi delle facies carbonatiche meso‐cenozoiche dell'Appennino centrale. Studi Geologici Camerti, Volume Speciale, 2, 187–213.
    [Google Scholar]
  48. De Paola, N., Collettini, C., Trippetta, F., Barchi, M. R., & Minelli, G. (2007). A mechanical model for complex fault patterns induced by evaporite dehydration and cyclic changes in fluid pressure. Journal of Structural Geology, 29(10), 1573–1584. https://doi.org/10.1016/j.jsg.2007.07.015
    [Google Scholar]
  49. Della Bruna, G., & Martire, L. (1985). La successione giurassica (Pliensbachiano‐Kimmeridgiano) delle Alpi Feltrine (Belluno). Rivista Italiana di Paleontologia e Stratigrafia, 91, 15–62.
    [Google Scholar]
  50. Duncan, D. S., Hine, A. C., & Droxler, A. W. (1999). Tectonic controls on carbonate sequence formation in an active strike–slip setting: Serranilla Basin, Northern Nicaragua Rise, Western Caribbean Sea. Marine Geology, 160(3–4), 355–382. https://doi.org/10.1016/S0025‐3227(99)00070‐5
    [Google Scholar]
  51. Dunham, R. J. (1962). Classification of carbonate rocks according to depositional textures. In W. E.Ham (Ed.), Classification of carbonate rocks. AAPG Memoir 1, 108–171.
    [Google Scholar]
  52. Eberli, G. P. (1987). Carbonate turbidite sequences deposited in rift‐basins of the Jurassic Tethys Ocean (eastern Alps, Switzerland). Sedimentology, 34(3), 363–388. https://doi.org/10.1111/j.1365‐3091.1987.tb00576.x
    [Google Scholar]
  53. Eberli, G. P. (1988). The evolution of the southern continental margin of the Jurassic Tethys Ocen as recorded in the Allgäu Formation of the Austroalpine Nappes of Graubünden (Switzerland). Eclogae Geologicae Helvetiae, 81(1), 175–214.
    [Google Scholar]
  54. El Kadiri, K. H., Hlila, R., de Galdeano, C. S., López‐Garrido, A. C., Chalouan, A., Serrano, F., … Liemlahi, H. (2006). Regional correlations across the Internides‐Externides front (northwestern Rif Belt, Morocco) during the Late Cretaceous‐Early Burdigalian times: Palaeogeographical and palaeotectonic implications. Geological Society, London, Special Publications, 262(1), 193–215. https://doi.org/10.1144/GSL.SP.2006.262.01.12
    [Google Scholar]
  55. Embry, F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19(4), 730–781.
    [Google Scholar]
  56. Enos, P. (1977). Tamabra limestone of the Poza Rica Trend, Cretaceous, Mexico. SEPM Special Publication, 25, 273–314. https://doi.org/10.2110/pec.77.25.0273
    [Google Scholar]
  57. Everts, A. J. W. (1991). Interpreting compositional variations of calciturbidites in relation to platform stratigraphy: An example from the Paleogene of SE Spain. Sedimentary Geology, 71, 231–242. https://doi.org/10.1016/0037‐0738(91)90104‐L
    [Google Scholar]
  58. Fabbi, S. (2015). Geology and Jurassic paleogeography of the Mt. Primo‐Mt. Castel Santa Maria ridge and neighbouring areas (Northern, Apennines, Italy). Journal of Maps, 11(4), 645–663. https://doi.org/10.1080/17445647.2014.956235
    [Google Scholar]
  59. Fabbi, S., Citton, P., Romano, M., & Cipriani, A. (2016). Detrital events within pelagic deposits of the Umbria‐Marche Basin (Northern Apennines, Italy): Further evidence of Early Cretaceous tectonics. Journal of Mediterranean Earth Sciences, 8, 39–52. https://doi.org/10.3304/JMES.2016.003
    [Google Scholar]
  60. Fabbi, S., & Santantonio, M. (2012). Footwall progradation in syn‐rift carbonate platform‐slope systems (Early Jurassic, Northern Apennines, Italy). Sedimentary Geology, 281, 21–34. https://doi.org/10.1016/j.sedgeo.2012.07.008
    [Google Scholar]
  61. Farinacci, A. (1967). La serie giurassico‐neocomiana di Monte Lacerone (Sabina). Nuove vedute sull'interpretazione paleogeografica delle aree di facies umbro‐marchigiana. Geologica Romana, 6, 421–480.
    [Google Scholar]
  62. Farinacci, A. (1970). Età, batimetria, temperatura, sedimentazione e subsidenza nelle serie carbonatiche dell'intrageoanticlinale mesozoica umbro‐marchigiana. Bollettino della Società Geologica Italiana, 89(2), 317–332.
    [Google Scholar]
  63. Farinacci, A., Malantrucco, G., Mariotti, N., & Nicosia, U. (1981). Ammonitico Rosso facies in the framework of the Martani Mountains paleoenvironmental evolution during Jurassic. In A.Farinacci, & S.Elmi (Eds.), Rosso Ammonitico Symposium Proceedings (pp. 311–334). Roma, Italy: Tecnoscienza ed.
    [Google Scholar]
  64. Ferry, S., Grosheny, D., Backert, N., & Atrops, F. (2015). The base‐of‐slope carbonate breccia system of Céüse (Tithonian, S‐E France): Occurrence of progradational stratification in the head plug of coarse granular flow deposits. Sedimentary Geology, 317, 71–86. https://doi.org/10.1016/j.sedgeo.2014.07.001
    [Google Scholar]
  65. Flügel, E. (2010). Microfacies of carbonate rocks. Analysis, interpretation and application ‐2nd ed. 984 pp. Berlin Heidelberg, Germany: Springer‐Verlag. https://doi.org/10.1007/10.1007/978‐3‐642‐03796‐2
    [Google Scholar]
  66. Franceschi, M., Dal Corso, J., Posenato, R., Roghi, G., Masetti, D., & Jenkyns, H. C. (2014). Early Pliensbachian (Early Jurassic) C‐isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 255–263. https://doi.org/10.1016/j.palaeo.2014.05.025
    [Google Scholar]
  67. Galdenzi, S. (1986). Megabrecce giurassiche nella dorsale marchigiana e loro implicazioni paleotettoniche. Bollettino della Società Geologica Italiana, 105(3–4), 371–382.
    [Google Scholar]
  68. Galdenzi, S., & Menichetti, M. (1999). Tectono‐sedimentary evolution of the Jurassic in the Umbria‐Marche basin. Palaeopelagos, Special Publication, 3, 143–148.
    [Google Scholar]
  69. Galluzzo, F., & Santantonio, M. (1994). Geologia e paleogeografia giurassica dell'area compresa tra la Valle del Vernino e Monte Murano (Monti della Rossa, Appennino Marchigiano). Bollettino della Società Geologica Italiana, 113, 587–612.
    [Google Scholar]
  70. Galluzzo, F., & Santantonio, M. (2002). The Sabina Plateau: A New Element in the Mesozoic Palaeogeography of Central Apennines. Bollettino della Società Geologica Italiana, Volume Speciale1, 561–588.
    [Google Scholar]
  71. Giannini, E., Lazzarotto, A., & Zampi, M. (1970). Studio stratigrafico e micropaleontologico del Giurassico della Montagna dei Fiori (Ascoli Piceno‐Teramo). Memorie della Società Geologica Italiana, 9, 29–53.
    [Google Scholar]
  72. Gill, G. A., Santantonio, M., & Lathulière, B. (2004). The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: An example from the Apennines. Sedimentary Geology, 166, 311–334. https://doi.org/10.1016/j.sedgeo.2004.01.013
    [Google Scholar]
  73. Haak, A. B., & Schlager, W. (1989). Compositional variations in calciturbidites due to sea‐level fluctuations, late Quaternary, Bahamas. Geologische Rundschau, 78(2), 477–486. https://doi.org/10.1007/BF01776186
    [Google Scholar]
  74. Hairabian, A., Borgomano, J., Masse, J. P., & Nardon, S. (2015). 3‐D stratigrap hic architecture, sedimentary processes and controlling factors of Cretaceous deep‐water resedimented carbonates (Gargano Peninsula, SE Italy). Sedimentary Geology, 317, 116–136. https://doi.org/10.1016/j.sedgeo.2014.11.001
    [Google Scholar]
  75. Haughton, P. (2001). Contained turbidites used to track sea bed deformation and basin migration, Sorbas Basin, south‐east Spain. Basin Research, 13(2), 117–139. https://doi.org/10.1046/j.1365‐2117.2001.00143.x
    [Google Scholar]
  76. Hodson, J. M., & Alexander, J. (2010). The effects of grain‐density variation on turbidity currents and some implications for the deposition of carbonate turbidites. Journal of Sedimentary Research, 80(6), 515–528. https://doi.org/10.2110/jsr.2010.051
    [Google Scholar]
  77. Hüneke, H. (2013). Bioclastic contourites: Depositional model for bottom‐current redeposited pelagic carbonate ooze (Devonian, Moroccan Central Massif). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 164(2), 253–277. https://doi.org/10.1127/1860‐1804/2013/0031
    [Google Scholar]
  78. Janson, X., Kerans, C., Loucks, R., Marhx, M. A., Reyes, C., & Murguia, F. (2011). Seismic architecture of a Lower Cretaceous platform‐to‐slope system, Santa Agueda and Poza Rica fields, Mexico. AAPG Bulletin, 95(1), 105–146. https://doi.org/10.1306/06301009107
    [Google Scholar]
  79. Jenkyns, H. C. (1972). Pelagic “oolites” from the Tethyan Jurassic. The Journal of Geology, 80(1), 21–33. https://doi.org/10.1086/627711
    [Google Scholar]
  80. Jo, A., Eberli, P., & Grasmueck, M. (2015). Margin collapse and slope failure along southwestern Great Bahama Bank. Sedimentary Geology, 317, 43–52. https://doi.org/10.1016/j.sedgeo.2014.09.004
    [Google Scholar]
  81. Jorry, S. J., Hasler, C. A., & Davaud, E. (2006). Hydrodynamic behaviour of Nummulites: Implications for depositional models. Facies, 52(2), 221–235. https://doi.org/10.1007/s10347‐005‐0035‐z
    [Google Scholar]
  82. Kneller, B. (1995). Beyond the turbidite paradigm: Physical models for deposition of turbidites and their implications for reservoir prediction. Geological Society, London, Special Publication, 94(1), 31–49. https://doi.org/10.1144/GSL.SP.1995.094.01.04
    [Google Scholar]
  83. Kneller, B., & Buckee, C. (2000). The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications. Sedimentology, 47, 62–94. https://doi.org/10.1046/j.1365‐3091.2000.047s1062.x
    [Google Scholar]
  84. Kneller, B., Edwards, D., McCaffrey, W., & Moore, R. (1991). Oblique reflection of turbidity currents. Geology, 19(3), 250–252. https://doi.org/10.1130/0091‐7613(1991)019%3C0250:OROTC%3E2.3.CO;2
    [Google Scholar]
  85. Korte, C., & Hesselbo, S. P. (2011). Shallow marine carbon and oxygen isotope and elemental records indicate icehouse‐greenhouse cycles during Early Jurassic. Palaeoceanography, 26, PA4219. https://doi.org/10.1029/2011PA002160
    [Google Scholar]
  86. Le Goff, J., Cerepi, A., Swennen, R., Loisy, C., Caron, M., Muska, K., & El Desouky, H. (2015). Contribution to the understanding of the Ionian Basin sedimentary evolution along the eastern edge of Apulia during the Late Cretaceous in Albania. Sedimentary Geology, 317, 87–101. https://doi.org/10.1016/j.sedgeo.2014.09.003
    [Google Scholar]
  87. Le Goff, J., Reijmer, J. J. G., Cerepi, A., Loisy, C., Swennen, R., Heba, G., … De Gaff, S. (2019). The dismantling of the Apulian carbonate platform during the late Campanian – early Maastrichtian in Albania. Cretaceous Research, 96, 83–106. https://doi.org/10.1016/j.cretres.2018.11.013
    [Google Scholar]
  88. Leonardi, R., Lipparini, L., Nicosia, U., Ursini, F., & Varazi, F. (1997). A peculiar type of Jurassic slope in the Polino area (Terni, Central Italy). Palaeopelagos, 7, 145–168.
    [Google Scholar]
  89. Marino, M., & Santantonio, M. (2010). Understanding the geological record of carbonate platform drowning across rifted Tethyan margins: Examples from the Lower Jurassic of the Apennines and Sicily (Italy). Sedimentary Geology, 225, 116–137. https://doi.org/10.1016/j.sedgeo.2010.02.002
    [Google Scholar]
  90. Masetti, D., Figus, B., Jenkyns, H. C., Barattolo, F., Mattioli, E., & Posenato, R. (2016). Carbon‐isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: Evidence from the Southern Alps (Northern Italy). Geological Magazine, 154, 625–650. https://doi.org/10.1017/S0016756816000273
    [Google Scholar]
  91. Maura, I. A., Eberli, G. P., & Bernoulli, D. (2015). Reservoir Analog for Deep‐Water Carbonates Prospects in Southeast Asia. Proceedings of the Indonesian Petroleum Association, 39th Annual Convention, 20‐22 May. Jakarta, Indonesia.
  92. Middleton, G. V. (1993). Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences, 21(1), 89–114. https://doi.org/10.1146/annurev.ea.21.050193.000513
    [Google Scholar]
  93. Monaco, P. (2016). Ichnocoenoses and taphocoenoses of posidoniid‐bearing marl‐limestone rhythmites and event beds, Toarcian‐Aalenian, Northern Apennines, Italy. Geobios, 49(5), 365–379. https://doi.org/10.1016/j.geobios.2016.06.006
    [Google Scholar]
  94. Monaco, P., & Morettini, E. (1997). Marl‐limestone rhythmites and event beds in the Toarcian‐Aalenian “Calcari e Marne a Posidonia” unit of Fiuminata (Pioraco, central Apennines). Bollettino del Servizio Geologico d'Italia, 116, 31–52.
    [Google Scholar]
  95. Monaco, P., Nocchi, M., Ortega‐Huertas, M., Palomo, I., Martinez, F., & Chiavini, G. (1994). Depositional trends in the Valdorbia section (Central Italy) during the Early Jurassic, as revealed by micropaleontology, sedimentology and geochemistry. Eclogae Geologicae Helvetiae, 87(1), 157–223.
    [Google Scholar]
  96. Monaco, P., Nocchi, M., & Parisi, G. (1987). Analisi stratigrafica e sedimentologica di alcune sequenze pelagiche dell'Umbria sud‐orientale dall'Eocene inferiore all'Oligocene inferiore. Bollettino della Società Geologica Italiana, 106, 71–91.
    [Google Scholar]
  97. Morettini, E., Santantonio, M., Bartolini, A., Cecca, F., Baumgartner, P. O., & Hunziker, J. C. (2002). Carbon isotope stratigraphy and carbonate production during the Early‐Middle Jurassic: Examples from the Umbria‐Marche‐Sabina Apennines (central Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 184, 251–273. https://doi.org/10.1016/S0031‐0182(02)00258‐4
    [Google Scholar]
  98. Mullins, H. T., & Cook, H. E. (1986). Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sedimentary Geology, 48(1–2), 37–79. https://doi.org/10.1016/0037‐0738(86)90080‐1
    [Google Scholar]
  99. Ogg, J. G., Ogg, G., & Gradstein, F. M. (Eds.), (2016). Jurassic. In A Concise Geologic Time Scale (pp. 151–166). Amsterdam, the Netherlands: Elsevier Science. https://doi.org/10.1016/B978‐0‐444‐59467‐9.00012‐1
    [Google Scholar]
  100. Passeri, L., & Venturi, F. (2005). Timing and causes of drowning of the Calcare Massiccio platform in Northern Apennines. Bollettino della Società Geologica Italiana, 124, 247–258.
    [Google Scholar]
  101. Payros, A., & Pujalte, V. (2008). Calciclastic submarine fans: An integrated overview. Earth‐Science Reviews, 86(1–4), 203–246. https://doi.org/10.1016/j.earscirev.2007.09.001
    [Google Scholar]
  102. Picotti, V., & Cobianchi, M. (2017). Jurassic stratigraphy of the Belluno Basin and Friuli Platform: A perspective on far‐field compression in the Adria passive margin. Swiss Journal of Geosciences, 110(3), 833–850. https://doi.org/10.1007/s00015‐017‐0280‐5
    [Google Scholar]
  103. Pierantoni, P. P., Deiana, G., & Galdenzi, S. (2013). Stratigraphic and structural features of the Sibillini Mountains (Umbria‐Marche Apennines, Italy). Italian Journal of Geosciences, 132, 497–520. https://doi.org/10.3301/IJG.2013.08
    [Google Scholar]
  104. Pomar, L. (2001). Types of carbonate platforms: A genetic approach. Basin Research, 13, 313–334. https://doi.org/10.1046/j.0950‐091x.2001.00152.x
    [Google Scholar]
  105. Pomar, L., Morsilli, M., Hallock, P., & Bádenas, B. (2012). Internal waves, an under‐explored source of turbulence events in the sedimentary record. Earth‐Science Reviews, 111(1–2), 56–81. https://doi.org/10.1016/j.earscirev.2011.12.005
    [Google Scholar]
  106. Praturlon, A., & Sirna, G. (1976). Ulteriori dati sul margine cenomaniano della piattaforma carbonatica laziale‐abruzzese. Geologica Romana, 15, 83–101.
    [Google Scholar]
  107. Principaud, M., Ponte, J. P., Mulder, T., Gillet, H., Robin, C., & Borgomano, J. (2017). Slope‐to‐basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: Interactions between downslope and bottom currents deposits. Basin Research, 29(6), 699–724. https://doi.org/10.1111/bre.12195
    [Google Scholar]
  108. Quiquerez, A., Sarih, S., Allemand, P., & Garcia, J. P. (2013). Fault rate controls on carbonate gravity‐flow deposits of the Liassic of Central High Atlas (Morocco). Marine and Petroleum Geology, 43, 349–369. https://doi.org/10.1016/j.marpetgeo.2013.01.002
    [Google Scholar]
  109. Reijmer, J. J. G., & Andresen, N. (2007). Mineralogy and grain size variations along two carbonate margin‐to‐basin transects (Pedro Bank, Northern Nicaragua Rise). Sedimentary Geology, 198, 327–350. https://doi.org/10.1016/j.sedgeo.2007.01.018
    [Google Scholar]
  110. Reijmer, J. J. G., Palmieri, P., & Groen, R. (2012). Compositional variations in calciturbidites and calcidebrites in response to sea‐level fluctuations (Exuma Sound, Bahamas). Facies, 58(4), 493–507. https://doi.org/10.1007/s10347‐011‐0291‐z
    [Google Scholar]
  111. Reijmer, J. J. G., Palmieri, P., Groen, R., & Floquet, M. (2015). Calciturbidites and calcidebrites: Sea‐level variations or tectonic processes?Sedimentary Geology, 317, 53–70. https://doi.org/10.1016/j.sedgeo.2014.10.013
    [Google Scholar]
  112. Reijmer, J. J. G., Sprenger, A., Ten Kate, W. G. H. Z., Schlager, W., & Krystyn, L. (1994). Periodicities in the composition of Late Triassic calciturbidites (Eastern Alps, Austria). In P. L. De Boer, & D. G.Smith (Eds.), Orbital forcing and cyclic sequences19, (pp. 323–343). Oxford, UK: International Association of Sedimentologists, Special Publications.
    [Google Scholar]
  113. Reijmer, J. J. G., Ten Kate, W. G. H. Z., Sprenger, A., & Schlager, W. (1991). Calciturbidite composition related to exposure and flooding of a carbonate platform (Triassic, Eastern Alps). Sedimentology, 38, 1059–1074. https://doi.org/10.1111/j.1365‐3091.1991.tb00371.x
    [Google Scholar]
  114. Rendle‐Bühring, R. H., & Reijmer, J. J. G. (2005). Controls on grain‐size patterns in periplatform carbonates: Marginal setting versus glacioeustacy. Sedimentary Geology, 175, 99–113. https://doi.org/10.1016/j.sedgeo.2004.12.025
    [Google Scholar]
  115. Robertson, A. H. F. (2007). Overview of tectonic settings related to the rifting and opening of Mesozoic ocean basins in the Eastern Tethys: Oman, Himalayas and Eastern Mediterranean regions. Geological Society, London, Special Publications, 282, 325–388. https://doi.org/10.1144/SP282.15
    [Google Scholar]
  116. Romano, M., Manni, R., Venditti, E., Nicosia, U., & Cipriani, A. (2019). First occurrence of Tylosaurinae mosasaur from the Turonian of the Apennine Carbonate Platform (Italy). Cretaceous Research, 96, 196–209. https://doi.org/10.1016/j.cretres.2019.01.001
    [Google Scholar]
  117. Ruiz‐Ortiz, P. A. (1983). A carbonate submarine fan in a fault‐controlled basin of the Upper Jurassic Betic Cordillera, southern Spain. Sedimentology, 30, 33–48. https://doi.org/10.1111/j.1365‐3091.1983.tb00648.x
    [Google Scholar]
  118. Rusciadelli, G. (2005). The Maiella Escarpment (Apulia platform, Italy): Geology and Modeling of an Upper Cretaceous Scalloped Erosional Platform Margin. Bollettino della Società Geologica Italiana, 124, 661–673.
    [Google Scholar]
  119. Rusciadelli, G., D'Argenio, B., Di Simone, S., Ferreri, V., Randisi, A., & Ricci, C. (2009). Carbonate‐platform production and export potential recorded in upper Jurassic base‐of‐slope deposits. In B. C.Kneller, O. J.Martinsen, & B.McCaffrey (Eds.), External Controls on Deep‐Water Depositional Systems. SEPM Special Publication, 92, 279–301. https://doi.org/10.2110/sepmsp.092.279
    [Google Scholar]
  120. Rusciadelli, G., & Ricci, C. (2008). New geological constraints for the extension of the northern Apulia platform margin west of the Maiella Mt. (Central Apennines, Italy). Bollettino della Società Geologica Italiana, 127(2), 375–387.
    [Google Scholar]
  121. Rusciadelli, G., & Ricci, C. (2013). Carbonate production of ancient debris‐dominated reefs: An outcrop‐based example from the Upper Jurassic reef complex of the central Apennines (Italy). GSA Bulletin, 125(9–10), 1520–1538. https://doi.org/10.1130/B30850.1
    [Google Scholar]
  122. Rusciadelli, G., & Shiner, P. (2018). Isolated carbonate platforms of the Mediterranean and their seismic expression—Searching for a paradigm. The Leading Edge, 37(7), 492–501. https://doi.org/10.1190/tle37070492.1
    [Google Scholar]
  123. Salé, S. O., Gennari, R., Lugli, S., Manzi, V., & Roveri, M. (2012). Tectonic and climatic control on the Late Messinian sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain). Basin Research, 24(3), 314–337. https://doi.org/10.1111/j.1365‐2117.2011.00527.x
    [Google Scholar]
  124. Santantonio, M. (1993). Facies associations and evolution of pelagic carbonate platform/basin systems: Examples from the Italian Jurassic. Sedimentology, 40, 1039–1067. https://doi.org/10.1111/j.1365‐3091.1993.tb01379.x
    [Google Scholar]
  125. Santantonio, M. (1994). Pelagic carbonate platforms in the geologic record: Their classification, and sedimentary and paleotectonic evolution. AAPG Bulletin, 78, 122–141.
    [Google Scholar]
  126. Santantonio, M., & Carminati, E. (2011). Jurassic rifting evolution of the Apennines and Southern Alps (Italy): Parallels and differences. GSA Bulletin, 123(3–4), 468–484. https://doi.org/10.1130/B30104.1
    [Google Scholar]
  127. Santantonio, M., Fabbi, S., & Bigi, S. (2017). Discussion on “Geological map of the partially dolomitized Jurassic succession exposed in the central sector of the Montagna dei Fiori Anticline, Central Apennines, Italy”. Italian Journal of Geosciences, 136(2), 312–316. https://doi.org/10.3301/IJG.2017.04
    [Google Scholar]
  128. Santantonio, M., & Muraro, C. (2004). Facies and geometries of pelagic deposits in a Jurassic pelagic carbonate platform/basin system – Sabina, Central Apennines (Italy). 32nd International Geological Congress, Field Trip Guide Book – P49, 24 pp. Florence, Italy.
  129. Santantonio, M., Scrocca, D., & Lipparini, L. (2013). The Ombrina‐Rospo Plateau (Apulian Platform): Evolution of a Carbonate Platform and its Margins during the Jurassic and Cretaceous. Marine and Petroleum Geology, 42, 4–29. https://doi.org/10.1016/j.marpetgeo.2012.11.008
    [Google Scholar]
  130. Sarti, M., Bosellini, A., & Winterer, E. L. (1992). Basin geometry and architecture of a Tethyan passive margin (southern Alps, Italy): Implications for rifting mechanisms. In J. S.Watkins, F.Zhiqiang, & F.McMillen (Eds.), Geology and Geophysics of Continental Margins. AAPG Memoir, 53, 241–258.
    [Google Scholar]
  131. Schlager, W. (1981). The paradox of drowned reefs and carbonate platforms. GSA Bulletin, 92(4), 197–211. https://doi.org/10.1130/0016‐7606(1981)92%3C197:TPODRA%3E2.0.CO;2
    [Google Scholar]
  132. Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy. SEPM Concepts in Sedimentology and Paleontology Series, 8. 200 pp. Tulsa, Oklahoma.
    [Google Scholar]
  133. Servizio Geologico d'Italia
    Servizio Geologico d'Italia . (in press). Carta Geologica d'Italia alla scala 1:50.000, F. 347 “Rieti”. Rome, Italy: ISPRA.
  134. Spence, G. H., & Tucker, M. E. (1997). Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: A review. Sedimentary Geology, 112(3–4), 163–193. https://doi.org/10.1016/S0037‐0738(97)00036‐5
    [Google Scholar]
  135. Stow, D. A., Faugères, J. C., Howe, J. A., Pudsey, C. J., & Viana, A. R. (2002). Bottom currents, contourites and deep‐sea sediment drifts: Current state‐of‐the‐art. In D. A. V.Stow, C. J.Pudsey, J. A.Howe, J. C.Faugères, & A. R.Viana (Eds.),Deepwater contourite systems: Modern drifts and ancient series, seismic and sedimentary characteristics. Geological Society, London, Memoirs, 22(1), 7–20. https://doi.org/10.1144/GSL.MEM.2002.022.01.02.
    [Google Scholar]
  136. Stow, D. A. V., & Mayall, M. (2000). Deep‐water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17(2), 125–135. https://doi.org/10.1016/S0264‐8172(99)00064‐1
    [Google Scholar]
  137. Strasser, A. (1986). Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology, 33, 711–727. https://doi.org/10.1111/j.1365‐3091.1986.tb01971.x
    [Google Scholar]
  138. Surlyk, F., & Ineson, J. R. (1992). Carbonate gravity flow deposition along a platform margin scarp (Silurian, North Greenland). Journal of Sedimentary Research, 62(3), 400–410. https://doi.org/10.1306/D4267910‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  139. Tomassetti, K. (2010). Comparison between outcropping and buried Jurassic structures and pelagic platforms of the umbro‐marchean Apennines (Italy), with the help of 3D modelling, wells and seismic data. Detail study of calcarenitic neritic levels in the basins. Ph.D. Thesis, unpublished, “Sapienza” University of Rome, 111pp.
  140. Tucker, M. E., & Wright, V. P. (1990). Carbonate sedimentology. 496 pp. Oxford, UK: Wiley‐Blackwell Science Ltd.
    [Google Scholar]
  141. Watts, K. F. (1990). Mesozoic carbonate slope facies marking the Arabian platform margin in Oman: Depositional history, morphology and paleogeography. In A. H. F.Robertson, M. P.Searle, & A. C.Ries (Eds.), The Geology and Tectonics of Oman. Geological Society, London, Special Publications, 49, 139–159.
    [Google Scholar]
  142. Winterer, E. L., & Bosellini, A. (1981). Subsidence and sedimentation on Jurassic passive continental margin, southern Alps, Italy. AAPG Bulletin, 65, 394–421.
    [Google Scholar]
  143. Yilmaz, C. (2006). Platform–slope transition during rifting: The mid‐Cretaceous succession of the Amasya Region (Northern Anatolia), Turkey. Journal of Asian Earth Sciences, 27(2), 194–206. https://doi.org/10.1016/j.jseaes.2005.03.004
    [Google Scholar]
  144. Yordanova, E. K., & Hohenegger, J. (2007). Studies on settling, traction and entrainment of larger benthic foraminiferal tests: Implications for accumulation in shallow marine sediments. Sedimentology, 54(6), 1273–1306. https://doi.org/10.1111/j.1365‐3091.2007.00881.x
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12438
Loading
/content/journals/10.1111/bre.12438
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error