1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted from Rock‐Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko‐Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected by intrusions. Rock‐Eval pyrolysis (T), and vitrinite reflectance (Ro) analysis were performed to assess the thermal maturity, which lies in the oil window when 435°C ≤ T ≤ 470°C and 0.6%–0.7% ≤ Ro ≤ 1.3%. In addition, we performed low‐ (<300K) and high‐temperature (>300K) investigations of isothermal remanent magnetization to assess the magnetic mineralogy of the selected samples. The maturity results (0.37% ≤ Ro ≤ 2%, 22°C ≤ T ≤ 604°C) show a predominance of immature to early mature Type III organic matter, but do not reliably identify the contact aureole when compared to the reference samples. The magnetic assemblage of the immature samples consists of iron sulphide (greigite), goethite and oxidized or non‐stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of stoichiometric magnetite and fine‐grained pyrrhotite (<1 μm). These results document the disappearance of the iron sulphide (greigite) and increase in content of magnetite during normal burial. On the other hand, magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding dyke/sill intrusions where palaeotemperatures indicate mature to over‐mature state. Interestingly, the iron sulphide (greigite) is still detected in the contact aureole where palaeotemperatures exceeded 130°C. Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as well as identify hidden metamorphic contact aureoles where the iron sulphide greigite is present at temperatures beyond its stability field.

,

Model showing the formation of magnetic mineral as a function of organic matter maturity and temperature. The maturity of the different samples is well constrained by Rock‐Eval pyrolysis and vitrinite reflectance.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12439
2020-11-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Aarnes, I., Svensen, H., Connolly, J. A. D., & Podladchikov, Y. Y. (2010). How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta, 74, 7179–7195. https://doi.org/10.1016/j.gca.2010.09.011
    [Google Scholar]
  2. Aarnes, I., Svensen, H., Polteau, S., & Planke, S. (2011). Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chemical Geology, 281, 181–194. https://doi.org/10.1016/j.chemgeo.2010.12.007
    [Google Scholar]
  3. Abdelmalak, M. M. (2010). Transition Spatio‐temporelle entre rift sédimentaire et marge passive volcanique: l'exemple de la Baie de Baffin, Centre Ouest Groenland, (Spatio‐temporal transition between a sedimentary basin to a volcanic passive margin: the Baffin Bay case example, Central West Greenland). Available at Université du Maine (France) onnline: http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1030.pdf, Le Mans, p. 266.
  4. Abdelmalak, M. M., Aubourg, C., Geoffroy, L., & Laggoun‐Deffarge, F. (2012). A new oil‐window indicator? The magnetic assemblage of claystones from the Baffin Bay volcanic margin. AAPG Bulletin, 96, 205–215.
    [Google Scholar]
  5. Abdelmalak, M. M., Geoffroy, L., Angelier, J., Bonin, B., Callot, J. P., Gélard, J. P., & Aubourg, C. (2012). Stress fields acting during lithosphere breakup above a melting mantle: A case example in West Greenland. Tectonophysics, 581, 132–143. https://doi.org/10.1016/j.tecto.2011.11.020
    [Google Scholar]
  6. Abdelmalak, M. M., Planke, S., Polteau, S., Hatz, E. H., Faleide, J. I., Tegner, C., … Myklebust, R. (2019). Breakup volcanism and plate tectonics in the NW Atlantic. Tectonophysics, 760, 267–296. https://doi.org/10.1016/j.tecto.2018.08.002
    [Google Scholar]
  7. Aubourg, C., Jackson, M., Ducoux, M., & Mansour, M. (2019). Magnetite‐out and pyrrhotite‐in temperatures in shales and slates. Terra Nova, 31, 534–539. https://doi.org/10.1111/ter.12424
    [Google Scholar]
  8. Aubourg, C., & Pozzi, J.‐P. (2010). Toward a new <250°C pyrrhotite‐magnetite geothermometer for claystones. Earth and Planetary Science Letters, 294, 47–57.
    [Google Scholar]
  9. Aubourg, C., Pozzi, J. P., Janots, D., & Sahraoui, L. (2008). Imprinting chemical remanent magnetization in claystones at 95°C. Earth and Planetary Science Letters, 272, 172–180. https://doi.org/10.1016/j.epsl.2008.04.038
    [Google Scholar]
  10. Aubourg, C., Pozzi, J.‐P., & Kars, M. (2012). Burial, claystones remagnetization and some consequences for magnetostratigraphy. Geological Society, London, Special Publications, 371, 181–188. https://doi.org/10.1144/SP371.4
    [Google Scholar]
  11. Aubourg, C., Techer, I., Geoffroy, L., Clauer, N., & Baudin, F. (2014). Detecting the thermal aureole of a magmatic intrusion in immature to mature sediments: A case study in the East Greenland Basin (73°N). Geophysical Journal International, 196, 160–174. https://doi.org/10.1093/gji/ggt396
    [Google Scholar]
  12. Banerjee, S., Elmore, R. D., & Engel, M. H. (1997). Chemical remagnetization and burial diagenesis: Testing the hypothesis in the Pennsylvanian Belden Formation, Colorado. Journal of Geophysical Research: Solid Earth, 102, 24825–24842.
    [Google Scholar]
  13. Bishop, A. N., & Abbott, G. D. (1995). Vitrinite reflectance and molecular geochemistry of Jurassic sediments: The influence of heating by Tertiary dykes (northwest Scotland). Organic Geochemistry, 22, 165–177. https://doi.org/10.1016/0146-6380(95)90015-2
    [Google Scholar]
  14. Blaise, T., Barbarand, J., Kars, M., Ploquin, F., Aubourg, C., Brigaud, B., … Landrein, P. (2014). Reconstruction of low temperature (<100°C) burial in sedimentary basins: A comparison of geothermometer in the intracontinental Paris Basin. Marine and Petroleum Geology, 53, 71–87.
    [Google Scholar]
  15. Blanchet, C. L., Thouveny, N., & Vidal, L. (2009). Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography, 24.
    [Google Scholar]
  16. Bojesen‐Koefoed, J. A., Christiansen, F. G., Nytoft, H. P., & Dalhoff, F. (1997). Organic geochemistry and thermal maturity of sediments in the GRO#3 well, Nuussuaq, West Greenland. Danm. Grønl. Geol. Unders. Rap, 43, 18.
    [Google Scholar]
  17. Bonow, J. M., Japsen, P., Lidmar‐Bergstrom, K., Chalmers, J. A., & Pedersen, A. K. (2006). Cenozoic uplift of Nuussuaq and Disko, West Greenland‐elevated erosion surfaces as uplift markers of a passive margin. Geomorphology, 80, 325–337. https://doi.org/10.1016/j.geomorph.2006.03.006
    [Google Scholar]
  18. Bordenave, M. L. (1993). Applied petroleum geochemistery, Technip ed.. Paris: Technip.
    [Google Scholar]
  19. Brothers, L. A., Engel, M. H., & Elmore, R. D. (1996). The late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron. Chemical Geology, 130, 1–14. https://doi.org/10.1016/0009-2541(96)00007-1
    [Google Scholar]
  20. Bruijn, R. H. C., Almqvist, B. S. G., Hirt, A. M., & Benson, P. M. (2013). Decoupling of paramagnetic and ferrimagnetic AMS development during the experimental chemical compaction of illite shale powder. Geophysical Journal International, 192, 975–985. https://doi.org/10.1093/gji/ggs086
    [Google Scholar]
  21. Burnham, A. K., & Sweeney, J. J. (1989). A chemical kinetic model of vitrinite maturation and reflectance. Geochomica et Cosmochimica Acta, 53, 2649–2657. https://doi.org/10.1016/0016-7037(89)90136-1
    [Google Scholar]
  22. Cairanne, G., Aubourg, C., Pozzi, J. P., Moreau, M. G., Decamps, T., & Marolleau, G. (2004). Laboratory chemical remanent magnetization in a natural claystone: A record of two magnetic polarities. Geophysical Journal International, 159, 909–916. https://doi.org/10.1111/j.1365-246X.2004.02439.x
    [Google Scholar]
  23. Canfield, D. E., & Berner, R. A. (1987). Dissolution and pyritization of magnetite in anoxie marine sediments. Geochimica et Cosmochimica Acta, 51, 645–659. https://doi.org/10.1016/0016-7037(87)90076-7
    [Google Scholar]
  24. Chalmers, J. A., & Pulvertaft, T. C. R. (2001). Development of the continental margins of the Labrador Sea: A review. In R. C. L.Wilson, R. B.Whitmarsh, B.Taylor, & N.Froitzheim (Eds.), Non‐volcanic Rifting of Continental Margins: A Comparison of Evidences from Land and Sea (pp. 77–105). London: Geological Society Special Publication.
    [Google Scholar]
  25. Chalmers, J. A., Pulvertaft, T. C. R., Marcussen, C., & Pedersen, A. K. (1999). New insight into the structure of the Nuussuaq Basin, central West Greenland. Marine and Petroleum Geology, 16, 197–224.
    [Google Scholar]
  26. Christiansen, F. G., Dalhoff, F., Bojesen-Koefoed, J. A., Chalmers, J. A., Dam, G., Marcussen, C., … Sonderholm, M. (1999). Petroleum geological activites in West Greenland in 1999. Geology of greenland survey bulletin, 186, 88–96.
    [Google Scholar]
  27. Corseri, R., Senger, K., Selway, K., Abdelmalak, M. M., Planke, S., & Jerram, D. (2017). Magnetotelluric evidence for massive sulphide mineralization in intruded sediments of the outer Vøring Basin, mid‐Norway. Tectonophysics, 706–707, 196–205. https://doi.org/10.1016/j.tecto.2017.04.011
    [Google Scholar]
  28. Dam, G. (2002). Sedimentology of magmatically and structurally controlled outburst valleys along rifted volcanic margins: Exemples from the Nuussuaq Basin, West Greenland. Sedimentology, 49, 505–532.
    [Google Scholar]
  29. Dam, G., Larsen, M., & Sonderholm, M. (1998). Sedimentary response to mantle plumes: Implication from Palaeocene onshore successions, West and East Greenland. Geology, 26, 207–210.
    [Google Scholar]
  30. Dam, G., Nohr‐Hansen, H., Christiansen, F. G., Bosjesen‐Kofoed, J. A., & Laier, T. (1998). The oldest marine Cretaceous sediments in west Greenland (Umiivik‐1borehole)‐ record of the Cenomanian‐Turonian Anoxic Event?Geology of Greenland Survey Bulletin, 180, 128–137.
    [Google Scholar]
  31. Dam, G., Nohr‐Hansen, H., Pedersen, G. K., & Sonderholm, M. (2000). Sedimentary and structural evidence of a new early Campanian rift phase in the Nuussuaq Basin, West Greenland. Cretaceous Research, 21, 127–154. https://doi.org/10.1006/cres.2000.0202
    [Google Scholar]
  32. Dam, G., Pedersen, G. K., Sonderholm, M., Midtgaard, H. H., Larsen, L. M., Nohr‐Hansen, H., Pedersen, A. K. (2009). Lithostratigraphy of the cretaceous‐pleocene nuussuaq group, Nuussuaq Bsin, West Greenland. Geological Survey of Denmark and Gdeenland Bulletin, 19, 171.
    [Google Scholar]
  33. Dekkers, M. J. (1989). Magnetic properties of natural goethite‐ I grain size dependence of somme low ‐ and high‐field related rock magnetic parameters measured at room temperature. Geophysical Journal, 97, 323–340.
    [Google Scholar]
  34. Dekkers, M. J., Mattéi, J. L., Fillion, G., & Rochette, P. (1989). Grain‐size dependence of the magnetic behavior of pyrrhotite during its low‐temperature transition at 34 K. Geophysical Research Letters, 16, 855–858. https://doi.org/10.1029/GL016i008p00855
    [Google Scholar]
  35. Deuerling, K. M., Martin, J. B., Martin, E. E., Abermann, J., Myreng, S. M., Petersen, D., & Rennermalm, Å. K. (2019). Chemical weathering across the western foreland of the Greenland Ice Sheet. Geochimica et Cosmochimica Acta, 245, 426–440. https://doi.org/10.1016/j.gca.2018.11.025
    [Google Scholar]
  36. Dunlop, D. J. (1995). Magnetism in rocks. Journal of Geophysical Research, 100, 2161–2174. https://doi.org/10.1029/94JB02624
    [Google Scholar]
  37. Dunlop, D. J., & Özdemir, Ö. (1997). Rock magnetism, fundamentals and frontiers. Cambridge: Cambridge University Press.
    [Google Scholar]
  38. Elmore, D. R., Lee‐Egger Foucher, J., Evans, M., Lewchuk, M., & Cox, E. (2006). Remagnetization of the tonoloway formation and the helderberg group in the central appalachians: Testing the origin of syntilting magnetizations. Geophysical Journal International, 166, 1062–1076. https://doi.org/10.1111/j.1365-246X.2006.02875.x
    [Google Scholar]
  39. Elmore, R. D., Engel, M. H., Crawford, L., Nick, K., Imbus, S., & Sofer, Z. (1987). Evidence for a relationship between hydrocarbons and authigenic magnetite. Nature, 325, 428–430. https://doi.org/10.1038/325428a0
    [Google Scholar]
  40. Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock‐Eval et ses applications, part I. Revue Institut Français de Pétrole, 10, 563–578.
    [Google Scholar]
  41. Espitalié, J., Deroo, G., & Marquis, F. (1986). La pyrolyse Rock‐Eval et ses applications, Part III. Revue Institut Français de Pétrole, 41, 467–481.
    [Google Scholar]
  42. Ferry, J. M. (1991). Dehydration and decarbonation reactions as a record of fluid infiltration. Reviews in Mineralogy and Geochemistry, 26, 351–393.
    [Google Scholar]
  43. Geoffroy, L. (2001). The structure of volcanic margins: Some problematics from the North‐Atlantic/ Labrador‐Baffin System. Marine and Petroleum Geology, 18, 463–469. https://doi.org/10.1016/S0264-8172(00)00073-8
    [Google Scholar]
  44. Gillett, S. L. (2003). Paleomagnetism of the Notch Peak contact metamorphic aureole, revisited: Pyrrhotite from magnetite + pyrite under submetamorphic conditions. Journal of Geophysical Research, 108, 2446. https://doi.org/10.1029/2002JB002386
    [Google Scholar]
  45. Green, P. F. (2003). Thermal history reconstruction in the Ataa‐1, Gane‐1, Gant‐1, Gro‐3 and Umivik‐1 boreholes, onshore west Greenland, based on AFTA, vitrinite reflectence and apatite (U‐Th)/He dating. A report for GEUS by Geotrack International Pty Ltd. Geotrack Report, 883, 1–250.
    [Google Scholar]
  46. Green, P. F., Japsen, P., Chalmers, J. A., & Bonow, J. M. (2011). Thermochronology, erosion surfaces and missing section in West Greenland. Journal of the Geological Society, 168, 817–830. https://doi.org/10.1144/0016-76492010-124
    [Google Scholar]
  47. Guyodo, Y., Mostrom, A., Penn, R. L., & Banerjee, S. K. (2003). From nanodots to nanorods: Oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophysical Research Letters, 30, 1512. https://doi.org/10.1029/2003GL017021
    [Google Scholar]
  48. Haxby, W. F., Turcotte, D. L., & Bird, J. M. (1976). Thermal and mechanical evolution of the Michigan Basin. Tectonophysics, 36, 57–75. https://doi.org/10.1016/0040-1951(76)90006-8
    [Google Scholar]
  49. ICCP
    ICCP . (1971). International committee for Coal Pertology. International Handbook of Coal Petrograpgy, 2nd ed. Paris: CNRS.
    [Google Scholar]
  50. Jackson, M., McCabe, C., Ballard, M. M., & Van der Voo, R. (1988). Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalachian basin. Geology, 16, 592–595. https://doi.org/10.1130/0091-7613(1988)016<0592:MAADPA>2.3.CO;2
    [Google Scholar]
  51. Japsen, P., Bonow, J. M., Green, P. F., Chalmers, J. A., & Lidmar‐Bergstrom, K. (2006). Elevated, passive continental margins: Long‐term highs or Neogene uplifts? New evidence from West Greenland. Earth and Planetary Science Letters, 248, 330–339. https://doi.org/10.1016/j.epsl.2006.05.036
    [Google Scholar]
  52. Japsen, P., Bonow, J. M., Green, P. F., Chalmers, J. A., & Lidmar‐Bergström, K. (2009). Formation, Uplift and dissection of planation surface at passive continental margins ‐ a new approach. Earth Surface Processes and Landforms, 34, 683–699.
    [Google Scholar]
  53. Japsen, P., Green, P. F., Bonow, J. M., Rasmussen, E. S., Chalmers, J. A., & Kjennerud, T. (2010). Episodic uplift and exhumation along North Atlantic passive margins: Implications for hydrocarbon prospectivity. Geological Society, London, Petroleum Geology Conference Series, 7, 979–1004. https://doi.org/10.1144/0070979
    [Google Scholar]
  54. Japsen, P., Green, P. F., & Chalmers, J. A. (2005). Separation of Palaeogene and Neogene uplift on Nuussuaq, West Greenland. Journal of the Geological Society, London, 162, 299–314. https://doi.org/10.1144/0016-764904-038
    [Google Scholar]
  55. Just, J., Kontny, A., De Wall, H., Hirt, A. M., & Martín‐Hernández, F. (2004). Development of magnetic fabrics during hydrothermal alteration in the Soultz‐sous‐Forêts granite from the EPS‐1 borehole, Upper Rhine Graben. Geological Society, London, Special Publications, 238, 509–526. https://doi.org/10.1144/GSL.SP.2004.238.01.26
    [Google Scholar]
  56. Kars, M., Aubourg, C., & Pozzi, J.‐P. (2011). Low temperature magnetic behaviour near 35 K in unmetamorphosed claystones. Geophysical Journal International, 186, 1029–1035. https://doi.org/10.1111/j.1365-246X.2011.05121.x
    [Google Scholar]
  57. Kars, M., Aubourg, C., Pozzi, J.‐P., & Janots, D. (2012). Continuous production of nanosized magnetite through low grade burial. Geochemistry, Geophysics, Geosystems, 13, 12. https://doi.org/10.1029/2012GC004104
    [Google Scholar]
  58. Katz, B., Elmore, R. D., Cogoini, M., Engel, M. H., & Ferry, S. (2000). Associations between burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the Vocontian trough, SE France. Journal of Geophysical Research: Solid Earth, 105, 851–868. https://doi.org/10.1029/1999JB900309
    [Google Scholar]
  59. Katz, B., Elmore, R. D., & Engel, M. H. (1998). Authigenesis of magnetite in organic‐rich sediment next to a dike: Implications for thermoviscous and chemical remagnetizations. Earth and Planetary Science Letters, 163, 221–234. https://doi.org/10.1016/S0012-821X(98)00189-7
    [Google Scholar]
  60. Kontny, A., de Wall, H., Sharp, T. G., & Pósfai, M. (2000). Mineralogy and magnetic behavior of pyrrhotite from a 260°C section at the KTB drilling site, Germany. American Mineralogist, 85, 1416–1427. https://doi.org/10.2138/am-2000-1010
    [Google Scholar]
  61. Lafargue, E., Marquis, F., & Poillot, D. (1998). Rock‐Eval 6 application in hydrocarbon exploration, production, and soil contamination studies. Revue Institut Français de Pétrole, 56(4), 421–437.
    [Google Scholar]
  62. Lo, H. B. (1992). Identification of indigenous vitrinites for improved thermal maturity evaluation. Organic Geochemistry, 18(3), 359–364. https://doi.org/10.1016/0146-6380(92)90076-A
    [Google Scholar]
  63. Lowrie, W. (1990). Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17, 159–162. https://doi.org/10.1029/GL017i002p00159
    [Google Scholar]
  64. Maher, B. A., Karloukovski, V. V., & Mutch, T. J. (2004). High‐field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts. Earth and Planetary Science Letters, 226(3‐4), 491–505. https://doi.org/10.1016/j.epsl.2004.05.042
    [Google Scholar]
  65. Malitch, K. N., Latypov, R. M., Badanina, I. Y., & Sluzhenikin, S. F. (2014). Insights into ore genesis of Ni‐Cu‐PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos, 204, 172–187. https://doi.org/10.1016/j.lithos.2014.05.014
    [Google Scholar]
  66. Maré, L. P., De Kock, M. O., Cairncross, B., & Mouri, H. (2014). Application of magnetic geothermometers in sedimentary basins: An example from the western Karoo basin, South Africa. South African Journal of Geology, 117, 1–14. https://doi.org/10.2113/gssajg.117.1.1
    [Google Scholar]
  67. McCabe, C., Jackson, M., & Saffer, B. (1989). Regional patterns of magnetite authigenesis in the Appalachian Basin: Implications for the mechanism of Late Paleozoic remagnetization. Journal of Geophysical Research: Solid Earth, 94, 10429–10443.
    [Google Scholar]
  68. Moreau, M. G., Ader, M., & Enkin, R. J. (2005). The magnetization of clay‐rich rocks in sedimentary basins: Low‐temperature experimental formation of magnetic carriers in natural samples. Earth and Planetary Science Letters, 230, 193–210. https://doi.org/10.1016/j.epsl.2004.11.013
    [Google Scholar]
  69. Muxworthy, A. R., & McClelland, E. (2000). Review of the low‐temperature magnetic properties of magnetite from a rock magnetic perspective. Geophysical Journal International, 140, 101–114. https://doi.org/10.1046/j.1365-246x.2000.00999.x
    [Google Scholar]
  70. Özdemir, Ö., & Dunlop, D. J. (1996). Thermoremanence and Néel temperature of goethite. Geophysical Research Letters, 23, 921–924. https://doi.org/10.1029/96GL00904
    [Google Scholar]
  71. Özdemir, Ö., Dunlop, D. J., & Moskowitz, B. M. (2002). Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth and Planetary Science Letters, 194, 343–358. https://doi.org/10.1016/S0012-821X(01)00562-3
    [Google Scholar]
  72. Palumbo, F., Main, I. G., & Zito, G. (1999). The thermal evolution of sedimentary basins and its effect on the maturation of hydrocarbons. Geophysical Journal International, 139, 248–260. https://doi.org/10.1046/j.1365-246X.1999.00877.x
    [Google Scholar]
  73. Petronis, M. S., O'Driscoll, B., & Lindline, J. (2011). Late stage oxide growth associated with hydrothermal alteration of the Western Granite, Isle of Rum, NW Scotland. Geochemistry, Geophysics, Geosystems, 12(1). https://doi.org/10.1029/2010GC003246.
    [Google Scholar]
  74. Piasecki, S., Larsen, L. M., Pedersen, A. K., & Pedersen, G. K. (1992). Palynostratigraphy of the Lower Tertiary volcanics and marine clastic sediments in the southern part of the West Greenland Basin: Implication fortiming and duration of the volcanism. Rapport Groenlands Geologiske Undersogelse, 154, 13–31.
    [Google Scholar]
  75. Roberts, A. P. (2015). Magnetic mineral diagenesis. Earth‐Science Reviews, 151, 1–47. https://doi.org/10.1016/j.earscirev.2015.09.010
    [Google Scholar]
  76. Roberts, A. P., Chang, L., Rowan, C. J., Horng, C.‐S., & Florindo, F. (2011). Magnetic properties of sedimentary greigite (Fe3S4): An update. Reviews of Geophysics, 49, RG1002.
    [Google Scholar]
  77. Roberts, A. P., & Turner, G. M. (1993). Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters, 115(1‐4), 257–273. https://doi.org/10.1016/0012-821X(93)90226-Y
    [Google Scholar]
  78. Roberts, A. P., & Weaver, R. (2005). Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231, 263–277. https://doi.org/10.1016/j.epsl.2004.11.024
    [Google Scholar]
  79. Rochette, P. (1987). Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology, 9, 1015–1020. https://doi.org/10.1016/0191-8141(87)90009-5
    [Google Scholar]
  80. Rochette, P., Fillion, G., Mattéi, J.‐L., & Dekkers, M. J. (1990). Magnetic Transition at 30–40 K in Pyrrhotite: Insight into a Widespread Occurrence of this Mineral in Rocks. Earth and Planetary Science Letters, 98, 319–328.
    [Google Scholar]
  81. Rowan, C. J., & Roberts, A. P. (2006). Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters, 241, 119–137. https://doi.org/10.1016/j.epsl.2005.10.017
    [Google Scholar]
  82. Rowan, C. J., Roberts, A. P., & Broadbent, T. (2009). Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 277, 223–235. https://doi.org/10.1016/j.epsl.2008.10.016
    [Google Scholar]
  83. Senger, K., Planke, S., Polteau, S., Ogata, K., & Svensen, H. (2014). Sill emplacement and contact metamorphism in a siliciclastic reservoir on Svalbard, Arctic Norway. Norsk Geologisk Tidsskrift, 94, 155–169.
    [Google Scholar]
  84. Skinner, B. J., Erd, R. C., & Grimaldi, F. S. (1964). Greigite, the thio‐spinel of iron; a new mineral. American Mineralogist, 49, 543–555.
    [Google Scholar]
  85. Suggate, R. P. (1998). Relations between depth of burial, Vitrinite reflectance and geothermal gradient. Journal of Petroleum Geology, 21, 5–32.
    [Google Scholar]
  86. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple Model of Vitrinite Reflectance Based on Chemical Kinetics. The American Association of Petroleum Geologists, 74, 1559–1570.
    [Google Scholar]
  87. Teichmüller, M., & Durand, B. (1983). Fluorescence microscopal rank studies on liptinites and vitrinites in peat and coals and comparison with result of Rock‐Eval pyrolysis. International Journal of Coal Geology, 2, 197–230.
    [Google Scholar]
  88. Till, J. L., Guyodo, Y., Lagroix, F., Morin, G., & Ona‐Nguema, G. (2015). Goethite as a potential source of magnetic nanoparticles in sediments. Geology, 43, 75–78. https://doi.org/10.1130/G36186.1
    [Google Scholar]
  89. van Velzen, A. J., & Zijderveld, J. D. A. (1992). A method to study alterations of magnetic minerals during thermal demagnetization applied to a fine‐grained marine marl (Trubi formation, Sicily). Geophysical Journal International, 110, 79–90. https://doi.org/10.1111/j.1365-246X.1992.tb00715.x
    [Google Scholar]
  90. Walz, F. (2002). The Verwey transition ‐ a topical review. Journal of Physics: Condensed Matter, 14, R285. https://doi.org/10.1088/0953-8984/14/12/203
    [Google Scholar]
  91. Welte, D., & Yukler, M. (1981). Petroleum origin and accumulation in basin evolution ‐ A quantitative model. American Association of Petroleum Geologists Bulletin, 65. https://doi.org/10.1306/03B59553-16D1-11D7-8645000102C1865D
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12439
Loading
/content/journals/10.1111/bre.12439
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): burial depth; claystones; magma intrusion; magnetic mineralogy; thermal maturity

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error