1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

This study presents the first constrained full‐weighted grain‐size export for an entire rift, the Corinth Rift. We find a strong grain‐size trend along the South coast of the Gulf of Corinth, with grain‐size increasing to the West. We find that grain‐size is primarily controlled by lithology with tectonics acting as a secondary control.

, Abstract

The volume and grain‐size of sediment supplied from catchments fundamentally control basin stratigraphy. Despite their importance, few studies have constrained sediment budgets and grain‐size exported into an active rift at the basin scale. Here, we used the Corinth Rift as a natural laboratory to quantify the controls on sediment export within an active rift. In the field, we measured the hydraulic geometries, surface grain‐sizes of channel bars and full‐weighted grain‐size distributions of river sediment at the mouths of 47 catchments draining the rift (constituting 83% of the areal extent). Results show that the sediment grain‐size increases westward along the southern coast of the Gulf of Corinth, with the coarse‐fraction grain‐sizes (84th percentile of weighted grain‐size distribution) ranging from approximately 19 to 91 mm. We find that the median and coarse‐fraction of the sieved grain‐size distribution are primarily controlled by bedrock lithology, with late Quaternary uplift rates exerting a secondary control. Our results indicate that grain‐size export is primarily controlled by the input grain‐size within the catchment and subsequent abrasion during fluvial transport, both quantities that are sensitive to catchment lithology. We also demonstrate that the median and coarse‐fraction of the grain‐size distribution are predominantly transported in bedload; however, typical sand‐grade particles are transported as suspended load at bankfull conditions, suggesting disparate source‐to‐sink transit timescales for sand and gravel. Finally, we derive both a full Holocene sediment budget and a grain‐size‐specific bedload discharged into the Gulf of Corinth using the grain‐size measurements and previously published estimates of sediment fluxes and volumes. Results show that the bedload sediment budget is primarily comprised (~79%) of pebble to cobble grade (0.475–16 cm). Our results suggest that the grain‐size of sediment export at the rift scale is particularly sensitive to catchment lithology and fluvial mophodynamics, which complicates our ability to make direct inferences of tectonic and palaeoenvironmental forcing from local stratigraphic characteristics.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12444
2020-11-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/6/bre12444.html?itemId=/content/journals/10.1111/bre.12444&mimeType=html&fmt=ahah

References

  1. Allen, P. A. (2008). From landscapes into geological history. Nature, 451(7176), 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  2. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., … Whittaker, A. C. (2013). The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1), 102–130. https://doi.org/10.1111/sed.12015
    [Google Scholar]
  3. Allen, P. A., Armitage, J. J., Whittaker, A. C., Michael, N. A., Roda‐Boluda, D., & D'Arcy, M. (2015). Fragmentation model of the grain size mix of sediment supplied to basins. The Journal of Geology, 123(5), 405–427. https://doi.org/10.1086/683113
    [Google Scholar]
  4. Allen, P. A., & Densmore, A. (2000). Sediment flux from an uplifting fault block. Basin Research, 12(3–4), 367–380. https://doi.org/10.1111/j.1365‐2117.2000.00135.x
    [Google Scholar]
  5. Armijo, R., Meyer, B., King, G., Rigo, A., & Papanastassiou, D. (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International, 126(1), 11–53. https://doi.org/10.1111/j.1365‐246X.1996.tb05264.x
    [Google Scholar]
  6. Armitage, J. J., Allen, P. A., Burgess, P. M., Hampson, G. J., Whittaker, A. C., Duller, R. A., & Michael, N. A. (2015). Sediment transport model for the Eocene Escanilla sediment‐routing system: Implications for the uniqueness of sequence stratigraphic architectures. Journal of Sedimentary Research, 85(12), 1510–1524. https://doi.org/10.2110/jsr.2015.97
    [Google Scholar]
  7. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235. https://doi.org/10.1038/NGEO1087
    [Google Scholar]
  8. Armitage, J. J., Jones, T. D., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2013). Temporal buffering of climate‐driven sediment flux cycles by transient catchment response. Earth and Planetary Science Letters, 369, 200–210. https://doi.org/10.1016/j.epsl.2013.03.020
    [Google Scholar]
  9. Attal, M., & Lavé, J. (2009). Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers. Journal of Geophysical Research: Earth Surface, 114(F4). https://doi.org/10.1029/2009JF001328
    [Google Scholar]
  10. Attal, M., Mudd, S., Hurst, M., Weinman, B., Yoo, K., & Naylor, M. (2015). Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (Sierra Nevada, California). Earth Surface Dynamics, 3(1), 201–222. https://doi.org/10.5194/esurf‐3‐201‐2015
    [Google Scholar]
  11. Avallone, A., Briole, P., Agatza‐Balodimou, A. M., Billiris, H., Charade, O., Mitsakaki, C., … Veis, G. (2004). Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. Comptes Rendus Geoscience, 336(4–5), 301–311. https://doi.org/10.1016/j.crte.2003.12.007
    [Google Scholar]
  12. Backert, N., Ford, M., & Malartre, F. (2010). Architecture and sedimentology of the Kerinitis Gilbert‐type fan delta, Corinth Rift, Greece. Sedimentology, 57(2), 543–586. https://doi.org/10.1111/j.1365‐3091.2009.01105.x
    [Google Scholar]
  13. Bagnold, R. A. (1966). An approach to the sediment transport problem from general physics. US Geol. Survey Prof. Paper 422‐I, Washington, D.C.
  14. Beckers, A., Beck, C., Hubert‐Ferrari, A., Tripsanas, E., Crouzet, C., Sakellariou, D., … De Batist, M. (2016). Influence of bottom currents on the sedimentary processes at the western tip of the Gulf of Corinth, Greece. Marine Geology, 378, 312–332. https://doi.org/10.1016/j.margeo.2016.03.001
    [Google Scholar]
  15. Bell, R., McNeill, L. C., Bull, J., Henstock, T., Collier, R., & Leeder, M. (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Research, 21(6), 824–855. https://doi.org/10.1111/j.1365‐2117.2009.00401.x
    [Google Scholar]
  16. Bornovas, I., & Rondogianni‐Tsiambaou, T. H.. (1983). Geological map of Greece (2nd edn.), 1:500,000 scale, Athen, Greece: Institue of Geology and Mineral Exploration.
    [Google Scholar]
  17. Briole, P., Rigo, A., Lyon‐Caen, H., Ruegg, J., Papazissi, K., Mitsakaki, C., … Deschamps, A. (2000). Active deformation of the Corinth rift, Greece: results from repeated Global Positioning System surveys between 1990 and 1995. Journal of Geophysical Research: Solid Earth, 105(B11), 25605–25625. https://doi.org/10.1029/2000JB900148
    [Google Scholar]
  18. Brooke, S. A. S., Whittaker, A. C., Armitage, J. J., D'Arcy, M., & Watkins, S. E. (2018). Quantifying sediment transport dynamics on alluvial fans from spatial and temporal changes in grain size, Death Valley, California. Journal of Geophysical Research: Earth Surface, 123(8), 2039–2067. https://doi.org/10.1029/2018JF004622
    [Google Scholar]
  19. Cassel, E. J., & Graham, S. A. (2011). Paleovalley morphology and fluvial system evolution of Eocene‐Oligocene sediments (“auriferous gravels”), northern Sierra Nevada, California: Implications for climate, tectonics, and topography. Geological Society of America Bulletin, 123(9–10), 1699–1719. https://doi.org/10.1130/B30356.1
    [Google Scholar]
  20. Clarke, P. J., Davies, R. R., England, P. C., Parsons, B. E., Billiris, H., Paradissis, D., … Bingley, R. (1997). Geodetic estimate of seismic hazard in the Gulf of Korinthos. Geophysical Research Letters, 24(11), 1303–1306. https://doi.org/10.1029/97GL01042
    [Google Scholar]
  21. Clarke, P. J., Davies, R. R., England, P. C., Parsons, B., Billiris, H., Paradissis, D., … Briole, P. (1998). Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophysical Journal International, 135(1), 195–214. https://doi.org/10.1046/j.1365‐246X.1998.00633.x
    [Google Scholar]
  22. Cowie, P., Attal, M., Tucker, G., Whittaker, A., Naylor, M., Ganas, A., & Roberts, G. (2006). Investigating the surface process response to fault interaction and linkage using a numerical modelling approach. Basin Research, 18(3), 231–266. https://doi.org/10.1111/j.1365‐2117.2006.00298.x
    [Google Scholar]
  23. Cullen, T. M., Collier, R. E. L., Gawthorpe, R. L., Hodgson, D. M., & Barrett, B. J. (2019). Axial and transverse deep‐water sediment supply to syn‐rift fault terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research. https://doi.org/10.1111/bre.12416
    [Google Scholar]
  24. Dade, W. B., & Friend, P. F. (1998). Grain‐size, sediment‐transport regime, and channel slope in alluvial rivers. The Journal of Geology, 106(6), 661–676. https://doi.org/10.1086/516052
    [Google Scholar]
  25. Damm, B., Becht, M., Varga, K., & Heckmann, T. (2010). Relevance of tectonic and structural parameters in Triassic bedrock formations to landslide susceptibility in Quaternary hillslope sediments. Quaternary International, 222(1–2), 143–153. https://doi.org/10.1016/j.quaint.2010.02.022
    [Google Scholar]
  26. D'Arcy, M., Roda‐Boluda, D. C., & Whittaker, A. C. (2017). Glacial‐interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California. Quaternary Science Reviews, 169, 288–311. https://doi.org/10.1016/j.quascirev.2017.06.002
    [Google Scholar]
  27. D'Arcy, M., Whittaker, A. C., & Roda‐Boluda, D. C. (2016). Measuring alluvial fan sensitivity to past climate changes using a self‐similarity approach to grain‐size fining, Death Valley, California. Sedimentology, 64(2), 388–424. https://doi.org/10.1111/sed.12308
    [Google Scholar]
  28. De Martini, P. M., Pantosti, D., Palyvos, N., Lemeille, F., McNeill, L., & Collier, R. (2004). Slip rates of the Aigion and Eliki faults from uplifted marine terraces, Corinth Gulf, Greece. Comptes Rendus Geoscience, 336(4), 325–334. https://doi.org/10.1016/j.crte.2003.12.006
    [Google Scholar]
  29. De Wever, P. (1975). Etude geologique des series apparaissent en fenetre sous l'allochtone pindique (série de Tripolitza et série épimetamorphique de Zaroukla) Péloponnèse septentrionale, Grèce. Thèse 3e cycle. Universite de Lille, France.
    [Google Scholar]
  30. Degnan, P. J., & Roberston, A. H. F. (1998). Mesozoic–early Tertiary passive margin evolution of the Pindos ocean (NW Peloponnese, Greece). Sedimentary Geology, 117(1–2), 33–70. https://doi.org/10.1016/S0037‐0738(97)00113‐9
    [Google Scholar]
  31. Demoulin, A., Beckers, A., & Hubert‐Ferrari, A. (2015). Patterns of Quaternary uplift of the Corinth rift southern border (N Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology, 246, 188–204. https://doi.org/10.1016/j.geomorph.2015.05.032
    [Google Scholar]
  32. Densmore, A. L., Allen, P. A., & Simpson, G. (2007). Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. JOurnal of Geophysical Research: Earth Surface, 112(F1), 2003–2012. https://doi.org/10.1029/2006JF000474
    [Google Scholar]
  33. Dercourt, J. (1964). Contribution à l'étude géologique d'un secteur du Péloponnèse septentrional. Annales Géologiques Des Pays, Helleniques, 15, 418.
    [Google Scholar]
  34. Dingle, E. H., Attal, M., & Sinclair, H. D. (2017). Abrasion‐set limits on Himalayan gravel flux. Nature, 544, 471. https://doi.org/10.1038/nature22039
    [Google Scholar]
  35. Duller, R. A., Whittaker, A. C., Swinehart, J. B., Armitage, J. J., Sinclair, H. D., Bair, A., & Allen, P. A. (2012). Abrupt landscape change post–6 Ma on the central Great Plains, USA. Geology, 40(10), 871–874. https://doi.org/10.1130/G32919.1
    [Google Scholar]
  36. Ferguson, R. I., & Church, M. (2004). A simple universal equation for grain settling velocity. Journal of Sedimentary Research, 74(6), 933–937. https://doi.org/10.1306/051204740933
    [Google Scholar]
  37. Ferguson, R., Hoey, T., Wathen, S., & Werritty, A. (1996). Field evidence for rapid downstream fining of river gravels through selective transport. Geology, 24(2), 179–182. https://doi.org/10.1130/0091‐7613(1996)024%3C0179:FEFRDF%3E2.3.CO;2
    [Google Scholar]
  38. Ferguson, R., Prestegaard, K., & Ashworth, P. (1989). Influence of sand on hydraulics and gravel transport in a braided gravel bed river. Water Resources Research, 25(4), 635–643. https://doi.org/10.1029/WR025i004p00635
    [Google Scholar]
  39. Ford, M., Hemelsdaël, R., Mancini, M., & Palyvos, N. (2016). Rift migration and lateral propagation: Evolution of normal faults and sediment‐routing systems of the western Corinth rift (Greece). Geological Society, London, Special Publications, 439(1), 131–168. https://doi.org/10.1144/SP439.15
    [Google Scholar]
  40. Ford, M., Rohais, S., Williams, E. A., Bourlange, S., Jousselin, D., Backert, N., & Malartre, F. (2013). Tectono‐sedimentary evolution of the western Corinth rift (Central Greece). Basin Research, 25(1), 3–25. https://doi.org/10.1111/j.1365‐2117.2012.00550.x
    [Google Scholar]
  41. Ford, M., Williams, E. A., Malartre, F., Popescu, S. M., & Nichols, G. (2007). Stratigraphic architecture, sedimentology and structure of the Vouraikos Gilbert‐type fan delta, Gulf of Corinth, Greece. Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend, 38, 49–90.
    [Google Scholar]
  42. Forzoni, A., Storms, J. E., Whittaker, A. C., & Jager, G. (2014). Delayed delivery from the sediment factory: Modeling the impact of catchment response time to tectonics on sediment flux and fluvio‐deltaic stratigraphy. Earth Surface Processes and Landforms, 39(5), 689–704. https://doi.org/10.1002/esp.3538
    [Google Scholar]
  43. Ganti, V., Lamb, M. P., & McElroy, B. (2014). Quantitative bounds on morphodynamics and implications for reading the sedimentary record. Nature Communications, 5, 3298. https://doi.org/10.1038/ncomms4298
    [Google Scholar]
  44. Garefalakis, P., & Schlunegger, F. (2018). Link between concentrations of sediment flux and deep crustal processes beneath the European Alps. Scientific Reports, 8(183), 1–11. https://doi.org/10.1038/s41598‐017‐17182‐8
    [Google Scholar]
  45. Gawthorpe, R., & Leeder, M. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  46. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., … Stamatakis, M. (2018). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth rift. Greece. Basin Research, 30(3), 448–479. https://doi.org/10.1111/bre.12260
    [Google Scholar]
  47. Glaus, G., Delunel, R., Stutenbecker, L., Akçar, N., Christl, M., & Schlunegger, F. (2019). Differential erosion and sediment fluxes in the Landquart basin and possible relationships to lithology and tectonic controls. Swiss Journal of Geosciences, 112, 453–473. https://doi.org/10.1007/s00015‐019‐00344‐3
    [Google Scholar]
  48. Guzzetti, F., Cardinali, M., & Reichenbach, P. (1996). The influence of structural setting and lithology on landslide type and pattern. Environmental & Engineering Geoscience, 2(4), 531–555. https://doi.org/10.2113/gseegeosci.II.4.531
    [Google Scholar]
  49. Hampson, G. J., Duller, R. A., Petter, A. L., Robinson, R. A., & Allen, P. A. (2014). Mass‐balance constraints on stratigraphic interpretation of linked Alluvial–Coastal–Shelfal deposits from source to sink: Example from Cretaceous Western Interior Basin, Utah and Colorado, USA. Journal of Sedimentary Research, 84(11), 935–960. https://doi.org/10.2110/jsr.2014.78
    [Google Scholar]
  50. Hellenic National Cadastre and Mapping Agency S.A.
    Hellenic National Cadastre and Mapping Agency S.A. (2016). 5 meter Digital Elevation Model. Athens: The National Cadastre and Mapping Agency S.A.
  51. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
    [Google Scholar]
  52. Houghton, S. L., Roberts, G. P., Papanikolaou, I. D., McArthur, J. M., & Gilmour, M. A. (2003). New 234U–230Th coral dates from the western Gulf of Corinth: Implications for extensional tectonics. Geophysical Research Letters, 30(19). https://doi.org/10.1029/2003GL018112
    [Google Scholar]
  53. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19). https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  54. Kellerhals, R., & Bray, D. I. (1971). Sampling procedures for coarse fluvial sediments. Journal of the Hydraulics Division, 97(8), 1165–1180.
    [Google Scholar]
  55. Keraudren, B., & Sorel, D. (1987). The terraces of Corinth (Gerrce)—A detailed record of eustatic sea‐level variations during the last 500,000 years. Marine Geology, 77(1–2), 99–107. https://doi.org/10.1016/0025‐3227(87)90085‐5
    [Google Scholar]
  56. Komar, P., & Shih, S.‐M. (1992). Equal mobility versus changing bedload grain sizes in gravel‐bed streams. In P.Billi, R. D.Hey, C. R.Thorne, & P.Tacconi (Eds.), Dynamics of gravel‐bed rivers (pp. 73–93). Chichester, UK: Wiley.
    [Google Scholar]
  57. Lamb, M. P., Nittrouer, J. A., Mohrig, D., & Shaw, J. (2012). Backwater and river plume controls on scour upstream of river mouths: Implications for fluvio‐deltaic morphodynamics. Journal of Geophysical Research: Earth Surface, 117(F1). https://doi.org/10.1029/2011JF002079
    [Google Scholar]
  58. Le Pichon, X., Chamot‐Rooke, N., Lallemant, S., Noomen, R., & Veis, G. (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for Eastern Mediterranean tectonics. Journal of Geophysical Research, 100(B7), 12675–12690.
    [Google Scholar]
  59. Leeder, M. R., Harris, T., & Kirkby, M. J. (1998). Sediment supply and climate change: Implications for basin stratigraphy. Basin Research, 10(1), 7–18. https://doi.org/10.1046/j.1365‐2117.1998.00054.x
    [Google Scholar]
  60. Leopold, L. B., & Wolman, M. G. (1957). River channel patterns: Braided, meandering, and straight. Washington: US Government Printing Office.
    [Google Scholar]
  61. Litty, C., & Schlunegger, F. (2017). Controls on Pebbles' size and shape in streams of the Swiss Alps. The Journal of Geology, 125(1), 101–112. https://doi.org/10.1086/689183
    [Google Scholar]
  62. Litty, C., Schlunegger, F., & Viveen, W. (2017). Possible threshold controls on sediment grain properties of Peruvian coastal river basins. Earth Surface Dynamics, 5(3), 571. https://doi.org/10.5194/esurf‐5‐571‐2017
    [Google Scholar]
  63. Margielewski, W. (2006). Structural control and types of movements of rock mass in anisotropic rocks: Case studies in the Polish Flysch Carpathians. Geomorphology, 77(1–2), 47–68. https://doi.org/10.1016/j.geomorph.2006.01.003
    [Google Scholar]
  64. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., … Kahle, H. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3), 5695–5719. https://doi.org/10.1029/1999JB900351
    [Google Scholar]
  65. McNeill, L. C., & Collier, R. L. (2004). Uplift and slip rates of the eastern Eliki fault segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. Journal of the Geological Society, 161(1), 81–92. https://doi.org/10.1144/0016‐764903‐029
    [Google Scholar]
  66. McNeill, L. C., Collier, R. L., De Martini, P., Pantosti, D., & D'Addezio, G. (2005). Recent history of the Eastern Eliki Fault, Gulf of Corinth: Geomorphology, palaeoseismology and impact on palaeoenvironments. Geophysical Journal International, 161(1), 154–166. https://doi.org/10.1111/j.1365‐246X.2005.02559.x
    [Google Scholar]
  67. McNeill, L. C., Cotterill, C., Bull, J., Henstock, T., Bell, R., & Stefatos, A. (2007). Geometry and slip rate of the Aigion fault, a young normal fault system in the western Gulf of Corinth. Geology, 35(4), 355–358. https://doi.org/10.1130/G23281A.1
    [Google Scholar]
  68. McNeill, L. C., Shillington, D. J., Carter, G. D. O., Everest, J. D., Gawthorpe, R. L., Miller, C., … Green, S. (2019). High‐resolution record reveals climate‐driven environmental and sedimentary changes in an active rift. Scientific Reports, 9(1), https://doi.org/10.1038/s41598‐019‐40022‐w
    [Google Scholar]
  69. Michael, N. A., Whittaker, A. C., Carter, A., & Allen, P. A. (2014). Volumetric budget and grain‐size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south‐central Pyrenees. Geological Society of America Bulletin, 126(3–4), 585–599. https://doi.org/10.1130/B30954.1
    [Google Scholar]
  70. Moretti, I., Lykousis, V., Sakellariou, D., Reynaud, J.‐Y., Benziane, B., & Prinzhoffer, A. (2004). Sedimentation and subsidence rate in the Gulf of Corinth: What we learn from the Marion Dufresne's long‐piston coring. Comptes Rendus Geoscience, 336(4), 291–299. https://doi.org/10.1016/j.crte.2003.11.011
    [Google Scholar]
  71. Mouyaris, N., Papastamatiou, D., & Vita‐Finzi, C. (1992). The Helice Fault?Terra Nova, 4(1), 124–128. https://doi.org/10.1111/j.1365‐3121.1992.tb00457.x
    [Google Scholar]
  72. Nixon, C. W., McNeill, L. C., Bull, J. M., Bell, R. E., Gawthorpe, R. L., Henstock, T. J., … Kranis, H. (2016). Rapid spatio‐temporal variations in rift structure during development of the Corinth Rift, central Greece. Tectonics, 35(5), 1225–1248. https://doi.org/10.1002/2015TC004026
    [Google Scholar]
  73. Ori, G. G. (1989). Geologic history of the extensional basin of the Gulf of Corinth (?Miocene‐Pleistocene). Greece. Geology, 17(10), 918–921. https://doi.org/10.1130/0091‐7613(1989)017%3C0918:GHOTEB%3E2.3.CO;2
    [Google Scholar]
  74. Paola, C., & Mohrig, D. (1996). Palaeohydraulics revisited: Palaeoslope estimation in coarse‐grained braided rivers. Basin Research, 8(3), 243–254. https://doi.org/10.1046/j.1365‐2117.1996.00253.x
    [Google Scholar]
  75. Parsons, A. J., Michael, N. A., Whittaker, A. C., Duller, R. A., & Allen, P. A. (2012). Grain‐size trends reveal the late orogenic tectonic and erosional history of the south–central Pyrenees, Spain. Journal of the Geological Society, 169(2), 111–114. https://doi.org/10.1144/0016‐76492011‐087
    [Google Scholar]
  76. Pechlivanidou, S., Cowie, P. A., Duclaux, G., Nixon, C. W., Gawthorpe, R. L., & Salles, T. (2019). Tipping the balance: Shifts in sediment production in an active rift setting. Geology, 47(3), 259–262. https://doi.org/10.1130/G45589.1
    [Google Scholar]
  77. Pechlivanidou, S., Cowie, P. A., Hannisdal, B., Whittaker, A. C., Gawthorpe, R. L., Pennos, C., & Riiser, O. S. (2018). Source‐to‐sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece. Basin Research, 30(3), 522–543. https://doi.org/10.1111/bre.12263
    [Google Scholar]
  78. Perissoratis, C., Piper, D., & Lykousis, V. (2000). Alternating marine and lacustrine sedimentation during late Quaternary in the Gulf of Corinth rift basin, central Greece. Marine Geology, 167(3), 391–411. https://doi.org/10.1016/S0025‐3227(00)00038‐4
    [Google Scholar]
  79. Pirazzoli, P., Stiros, S., Arnold, M., Laborel, J., Laborel‐Deguen, F., & Papageorgiou, S. (1994). Episodic uplift deduced from Holocene shorelines in the Perachora Peninsula, Corinth area, Greece. Tectonophysics, 229(3), 201–209. https://doi.org/10.1016/0040‐1951(94)90029‐9
    [Google Scholar]
  80. Pratt‐Sitaula, B., Garde, M., Burbank, D. W., Oskin, M., Heimsath, A., & Gabet, E. (2007). Bedload‐to‐suspended load ratio and rapid bedrock incision from Himalayan landslide‐dam lake record. Quaternary Research, 68(1), 111–120. https://doi.org/10.1016/j.yqres.2007.03.005
    [Google Scholar]
  81. Rădoane, M., Rădoane, N., Dumitriu, D., & Miclăuş, C. (2008). Downstream variation in bed sediment size along the East Carpathian rivers: Evidence of the role of sediment sources. Earth Surface Processes and Landforms, 33(5), 674–694. https://doi.org/10.1002/esp.1568
    [Google Scholar]
  82. Roberts, S., & Jackson, J. (1991). Active normal faulting in central Greece: An overview. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The Geometry of Normal Faults: Geological Society, London, Special Publication, (vol. 56, pp. 125–142). https://doi.org/10.1144/GSL.SP.1991.056.01.09
    [Google Scholar]
  83. Roda‐Boluda, D. C., D'Arcy, M., McDonald, J., & Whittaker, A. C. (2018). Lithological controls on hillslope sediment supply: Insights from landslide activity and grain size distributions. Earth Surface Processes and Landforms, 43(5), 956–977. https://doi.org/10.1002/esp.4281
    [Google Scholar]
  84. Rohais, S., Eschard, R., Ford, M., Guillocheau, F., & Moretti, I. (2007). Stratigraphic architecture of the Plio‐Pleistocene infill of the Corinth Rift: Implications for its structural evolution. Tectonophysics, 440(1–4), 5–28. https://doi.org/10.1016/j.tecto.2006.11.006
    [Google Scholar]
  85. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  86. Sinclair, H. D., Gibson, M., Naylor, M., & Morris, R. G. (2005). Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. American Journal of Science, 305(5), 369–406. https://doi.org/10.2475/ajs.305.5.369
    [Google Scholar]
  87. Sinclair, H. D., Stuart, F. M., Mudd, S. M., McCann, L., & Tao, Z. (2019). Detrital cosmogenic 21Ne records decoupling of source‐to‐sink signals by sediment storage and recycling in Miocene to present rivers of the Great Plains, Nebraska, USA. Geology, 47(1), 3–6. https://doi.org/10.1130/G45391.1
    [Google Scholar]
  88. Skourlis, K., & Doutsos, T. (2003). The Pindos Fold‐and‐thrust belt (Greece): Inversion kinematics of a passive continental margin. International Journal of Earth Sciences, 92(6), 891–903. https://doi.org/10.1007/s00531‐003‐0365‐4
    [Google Scholar]
  89. Skourtsos, E., & Kranis, H. (2009). Structure and evolution of the western Corinth Rift, through new field data from the Northern Peloponnesus. Geological Society, London, Special Publications, 321(1), 119–138. https://doi.org/10.1144/SP321.6
    [Google Scholar]
  90. Skourtsos, E., Kranis, H., Zambetakis‐Lekkas, A., Gawthorpe, R. L., & Leeder, M. R. (2016). Alpine basement outcrops at northern Peloponnesus: Implications for the early stages in the evolution of the Corinth Rift. Bulletin of the Geological Society of Greece, 50(1), 153–163. https://doi.org/10.12681/bgsg.11714
    [Google Scholar]
  91. Stefatos, A., Papatheodorou, G., Ferentinos, G., Leeder, M., & Collier, R. (2002). Seismic reflection imaging of active offshore faults in the Gulf of Corinth: Their seismotectonic significance. Basin Research, 14(4), 487–502. https://doi.org/10.1046/j.1365‐2117.2002.00176.x
    [Google Scholar]
  92. Stewart, I. (1996). Holocene uplift and palaeoseismicity on the Eliki fault, Western Gulf of Corinth, Greece. Annals of Geophysics, 39(3). https://doi.org/10.4401/ag‐3993
    [Google Scholar]
  93. Stewart, I., & Vita‐Finzi, C. (1996). Coastal uplift on active normal faults: The Eliki Fault, Greece. Geophysical Research Letters, 23(14), 1853–1856. https://doi.org/10.1029/96GL01595
    [Google Scholar]
  94. Syvitski, J. P., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  95. Turowski, J. M., Rickenmann, D., & Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57(4), 1126–1146. https://doi.org/10.1111/j.1365‐3091.2009.01140.x
    [Google Scholar]
  96. van Cappelle, M., Ravnås, R., Hampson, G. J., & Johnson, H. D. (2017). Depositional evolution of a progradational to aggradational, mixed‐influenced deltaic succession: Jurassic Tofte and Ile formations, southern Halten Terrace, offshore Norway. Marine and Petroleum Geology, 80, 1–22. https://doi.org/10.1016/j.marpetgeo.2016.11.013
    [Google Scholar]
  97. Watkins, S. E., Whittaker, A. C., Bell, R. E., McNeill, L. C., Gawthorpe, R. L., Brooke, S. A. S., & Nixon, C. W. (2018). Are landscapes buffered to high‐frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y. GSA Bulletin, 131(3‐4), 372–388. https://doi.org/10.1130/B31953.1
    [Google Scholar]
  98. Whittaker, A. C., Attal, M., & Allen, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22(6), 809–828. https://doi.org/10.1111/j.1365‐2117.2009.00447.x
    [Google Scholar]
  99. Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., & Roberts, G. P. (2007). Contrasting transient and steady‐state rivers crossing active normal faults: New field observations from the Central Apennines, Italy. Basin Research, 19(4), 529–556. https://doi.org/10.1111/j.1365‐2117.2007.00337.x
    [Google Scholar]
  100. Wolman, M. G. (1954). A method of sampling coarse river‐bed material. EOS, Transactions American Geophysical Union, 35(6), 951–956. https://doi.org/10.1029/TR035i006p00951
    [Google Scholar]
  101. Wolman, M. G., & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68(1), 54–74. https://doi.org/10.1086/626637
    [Google Scholar]
  102. Young, M. J., Gawthorpe, R. L., & Sharp, I. R. (2003). Normal fault growth and early syn‐rift sedimentology and sequence stratigraphy: Thal Fault, Suez Rift, Egypt. Basin Research, 15(4), 479–502. https://doi.org/10.1046/j.1365‐2117.2003.00216.x
    [Google Scholar]
  103. Zambetakis‐Lekkas, A., & Karotsiesis, Z. (1986). Le Jurassique supérieur de la zone de Tripolitza dans la région de Vitina (Péloponnèse Central‐Grèce). Revue De Paleobiologie, 5, 269–279.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12444
Loading
/content/journals/10.1111/bre.12444
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): bedload; Corinth Rift; grain‐size; sediment budget; sediment export; sediment transport

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error