1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

A tectonic model for the evolution of the Zagros Orogenic Belt based on the different types of mélanges in the Neyriz region.

, Abstract

Mélanges are formed by sedimentary, tectonic and diapiric processes and are generally found in collisional belts. The Zagros Orogeny provides an intriguing geological laboratory for the study of mélange‐forming processes during the progressive tectonic evolution of the Neotethys Ocean. Different types of tectonic and sedimentary mélanges occur in specific structural positions within the Zagros orogenic belt in the Neyriz Region (Iran). Based on their block‐in‐matrix fabrics, and tectonostratigraphic positions, we differentiated 14 different mélange types, which mark different episodes of the tectonic evolution of the Neyriz Region from the Cretaceous subduction to the Miocene collision. The Cretaceous subduction stage is recorded by volcanic‐sedimentary mélanges (Mv). Sedimentary mélanges characterized by megabreccia from the Cretaceous limestone (Ms1) and Eocene polymictic megabreccia (Ms2) represent epi‐nappe mélanges formed during the Palaeocene–Eocene in wedge‐top basins. The ophiolite emplacement in the Oligocene resulted in local extensional tectonics in the upper part of the ophiolitic nappe, and deposition of a polymictic megabreccia (Ms3, Ms4). As the final production of the Neotethys Ocean closure and the Eurasian‐Arabian collision, the sedimentary mélanges characterized by different types of chaotic rock units (Ms5, Ms6, Ms7 and Ms8 facies) were developed in front of the Cretaceous–Eocene nappes due to growth of the orogenic wedge in the Miocene. Our findings indicate that the recognition and distinction of different types of mélange may provide additional constraints for a better understanding of the tectono‐sedimentary evolution of the Neotethyan region.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12445
2020-11-22
2024-03-28
Loading full text...

Full text loading...

References

  1. Abbate, E., Bortolotti, V., & Passerini, P. (1970). Olistostromes and olistoliths. In G.Sestini (Ed.), Development of the Northern Apennines Geosyncline. Sedimentary Geolology, 4, 521–557.
    [Google Scholar]
  2. Aerden, D., & Malavieille, J. (1999). Origin of a large‐scale fold nappe in the Montagne Noire, Variscan belt, France. Journal of Structural Geology, 21, 1321–1333.
    [Google Scholar]
  3. Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Science, 94, 401–119.
    [Google Scholar]
  4. Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., … Wortel, R. (2011). Zagros orogeny: A subduction‐dominated process. Geological Magazine, 148, 692–725.
    [Google Scholar]
  5. Ajirlu, M. S., Moazzen, M., & Hajialioghli, R. (2016). Tectonic evolution of Zagros Orogen in the realm between of the Neotethys between the central Iran and Arabian Plates: An Ophiolite perspective. Central European Geology, 59, 1–7.
    [Google Scholar]
  6. Alavi, M. (1994). Tectonics of Zagros Orogenic Belt of Iran, New Data and Interpretation. Tectonophysics, 229, 211–238.
    [Google Scholar]
  7. Alavi, M. (2004). Regional stratigraphy of the Zagros fold‐thrust belt of Iran and its proforeland evolution. American Journal of Science, 304, 1–20.
    [Google Scholar]
  8. Alavi, M. (2008). Structures of the Zagros fold‐thrust belt in Iran. American Journal of Science, 307, 1064–1095.
    [Google Scholar]
  9. Ao, S., Xiao, W., Khalatbari Jafari, M., Talebian, M., Chen, L., Wan, B., … Zhang, Z. (2016). U‐Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): From continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neotethys. Gondwana Research, 31, 305–318.
    [Google Scholar]
  10. Artoni, A., & Meckel, L. D. (1998). History and deformation rates of a thrust sheet top basin: The Barrêm basin, western Alps, SE France. In A.Mascle, G.Puigdefàbregas, H. P.Luterbacher, & M.Fernandez (Eds.), Cenozoic Foreland of Western Europe (vol. 134, pp. 213–234). London, UK: Geological Society of London, Special Publications.
    [Google Scholar]
  11. Azizi, H., Tanaka, T., Asahara, Y., Chung, S. L., & Zarrinkoub, M. H. (2011). Discrimination of the age and tectonic setting for magmatic rocks along the Zagros thrust zone, northwest Iran, using the zircon U‐Pb age and Sr–Nd isotopes. Journal of Geodynamic, 52, 304–320.
    [Google Scholar]
  12. Babaei, A., Babaie, H. A., & Arvin, M. (2005). Tectonic evolution of the Neyriz ophiolite, Iran: An accretionary prism model. Ofioliti, 30, 65–74.
    [Google Scholar]
  13. Babaei, H. A., Ghazi, A. M., Babaei, A., La Tour, T. E., & Hassanipak, A. A. (2001). Geochemistry of arc volcanic rocks of the Zagros Crush Zone, Neyriz, Iran. Journal of Asian Earth Sciences, 19, 61–76.
    [Google Scholar]
  14. Bailey, E. B., & McCallien, W. J. (1950). The Ankara mélange and the Anatolian thrust. Nature, 166, 938–943.
    [Google Scholar]
  15. Bailey, E. B., & McCallien, W. J. (1953). Serpentine lavas, the Ankara me´lange and the Anatolian thrust. Transaction Royal Society Edinburgh, 6, 403–442.
    [Google Scholar]
  16. Balestro, G., Festa, A., & Tartarotti, P. (2015). Tectonic significance of different block‐in‐matrix structures in exhumed convergent plate margins: Examples from oceanic and continental HP rocks in Inner Western Alps (northwest Italy). International Geology Review, 57(5–8), 581–605.
    [Google Scholar]
  17. Barber, A. J., Tjokrosapoetro, S., & Charlton, T. R. (1986). Mud volcanoes, shale diapirs, wrench faults and mélanges in accretionary complexes, Eastern Indonesia. American Association of Petroleum Geologists Bulletin, 70, 1729–1741.
    [Google Scholar]
  18. Barrier, E., Vrielynck, B., Brunet, M., Robertson, A., Sosson, M., Zanchi, A., … Kaveh, F. (2014). Paleotectonic reconstruction of the central Tethys domainsince the Late Permian the DARIUS maps. Vienna, Austria: EGU General Assembly.
    [Google Scholar]
  19. Berberian, M. (1981). Active faulting and tectonics of Iran. In F. M.Delany & F.Gupta (Ed.), Himalaya geodynamic evolution. (vol. 3, pp. 33–69). Washington D.C.: American Geophysical Union Geodynamics Series.
    [Google Scholar]
  20. Berberian, M., & King, G. C. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Science, 18, 210–265.
    [Google Scholar]
  21. Bosworth, W. (1989). Mélange fabrics in the unmetamorphosed external terranes of the northern Appalachians. In J. W.HortonJr & N.Rast (Eds.), Mélanges and olistostromes of the Appalachians. Geological Society of America Special Paper, 228, 65–91.
    [Google Scholar]
  22. Burg, J. P., Bernoulli, D., Smit, J., Dolati, A., & Bahroudi, A. (2008). A giant catastrophic mud‐anddebris flow in the Miocene Makran. Terra Nova, 20, 181–193.
    [Google Scholar]
  23. Camerlenghi, A., & Pini, G. A. (2009). Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology, 56, 319–365.
    [Google Scholar]
  24. Codegone, G., Festa, A., & Dilek, Y. (2012). Formation of Taconic mélanges and broken formations in the Hamburg Klippe, central Appalachian Orogenic Belt, eastern Pennsylvania. Tectonophysics, 568–569, 215–229.
    [Google Scholar]
  25. Codegone, G., Festa, A., Dilek, Y., & Pini, G. A. (2012). Small‐scale polygenetic mélanges in the Ligurian accretionary complex, Northern Apennines, Italy, and the role of shale diapirism in superposed mélange evolution in orogenic belts. Tectonophysics, 568–569, 170–184.
    [Google Scholar]
  26. Cowan, D. S. (1985). Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geological Society of America Bulletin, 96, 451–462.
    [Google Scholar]
  27. De Celles, P. G., Gray, M. B., Ridgway, K. D., Cole, R. B., Pivnik, D. A., Pequera, H., & Srivastava, P. (1991). Controls on synorogenic alluvial‐fan architecture, Beartooth Conglomerate (Paleocene), Wyoming and Montana. Sedimentology, 38, 367–590.
    [Google Scholar]
  28. Delaloye, M., & Desmons, J. (1980). Ophiolites and melange terranes in Iran: A geochronological study and its paleotectonic implications. Tectonophysics, 68, 83–111.
    [Google Scholar]
  29. Dellisanti, F. (2004). Relazioni tra deformazioni di taglio e caratteri minero‐petrografici di peliti nell’Appennino settentrionale. PhD thesis, Universita `diBologna, Bologna, 104 p.
  30. Dilek, Y. (2006). Collision tectonics of the Eastern Mediterranean region: Causes and consequences. Geological Society of America Special Papers, 409, 1–13.
    [Google Scholar]
  31. Dilek, Y., Altunkaynak, S., & Oner, Z. (2009). Syn‐extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. In U.Ring & B.Wernicke (Eds.), Extending a continent: Architecture, rheology and heat budget. Geological Society of London Special Publication, 321, 197–223. https://doi.org/10.1144/SP321.10.
    [Google Scholar]
  32. Dilek, Y., & Moores, E. M. (1990). Regional tectonics of the Eastern Mediterranean ophiolites. In J.Malpas, E. M.Moores, A.Panayiotou, & C.Xenophontos (Eds.), Ophiolites, oceanic crustal analogues: Proceedings of the Symposium ‘Troodos 1987’ (pp. 295–309). Nicosia, Cyprus: The Geological Survey Department.
    [Google Scholar]
  33. Dilek, Y., Shallo, M., & Furnes, H. (2005). Rift–drift, seafloor spreading, and subduction tectonics of Albanian ophiolites. International Geology Review, 47, 147–176.
    [Google Scholar]
  34. Elter, P., & Trevisan, L. (1973). Olistostromes in the tectonic evolution of the Northern Apennines. In K. A.De Jong & R.Scholten (Eds.), Gravity and tectonics (pp. 175–188). New York, NY: John Wiley and Sons.
    [Google Scholar]
  35. Faghih, A., Kusky, T., & Samani, B. (2012). Kinematic analysis of deformed structures in a tectonic mélange: A key unit for the manifestation of transpression along the Zagros Suture Zone, Iran. Geological Magazine, 149(6), 1107–1117.
    [Google Scholar]
  36. Faghih, A., Samani, B., Kusky, T. M., Khabazi, S., & Roshanak, R. (2012). Geomorphologic assessment of relative tectonic activity in the Maharlou Lake Basin, Zagros Mountains of Iran. Geological Journal, 47, 30–40.
    [Google Scholar]
  37. Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J., & Amini, A. (2008). Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics, 451, 170–185. https://doi.org/10.1016/j.tecto.2007.11.064
    [Google Scholar]
  38. Falcon, N. L. (1974). Southern Iran: Zagros Mountains. In A. M.Spencer (Ed.), Mesozoic‐Cenozoic Orogenic belts: Data for orogenic studies (pp. 199–211). no. 4. London, UK: Geological Society of London, Special Publication.
    [Google Scholar]
  39. Federico, L., Crispini, L., Scambelluri, M., & Capponi, G. (2007). Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, 499–502.
    [Google Scholar]
  40. Ferrière, J., Reynaud, J.‐Y., Pavlopoulos, A., Bonneau, M., Migiros, G., Chanier, F., … Gardin, S. (2004). Geologic evolution and geodynamic controls of the Tertiary intramontane piggyback Meso‐Hellenic basin, Greece. Bulletin de la Société Géologiques de France, 175, 361–381.
    [Google Scholar]
  41. Festa, A., Dilek, Y., Codegone, G., Cavagna, S., & Pini, G. A. (2013). Structural anatomy of the Ligurian accretionary wedge (Monferrato, NW Italy), and evolution of superposed mélanges. Geological Society of America Bulletin, 125, 9–10.
    [Google Scholar]
  42. Festa, A., Dilek, Y., Pini, G. A., Codegone, G., & Ogata, K. (2012). Mechanisms and processes of stratal disruption and mixing in the development of melanges and Brocken formations: Redefining and classifying mélanges. Tectonophysics, 568–569, 7–24.
    [Google Scholar]
  43. Festa, A., Ghisetti, F., & Vezzani, L. (2006). Carta Geologica del Molise, Note Illustrative: Nichelino (TO), Litografia Geda, scala 1:100 000. 104 p, ISBN 88‐902635‐0‐4, with CD‐ROM.
  44. Festa, A., Ogata, K., Pini, G. A., Dilek, Y., & Alonso, J. L. (2016). Origin and significance of olistostromes in the evolution of orogenic belts: A global synthesis. Gondwana Research, 39, 180–203.
    [Google Scholar]
  45. Festa, A., Pini, G. A., Dilek, Y., & Codegone, G. (2010). Mélanges and mélange‐forming processes: A historical overview and new concepts. International Geology Review, 52, 1040–1105.
    [Google Scholar]
  46. Festa, A., Pini, G. A., Dilek, Y., Codegone, G., Vezzani, L., Ghisetti, F., … Ogata, K. (2010). Peri‐Adriatic mélanges and their evolution in the Tethyan realm. In Y.Dilek (Ed.), Eastern Mediterranean geodynamics (Part II). International Geology Review, 52, 369–406. https://doi.org/10.1080/00206810902949886
    [Google Scholar]
  47. Festa, A., Pini, G. A., Ogata, K., & Dilek, Y. (2019). Diagnostic features and field‐criteria in ecognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction‐accretion complexes. Gondwana Research, 74, 7–30. https://doi.org/10.1016/j.gr.2019.01.003
    [Google Scholar]
  48. Gansser, A. (1955). New aspects of the geology in central Iran. Paper Presented at 4th World Petroleum Congress, Rome (pp. 279–300).
  49. Gansser, A. (1974). The ophiolite mélange: A world‐wide problem on Tethyan examples. Eclogae Geologicae Helvetiae, 67, 479–507.
    [Google Scholar]
  50. Gavillot, Y., Axen, G. J., Stockli, D. F., Horton, B. K., & Fakhari, D. (2010). Timing of thrust activity in the High Zagros fold‐thrust belt, Iran, from (U‐Th)/He thermochronometry. Tectonics, 29, TC4025. https://doi.org/10.1029/2009TC002484
    [Google Scholar]
  51. Ghasemi, A., & Talbot, C. J. (2006). A new tectonic scenario for the Sanandaj‐Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26, 683–693.
    [Google Scholar]
  52. Gholami Zadeh, P., Adabi, M. H., Hisada, K. I., Hosseini‐Barzi, M., & Ghassemi, M. R. (2017). Revised version of the Cenozoic collision along the Zagros Orogen, insights from Cr spinel and modal analyses. Nature, Scientific Reports, 7(1). https://doi.org/10.1038/s41598‐01711042‐1
    [Google Scholar]
  53. Gholami Zadeh, P., Adabi, M. H., Hosseini‐Barzi, M., Sadeghi, A., & Ghassemi, M. R. (2016). Petrography and geochemistry of the Neyriz Miocene sediments (Roshan Kuh and Kuh‐e Asaki sections): Implication for provenance. Scientific Quarterly Journal, Geosciences, 25, 3–18.
    [Google Scholar]
  54. Gidon, M. F., Berthier, J.‐P., Billiault, B., & Halbronn, & Maurizot, P. (1974). Charriage et mouvements synse´dimentaires tertiaires dans la re´gion de Borudjerd (Zagros, Iran). Comptes Rendus de l'académie des Sciences, 278, 421–424.
    [Google Scholar]
  55. Gray, K. W. (1950). A tectonic window in southwest Iran. Quarterly Journal of the Geological Society, 105, 189–222.
    [Google Scholar]
  56. Hallam, A. (1976). Geology and plate tectonics interpretation of the sediments of the Mesozoic radiolarite–ophiolite complex in the Neyriz region, southern Iran. Geological Society of America Bulletin, 87, 47–52.
    [Google Scholar]
  57. Hatzfeld, D., Authemayou, C., Van Der Beek, P., Bellier, O., Lavé, J., Oveisi, B., … Yamini‐Fard, F. (2010). The kinematics of the Zagros Mountains (Iran). Geological Society, London, Special Publications, 330(1), 19–42.
    [Google Scholar]
  58. Haynes, S. J., & McQuillan, H. (1974). Evolution of Zagros suture zone, southern Iran. Geological Society of America Bulletin, 85(5), 739–744. https://doi.org/10.1130/0016‐7606(1974)85b739:eotzsz>2.0.co;2
    [Google Scholar]
  59. Haynes, S. J., & Reynolds, P. H. (1980). Early development of Tethys and Jurassic ophiolite displacement. Nature, 283, 561–563.
    [Google Scholar]
  60. Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H., & Shabanian, E. (2001). Progressive unconformities within an evolving foreland fold‐thrust belt, Zagros Mountains. Journal of the Geological Society, London, 158, 969–981.
    [Google Scholar]
  61. Homke, S., Vergés, J., Garcés, M., Emami, H., & Karpuz, R. (2004). Magnetostratigraphy of Miocene‐Pliocene Zagros foreland deposits in the front of the Push‐e Kush Arc (Lurestan Province, Iran). Earth and Planetary Science Letters, 225(3–4), 397–410.
    [Google Scholar]
  62. Homke, S., Vergés, J., Serra‐Kiel, J., Bernaola, G., Sharp, I., Garcés, M., … Goodarzi, M. H. (2009). Late Cretaceous‐Paleocene formation of the proto–Zagros foreland basin, Lurestan Province, SW Iran. Geological Society of America Bulletin, 121, 963–978.
    [Google Scholar]
  63. Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., … Grove, M. (2008). Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics, 451, 97–122. ISSN 0040–1951, doi: 10.1016/j.tecto.2007.11.063.
    [Google Scholar]
  64. Hsü, K. J. (1965). Franciscan rocks of Santa Lucia Range, California, and the ‘argille scagliose’ of the Appennines, Italy: A comparision in style of deformation (pp. 210–211). Cordilleran Section Meeting. Fresno, CA: Geological Society of America.
    [Google Scholar]
  65. Hsü, K. J. (1968). Principles of mélanges and their bearing on the Franciscan‐Knoxville Paradox. Geological Society of America Bulletin, 79, 1063–1074.
    [Google Scholar]
  66. Jackson, J. A. (1980). Reactivation of basement faults and crustal shortening in orogenic belts. Nature, 283, 343–346.
    [Google Scholar]
  67. Jackson, J. A., & McKenzie, D. (1984). Active tectonics of the Alpine‐Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77, 185–264.
    [Google Scholar]
  68. James, G., & Wynd, J. G. (1965). Stratigraphic nomenclature of Iranian Oil Consortium Agreement Area. American Association of Petroleum Geologist Bulletin, 49, 2182–2245.
    [Google Scholar]
  69. Jeanbourquin, P., Kindler, P., & Dall’Agnolo, S. (1992). Les mélanges des Préalpes internes entre Arve et Rhône (Alpes occidentales franco‐suisses). Eclogae Geologicae Helvetiae, 85, 59–83.
    [Google Scholar]
  70. Kaviani, A., Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., & Mokhtari, M. (2007). A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran). Geophysical Journal International, 171(1), 399–410.
    [Google Scholar]
  71. Kozur, H. W., Aydin, M., Demir, O., Yakar, H., Göncüo Glu, M. C., & Kuru, F. (2000). New stratigraphic and palaeogeographic results from the Palaeozoic and early Mesozoic of the Middle Pontides (Northern Turkey) in the Azdavay, Devrekani, Kure and Inebolu areas; implications for the Carboniferous‐Early Cretaceous geodynamic evolution and some related remarks to the Karakaya Oceanic Rift Basin. Geologia Croatica, 53, 209–268.
    [Google Scholar]
  72. Krylov, K. A., Kaleda, K. G., & Bragin, N. Y. (1993). Structure of southwestern Cyprus. In L. P.Zonenshain (Ed.), Memorial conference on plate tectonics, Moscow, Institute of Oceanology of the Russian Academic of Sciences, Abstract, pp. 91–92.
    [Google Scholar]
  73. Krylov, K. A., Kaleda, K. G., & Bragin, N. Y. (2005). Chaotic rock complexes in South‐Western and Central Cyprus. In V. A.Krasheninnikov, J. K.Hall, F.Hirsch, C.Beniamini, & A.Flexer (Eds.), Geological framework of the Levant (pp. 127–134), Volume I. Cyprus and Syria, Jerusalem: Historical Productions‐Hall.
    [Google Scholar]
  74. Lacazette, A. J., & Rast, N. (1989). Tectonic mélange at Chunky Gal. In J. W.Horton Jr, & N.Rast (Eds.), Mélanges and olistostromes of the Appalachians (vol. 228, pp. 217–228). Geological Society of America Special Paper. Reston, VA: Florence Bascom Geoscience Center.
    [Google Scholar]
  75. Lanphere, M. A., & Pamic´, J. (1983). 40Ar/39Ar ages and tectonic setting of ophiolite from the Neyriz area, southeast Zagros Range, Iran. Tectonophysics, 96, 245–256.
    [Google Scholar]
  76. Lister, G., & Snoke, A. (1984). SC mylonites. Journal of Structural Geology, 6(6), 617–638.
    [Google Scholar]
  77. Lucente, C. C., & Pini, G. A. (2003). Anatomy and emplacement mechanism of a large submarine slide within a Miocene foredeep in the Northern Appennines, Italy: A field perspective. American Journal of Science, 303, 565–602.
    [Google Scholar]
  78. Malekzadeh, Z. (2007). The accommodation of the deformation from Main Recent Fault to Kazerun. PhD thesis, Institute of Earthquake Engineering and Seismology, Tehran.
  79. Martinez Catalan, J. R., Arenas, R., & Balda, M. A. D. (2003). Large extensional structures developed during emplacement of a crystalline thrust sheet: The Mondoned nappe (NW Spain). Journal of Structural Geology, 25, 1815–1839.
    [Google Scholar]
  80. McQuarrie, N., & van Hinsbergen, D. J. (2013). Retrodeforming the Arabia‐Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41(3), 315–318.
    [Google Scholar]
  81. Mohajjel, M., & Fergusson, C. L. (2014). Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. International Geology Review, 56, 263–287.
    [Google Scholar]
  82. Mohrig, D., Ellis, C., Parker, G., Whipple, K. X., & Hondzo, M. (1998). Hydroplaning of subaqueous debris flows. Geological Society of America Bulletin, 110, 387–394.
    [Google Scholar]
  83. Motiei, H. (1993). Stratigraphy of Zagros. In Treatise on the Geology of Iran no. 1. Tehran, Iran: Geological Survey of Iran, first edition, 536 pp.
    [Google Scholar]
  84. Mouthereau, F., Lacombe, O., & Meyer, B. (2006). The Zagros folded belt (Fars, Iran): Constraints from topography and critical wedge modelling. Geophysical Journal International, 165, 336–356.
    [Google Scholar]
  85. Mouthereau, F., Lacombe, O., & Vergés, J. (2012). Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532–535, 27–60.
    [Google Scholar]
  86. Mouthereau, F., Tensi, J., Bellahsen, N., Lacombe, O., De Boisgrollier, T., & Kargar, S. (2007). Tertiary sequence of deformation in a thin‐skinned/thick‐skinned collision belt: The Zagros Folded Belt (Fars, Iran). Tectonics26, TC5006. doi:https://doi.org/10.1029/2007TC002098, 28 pp.
    [Google Scholar]
  87. Mutti, E., Carminatti, M., Moreira, J. L. P., & Grassi, A. A. (2006). Chaotic deposits: Examples from the Brazilian offshore and from outcrop studies in the Spanish Pyrenees and Northern Apennines,Italy. AAPG Annual meeting, Houston, TX, pp. 9–12.
  88. Mutti, E., Ogata, K., Tinterri, R., & Carè, D. (2009). Fine‐grained unsorted matrix as evidence of excess pore pressure in sedimentary chaotic units. 27th IAS International meeting, Alghero, Sardinia, pp. 20–23.
  89. Navabpour, P., Angelier, J., & Barrier, E. (2007). Cenozoic post‐collisional brittle tectonic history and stress reorientation in the High Zagros Belt (Iran, Fars Provice). Tectonophysics, 432, 101–131.
    [Google Scholar]
  90. Naylor, M. A. (1982). The Casanova Complex of the Northern Apennines: a mélange formed on a distal passive continental margin. Journal of Structural Geology, 4, 1–18.
    [Google Scholar]
  91. Needham, D. T. (1995). Mechanisms of mélange formation: Examples from SW Japan and southern Scotland. Journal of Structural Geology, 17(7), 971–985.
    [Google Scholar]
  92. Nemčok, M., & Nemčok, J. (1994). Late Cretaceous deformation of the Pieniny Klippen Belt, West Carpathians. Tectonophysics, 290, 137–167.
    [Google Scholar]
  93. Nemcok, M., Schamel, S., & Gayner, R. (2005). Thrustbelts: Structural architecture, thermal regimes and petroleum systems. New York, NY: Cambridge University Press, 541 pp.
    [Google Scholar]
  94. Ogata, K. (2010). Mass transport complexes in structurally‐controlled basins: The Epiligurian Specchio Unit (Northern Apennines, Italy). Unpublished PhD thesis, University of Parma.
  95. Ogata, K., Pini, G. A., Carè, D., Zélic, M., & Dellisanti, F. (2012). Progressive development of block‐in‐matrix fabric in a shale‐dominated shear zone: Insights from the Bobbio tectonic window (Northern Apennines, Italy). Tectonics, 31, 1–21, TC1003. https://doi.org/10.1029/2011TC002924
    [Google Scholar]
  96. Ogata, K., Tinterri, R., Pini, G. A., Mutti, E. (2012). The Specchio unit (northern Apennines, Italy): An ancient mass transport complex originated from near‐coastal areas in an intra‐slope setting. InY.Yamada (Ed.), Submarine mass movements and their consequences (pp. 595–606). Advances in natural and technological hazards research. Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  97. Okay, A. I. (2000). Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau? In E.Bozkurt, J. A.Winchester, & J. D. A.Piper (Eds.), Tectonics and magmatism in Turkey and the surrounding area. Geological Society, London, Special Publications, 173, 25–41.
    [Google Scholar]
  98. Orange, D. L., & Underwood, M. B. (1995). Patterns of thermal maturity as diagnostic criteria for interpretation of me´langes. Geology, 23, 1144–1148.
    [Google Scholar]
  99. Oszcypko, N. (2004). The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przeglad Geologiczny, 52, 780–791.
    [Google Scholar]
  100. Page, B. M., & Suppe, J. (1981). The Pliocene Lichi melange of Taiwan: Its plate‐tectonic and olistostromal origin. American Journal of Science, 281, 193–227.
    [Google Scholar]
  101. Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J., & Mokhtari, M. (2006). Seismological evidence for crustal‐scale thrusting in the Zagros mountain belt (Iran). Geophysical Journal International, 166, 227–237.
    [Google Scholar]
  102. Pini, G. A. (1999). Tectonosomes and olistostromes in the Argille Scagliose of the Northern Apennines, Italy. Geology Society of America, Special Paper, 335, 73 pp.
  103. Pini, G. A., Lucente, C. C., Cowan, D. S., De Libero, C. M., Dellisanti, F., Landuzzi, A., … Cantelli, L. (2004). The role of olistostromes and argille scagliose in the structural evolution of the Nothern Apennines. In L.Guerrieri, I.Rischia, & L.Serva (Eds.), Field trip guidebooks (63: B13). 32nd IGC Florence. Memorie Descrittive della Carta geologica d'Italia, 63 (6)/2004.
    [Google Scholar]
  104. Pini, G. A., Ogata, K., Camerlenghi, A., Festa, A., Lucente, C. C., & Codegone, G. (2012). Sedimentary mélanges and fossil mass‐transport complexes: A key for better understanding submarine mass movements? In Y.Yamada et al (Eds.), Submarine mass movements and their consequences (vol. 31, pp. 585–594). Advances in Natural and Technological Hazards Research. Dordrecht, The Netherlands: Springer Science+Business Media B.V.
    [Google Scholar]
  105. Pirouz, M. (2013). The geometry and sedimentary record of tectonics in the Neogene Zagros foreland basin, University of Geneve, Switzerland, PhD thesis, 157 p.
  106. Pirouz, M., Simpson, G., & Chiaradia, M. (2015). Constraint on foreland basin migration in the Zagros mountain belt using Sr isotope stratigraphy. Basin Research, 27, 714–728.
    [Google Scholar]
  107. Raymond, L. A. (1984). Classification of melanges. In L. A.Raymond (Ed.), Mélanges, their nature, origin and significance (vol. 198, pp. 7–20). Boulder, CO: Geological Society of America Special Papers.
    [Google Scholar]
  108. Ricci Lucchi, F. (1986). The Oligocene to recent foreland basin of the Northern Appennines. In P. A.Allen,& P.Homewood (Eds.), Foreland basins (1 ed., vol. 8, pp. 105–139). International Association of Sedimentologists, Special Publication. Oxford, UK: Wiely‐Blackwell.
    [Google Scholar]
  109. Ricou, L. E. (1968). Sur la mise en place au Cretacé Superieur d’importantes nappes a radiolarites et ophiolites dans les Monts Zagros (Iran). Comptes Rendus de l'académie des Sciences. Paris (D), 267, 2272–2275.
    [Google Scholar]
  110. Ricou, L. E. (1974). L'étude géologique de la region de neyriz (Zagros Iraniaen) et levolution structuraldes zagride. These Universite, Paris, 300 pp.
  111. Ricou, L. E. (1976). Evolution structurale des Zagrides. La région clef de Neyriz (Zagros Iranien). Mémoires de la Société Géologique De France, 55, 140.
    [Google Scholar]
  112. Ricou, L. E., Broud, J., & Brunn, J. H. (1977). Le Zagros. In Livre à la mémoire de A.F. de Lapparent. Mémoires de la Société Géologique de France, 8, 33–52.
    [Google Scholar]
  113. Robin, C., Gorican, S., Guillocheau, F., Razin, P., Dromart, G., & Mosaffa, H. (2010). Mesozoic deep water carbonate deposits from the southern Tethyan passive margin in Iran (Pichakun nappes, Neyriz area): Biostratigraphy, facies sedimentology and sequence stratigraphy. In P.Leturmy & C.Robin (Eds.), Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic‐Cenozoic (pp. 179–210). London, UK: Geological Society of London, Special Publication.
    [Google Scholar]
  114. Sabzehi, M., Roshan Ravan, J., Amini, B., Eshraghi, S. A., Alai Mohabadi, S., & Seraj, M. (1993). Geologic map of the Neyriz quadrangle H‐11, scale: 1:250,000. Tehran, Iran: Geological Survey of Iran.
    [Google Scholar]
  115. Sarkarinejad, K. (2003). Structural and microstructural analysis of a palaeo‐transform fault zone in the Neyriz Ophiolite, Iran. Geological Society of London Special Publication, 218, 129–145.
    [Google Scholar]
  116. Sarkarinejad, K., Samani, B., Faghih, A., Grasemann, B., & Moradipoor, M. (2010). Implications of strain and vorticity of flow analyses to interpret the kinematics of an oblique convergence event (Zagros Mountains, Iran). Journal of Asian Earth Sciences, 38(1), 34–43.
    [Google Scholar]
  117. Sepehr, M., & Cosgrove, J. W. (2004). Structural framework of the Zagros Fold‐Thrust Belt, Iran. Marine and Petroleum Geology, 21, 829–843.
    [Google Scholar]
  118. Shafaii Moghadam, H., & Stern, R. J. (2011). Geodynamic evolution of Upper Cretaceous Zagros ophiolites: Formation of oceanic lithosphere above a nascent subduction zone. Geological Magazine, 148, 762–801.
    [Google Scholar]
  119. Sheikholeslami, M. R. (2015). Tectonostratigraphic units of southeastern part of the Sanandaj‐Sirjan Zone. Scientific Quarterly Journal, Geosciences, 24, 243–252 (in Persian).
    [Google Scholar]
  120. Sheikholeslami, M. R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., & Hashem Emami, M. (2008). Tectono‐metamorphic evolution of the Neyriz metamorphic complex, Quri‐Khor‐e‐Sefid area (Sanandaj‐Sirjan Zone, SW Iran). Journal of Asian Earth Science, 31, 504–521.
    [Google Scholar]
  121. Shervais, J. W., Murchey, B., Kimbrough, D. L., Renne, P., & Hanan, B. B. (2005). Radioisotopic and biostratigraphic age relations in the Coast Range Ophiolite, Northern California: Implications for the tectonic evolution of the Western Cordillera. Geological Society of America Bulletin, 117(5/6), 633–653.
    [Google Scholar]
  122. Stocklin, J. (1968). Structural history and tectonics of Iran. American Association of Petroleum Geologists Bulletin, 52, 1229–1258.
    [Google Scholar]
  123. Stocklin, J. (1974). Possible ancient continental margins in Iran. InC.Burk & C.Drake (Ed.), Geology of continental margins (pp. 873–877). New York, NY: Springer‐Verlang.
    [Google Scholar]
  124. Stoneley, R. (1981). The geology of the Kuh‐e Dalneshin area of southern Iran, and its bearing on the evolution of southern Tethys. Journal of the Geological Society of London, 138, 509–526.
    [Google Scholar]
  125. Stoneley, R. (1990). The Arabian continental margin in Iran during the Late Cretaceous. In A. H. F.Robertson, M. P.Searle, &A. C.Ries (Eds.), The geology and tectonics of the Oman Region. Geological Society, London, Special Publications, 49, 787–795.
    [Google Scholar]
  126. Tartarotti, P., Festa, A., Benciolini, L., & Balestro, G. (2017). Record of Jurassic mass transport processes through the orogenic cycle: Understanding chaotic rock units in the high‐pressure Zermatt‐Saas ophiolite (Western Alps). Lithosphere, 9(3), 399–407.
    [Google Scholar]
  127. Trümpy, R. (2006). Geologie der Iberger Klippen und ihrer Flysch‐Unterlage. Eclogae Geologicae Helvetiae, 99, 79–121.
    [Google Scholar]
  128. Tucker, M. (2003). Sedimentary Rocks in the Field. Chichester, UK: Wiley‐Blackwell. 115 pp. ISBN 978‐0‐470‐85123‐4.
    [Google Scholar]
  129. Vannucchi, P., & Bettelli, G. (2002). Mechanism of subduction accretion as implied from the broken formations in the Apennines, Italy. Geology, 30, 835–838.
    [Google Scholar]
  130. Vezzani, L., Ghisetti, F., & Festa, A. (2004). Carta geologica del Molise, scala 1:100 000. In S.EL.CA.Bibl (Ed.), Nazionale Centrale Di Firenze.
  131. Vollmer, F. W., & Bosworth, W. (1984). Formation of melange in a foreland basin overthrust setting: Example from Taconic Orogen. In: L. A.Raymond (Ed.), Melanges: Their nature, origin, and significance. Geological Society of America Special Papers, 198, 53–70.
    [Google Scholar]
  132. Wakabayashi, J. (2012). Subducted sedimentary serpentinite mélanges: record of multiple burial‐exhumation cycles and subduction erosion. Tectonophysics, 568–569, 230–247.
    [Google Scholar]
  133. Wakabayashi, J., & Dilek, Y. (2011). Mélanges: Processes of Formation and Societal Signifcance. Geological Society of America, Special Paper, 480, 277 p.
    [Google Scholar]
  134. Wakabayashi, J., & Medley, E. W. (2004). Geological characterization of mélanges for practitioners. Felsbau, 22(5), 10–18.
    [Google Scholar]
  135. Whitechurch, H., Omrani, J., Agard, P., Humbert, F., Montigny, R., & Jolivet, L. (2013). Evidence for Paleocene‐Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, W Iran) from backarc to arc: Implications for regional geodynamics and obduction. Lithos, 11–32, 182–183.
    [Google Scholar]
  136. Yamamoto, Y., Otha, Y., & Ogawa, Y. (2000). Implication for the two‐stage layer‐parallel faults in the context of the Isu forearc collision zone: Examples from the Miura accretionary prism, Central Japan. Tectonophysics, 325, 133–144.
    [Google Scholar]
  137. Yilmaz, P. O., & Maxwell, J. C. (1984). An example of an obduction melange: The Alakir Çay unit, Antalya Complex, southwest Turkey. In L. A.Raymond (Ed.), Melanges: Their nature, origin, and significance. Geological Society of America Special Paper, 198, 139–152.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12445
Loading
/content/journals/10.1111/bre.12445
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): continental collision; mélange; Neotethys; Neyriz region; suture; Zagros Orogeny

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error