1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[Abstract

Integration of extensive fieldwork, remote sensing mapping and 3D models from high‐quality drone photographs relates tectonics and sedimentation to define the Jurassic–early Albian diapiric evolution of the N–S Miravete anticline, the NW‐SE Castel de Cabra anticline and the NW‐SE Cañada Vellida ridge in the Maestrat Basin (Iberian Ranges, Spain). The pre shortening diapiric structures are defined by well‐exposed and unambiguous halokinetic geometries such as hooks and flaps, salt walls and collapse normal faults. These were developed on Triassic salt‐bearing deposits, previously misinterpreted because they were hidden and overprinted by the Alpine shortening. The Miravete anticline grew during the Jurassic and Early Cretaceous and was rejuvenated during Cenozoic shortening. Its evolution is separated into four halokinetic stages, including the latest Alpine compression. Regionally, the well‐exposed Castel de Cabra salt anticline and Cañada Vellida salt wall confirm the widespread Jurassic and Early Cretaceous diapiric evolution of the Maestrat Basin. The NE flank of the Cañada Vellida salt wall is characterized by hook patterns and by a 500‐m‐long thin Upper Jurassic carbonates defining an upturned flap, inferred as the roof of the salt wall before NE‐directed salt extrusion. A regional E‐W cross section through the Ababuj, Miravete and Cañada‐Benatanduz anticlines shows typical geometries of salt‐related rift basins, partly decoupled from basement faults. These structures could form a broader diapiric region still to be investigated. In this section, the Camarillas and Fortanete minibasins displayed well‐developed bowl geometries at the onset of shortening. The most active period of diapiric growth in the Maestrat Basin occurred during the Early Cretaceous, which is also recorded in the Eastern Betics, Asturias and Basque‐Cantabrian basins. This period coincides with the peak of eastward drift of the Iberian microplate, with speeds of 20 mm/year. The transtensional regime is interpreted to have played a role in diapiric development.

,

We illustrate for the first time mixed halokinetic depositional sequences in minibasins limited by salt walls displaying typical flap and hook geometries (salt‐welds and thrust‐welds after Cenozoic shortening), in the Miravete anticline and Maestrat Basin (Iberian Ranges), with Jurassic and Early Cretaceous ages and partly coeval to Iberia‐Europe sinistral motion.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12447
2020-11-22
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/6/bre12447.html?itemId=/content/journals/10.1111/bre.12447&mimeType=html&fmt=ahah

References

  1. Aldega, L., Viola, G., Casas‐Sainz, A., Marcén, M., Román‐Berdiel, T., & van der Lelij, R. (2019). Unravelling multiple thermo‐tectonic events accommodated by crustal‐scale faults in northern Iberia Spain: Insights from K‐Ar dating of clay gouges. Tectonics, 38(10), 3629–3651. https://doi.org/10.1029/2019TC005585
    [Google Scholar]
  2. Alnazghah, M. H., Bádenas, B., Pomar, L., Aurell, M., & Morsilli, M. (2013). Facies heterogeneity at interwell‐scale in a carbonate ramp, Upper Jurassic, NE Spain. Marine and Petroleum Geology, 44, 140–163. https://doi.org/10.1016/j.marpetgeo.2013.03.004
    [Google Scholar]
  3. Alonso‐Zarza, A. M., & Calvo, J. P. (2000). Palustrine sedimentation in an episodically subsiding basin: The Miocene of the northern Teruel Graben (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1–2), 1–21. https://doi.org/10.1016/S0031‐0182(00)00041‐9
    [Google Scholar]
  4. Alvaro, M., Capote, R., & Vegas, R. (1979). Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geológica Hispánica. Homenage a Lluís Solé I Sabarís, 14, 172–177.
    [Google Scholar]
  5. Alves, T. M., Cartwright, J., & Davies, R. J. (2009). Faulting of salt‐withdrawal basins during early halokinesis: Effects on the Paleogene Rio Doce Canyon system (Espírito Santo Basin, Brazil). AAPG Bulletin, 93, 617–652. https://doi.org/10.1306/02030908105
    [Google Scholar]
  6. Alves, T. M., Gawthorpe, R. L., Hunt, D. W., & Monteiro, J. H. (2003). Post‐Jurassic tectono‐sedimentary evolution of the Northern Lusitanian Basin (western Iberian margin). Basin Research, 15(2), 227–249. https://doi.org/10.1046/j.1365‐2117.2003.00202.x
    [Google Scholar]
  7. Arche, A., & López‐Gómez, J. (1999). Tectonic and geomorphic controls on the fluvial styles of the Eslida Formation, Middle Triassic, Eastern Spain. Tectonophysics, 315(1–4), 187–207. https://doi.org/10.1016/S0040‐1951(99)00291‐7
    [Google Scholar]
  8. Arche, A., & López‐Gómez, J. (2005). Sudden changes in fluvial style across the Permian‐Triassic boundary in the eastern Iberian Ranges, Spain: Analysis of possible causes. Palaeogeography, Palaeoclimatology, Palaeoecology, 229(1–2), 104–126. https://doi.org/10.1016/j.palaeo.2005.06.033
    [Google Scholar]
  9. Aurell, M., Bádenas, B., Canudo, J. I., Castanera, D., García‐Penas, A., Gasca, J. M., … Val, J. (2019). Kimmeridgian‐Berriasian stratigraphy and sedimentary evolution of the central Iberian Rift System (NE Spain). Cretaceous Research, 103, 104153. https://doi.org/10.1016/j.cretres.2019.05.011
    [Google Scholar]
  10. Aurell, M., Bádenas, B., Gasca, J. M., Canudo, J. I., Liesa, C. L., Soria, A. R., … Najes, L. (2016). Stratigraphy and evolution of the Galve sub‐basin (Spain) in the middle Tithonian‐early Barremian: Implications for the setting and age of some dinosaur fossil sites. Cretaceous Research, 65, 138–162. https://doi.org/10.1016/j.cretres.2016.04.020
    [Google Scholar]
  11. Aurell, M., Bádenas, B., Ipas, J., & Ramajo, J. (2010). Sedimentary evolution of an Upper Jurassic epeiric carbonate ramp, Iberian Basin, NE Spain. Geological Society, London, Special Publications, 329(1), 89–111. https://doi.org/10.1144/SP329.5
    [Google Scholar]
  12. Aurell, M., Salas, R., Alonso‐Zarza, A. M., Mas, J. R., Roca, R., Meléndez, A., …San Román, J. (1992).Tectónica sinsedimentaria distensiva en el límite Triásico‐Jurásico en la cordillera Ibérica. Actas de Las Sessiones Científicas: III Congreso Geológico de España, 1, 50–54. ISBN 84‐600‐8132‐X.
  13. Bádenas, B., & Aurell, M. (2001). Kimmeridgian palaeogeography and basin evolution of northeastern Iberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 168(3–4), 291–310. https://doi.org/10.1016/S0031‐0182(01)00204‐8
    [Google Scholar]
  14. Baldschuhn, R., Binot, F., Fleig, S., & Kockel, F. (2001). Geotektonischer Atlas von Nordwest‐Deutschland und dem deutschen Nordsee‐ Sektor. Stuttgart, Germany: Schweizerbart Science Publishers, 88 pp.
    [Google Scholar]
  15. Benito, M. I., Lohmann, K. C., & Mas, R. (2005). Late Jurassic Paleogeography and Paleoclimate in the Northern Iberian Basin of Spain: Constraints from Diagenetic Records in Reefal and Continental Carbonates. Journal of Sedimentary Research, 75(1), 82–96. https://doi.org/10.2110/jsr.2005.008
    [Google Scholar]
  16. Bodego, A., & Agirrezabala, L. M. (2013). Syn‐depositional thin‐ and thick‐skinned extensional tectonics in the mid‐Cretaceous Lasarte sub‐basin, western Pyrenees. Basin Research, 25, 594–612. https://doi.org/10.1111/bre.12017
    [Google Scholar]
  17. Bodego, A., Iriarte, E., López‐Horgue, M. A., & Álvarez, I. (2018). Rift‐margin extensional forced folds and salt tectonics in the eastern Basque‐Cantabrian rift basin (western Pyrenees). Marine and Petroleum Geology, 91, 667–682. https://doi.org/10.1016/j.marpetgeo.2018.02.007
    [Google Scholar]
  18. Bover‐Arnal, T. (2010). The Aptian evolution of the Galve sub‐basin (Maestrat Basin; E Iberia). PhD Thesis University, Barcelona, 1–222.
  19. Bover‐Arnal, T., Moreno‐Bedmar, J. A., Frijia, G., Pascual‐Cebrian, E., & Salas, R. (2016). Chronostratigraphy of the Barremian – Early Albian of the Maestrat Basin (E Iberian Peninsula): Integrating strontium‐isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49(1), 41–68. https://doi.org/10.1127/nos/2016/0072
    [Google Scholar]
  20. Bover‐Arnal, T., Moreno‐Bedmar, J. A., Salas, R., Skelton, P. W., Bitzer, K., & Gili, E. (2010). Sedimentary evolution of an Aptian syn‐rift carbonate system (Maestrat basin, E Spain): Effects of accommodation and environmental change. Geologica Acta, 8(3), 249–280. https://doi.org/10.1344/105.000001533
    [Google Scholar]
  21. Bover‐Arnal, T., Pascual‐Cebrian, E., Skelton, P. W., Gili, E., & Salas, R. (2015). Patterns in the distribution of Aptian rudists and corals within a sequence‐stratigraphic framework (Maestrat Basin, E Spain). Sedimentary Geology, 321, 86–104. https://doi.org/10.1016/j.sedgeo.2015.03.008
    [Google Scholar]
  22. Bover‐Arnal, T., Salas, R., Guimerà, J., & Moreno‐Bedmar, J. A. (2014). Deep incision in an Aptian carbonate succession indicates major sea‐level fall in the Cretaceous. Sedimentology, 61(6), 1558–1593. https://doi.org/10.1111/sed.12105
    [Google Scholar]
  23. Bover‐Arnal, T., Salas, R., Martín‐Closas, C., Schlagintweit, F., & Moreno‐Bedmar, J. A. (2011). Expression of an oceanic anoxic event in a neritic setting: Lower Aptian coral rubble deposits from the Western Maestrat Basin (Iberian Chain, Spain). Palaios, 26(1), 18–32. https://doi.org/10.2110/palo.2010.p10‐055r
    [Google Scholar]
  24. Bover‐Arnal, T., Salas, R., Moreno Bedmar, J. A., & Bitzer, K. (2009). Sequence stratigraphy and architecture of a late Early‐Middle Aptian Carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain). Sedimentary Geology, 219, 280–301. https://doi.org/10.1016/j.sedgeo.2009.05.016
    [Google Scholar]
  25. Brinkmann, R., & Logters, H. (1968). Diapirs in western Pyrenees and foreland, Spain. In: Diapirism and Diapirs, AAPG Special Volume, Tulsa, OK, A153, 275–292.
    [Google Scholar]
  26. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: geology versus models. Marine and Petroleum Geology, 28(6), 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  27. Burbank, D. W., & Vergés, J. (1994). Reconstruction of topography and related depositional systems during active thrusting. Journal of Geophysical Research, 99(B10), 20281–20297. https://doi.org/10.1029/94JB00463
    [Google Scholar]
  28. Cámara, P. (2017). Salt and strike‐slip tectonics as main drivers in the structural evolution of the Basque‐Cantabrian Basin, Spain. InG.Soto, J. I.Flinch, & J. F.Tari (Ed.), Permo‐triassic salt provinces of Europe, North Africa and the Atlantic margins tectonics and hydrocarbon potential (pp. 371–393). Amsterdam, Netherlands: Elsevier.
    [Google Scholar]
  29. Cámara, P., & Flinch, J. F. (2017). The Southern Pyrenees: A Salt‐Based Fold‐and‐Thrust Belt. InG.Soto, J. I.Flinch, & J. F.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margin (pp. 395–415). Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  30. Campos, S., Aurell, M., & Casas, A. (1996). Origen de las brechas de la base del Jurásico en Morata de Jalón (Zaragoza). Geogaceta, 20(4), 887–889.
    [Google Scholar]
  31. Canérot, J. (1989). Distensions mésozoiques et halocinèse dans les Ibérides (Espagne). Bulletin de la Société Géologique de France (8), t. V, 905–912.
    [Google Scholar]
  32. Canérot, J. (1991). Comparative study of the Eastern Iberides (Spain) and the Western Pyrenees (France) Mesozoic basins. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1–4), 1–28. https://doi.org/10.1016/0031‐0182(91)90128‐E
    [Google Scholar]
  33. Canérot, J., Crespo, A., & Navarro, D. (1977). Mapa de la Hoja no 518 (Montalbán). Mapa Geológico de España E. 1:50.000. Segunda Serie (MAGNA), Primera Edición IGME.
  34. Canérot, J., Cugny, P., Pardo, G., Salas, R., & Villena, J. (1982). Ibérica Central‐Maestrazgo. In El Cretácico de España (pp. 273–344). Madrid, Spain: Universidad Complutense de Madrid.
    [Google Scholar]
  35. Canérot, J., Hudec, M. R., & Rockenbauch, K. (2005). Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary. AAPG Bulletin, 89(2), 211–229. https://doi.org/10.1306/09170404007
    [Google Scholar]
  36. Capote, R., Muñoz, J. A., Simón, J. L., Liesa, C. L., & Arlegui, L. E. (2002). Alpine tectonics I: The Alpine system north of the Betic Cordillera. In W.Gibbons & T.Moreno (Eds.), The Geology of Spain (pp. 367–400). London, UK: Geological Society.
    [Google Scholar]
  37. Davison, I., Alsop, I., Birch, P., Elders, C., Evans, N., Nicholson, H., … Young, M. (2000). Geometry and late‐stage structural evolution of Central Graben salt diapirs, North Sea. Marine and Petroleum Geology, 17(4), 499–522. https://doi.org/10.1016/S0264‐8172(99)00068‐9
    [Google Scholar]
  38. De Vicente, G., Vegas, R., Muñoz‐Martín, A., Van Wees, J. D., Casas‐Sáinz, A., Sopeña, A., … Fernández‐Lozano, J. (2009). Oblique strain partitioning and transpression on an inverted rift: The Castilian Branch of the Iberian Chain. Tectonophysics, 470(3–4), 224–242. https://doi.org/10.1016/j.tecto.2008.11.003
    [Google Scholar]
  39. Demercian, S., Szatmari, P., & Cobbold, P. R. (1993). Style and pattern of salt diapirs due to thin‐skinned gravitational gliding, Campos and Santos basins, offshore Brazil. Tectonophysics, 228, 393–433. Retrieved from http://www.sciencedirect.com/science/article/pii/004019519390351J
    [Google Scholar]
  40. Dercourt, J., Gaetani, M., & Vrielynck, B. (2000). Atlas of Tethys Palaeogeographical Maps. 14 maps + Explan. notes, CCGM France.
  41. Dercourt, J., Ricou, L. E., & Vrielynck, B. (1993). Atlas of Tethys Palaeoenvironenmental Maps. 14 Maps + Explanatory Notes, CCGM France.
  42. Dooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike‐slip tectonics: A review and new experimental results. Tectonophysics, 574–575, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030
    [Google Scholar]
  43. Embry, J.‐C., Vennin, E., Van Buchem, F. S. P., Schroeder, R., Pierre, C., & Aurell, M. (2010). Sequence stratigraphy and carbon isotope stratigraphy of an Aptian mixed carbonate‐siliciclastic platform to basin transition (Galve sub‐basin, NE Spain). Geological Society, London, Special Publications, 329(1), 113–143. https://doi.org/10.1144/SP329.6
    [Google Scholar]
  44. Escavy, J. I., Herrero, M. J., & Arribas, M. E. (2012). Gypsum resources of Spain: Temporal and spatial distribution. Ore Geology Reviews, 49, 72–84. https://doi.org/10.1016/j.oregeorev.2012.09.001
    [Google Scholar]
  45. Escosa, F. O., Roca, E., & Ferrer, O. (2018). Testing thin‐skinned inversion of a prerift salt‐bearing passive margin (Eastern Prebetic Zone, SE Iberia). Journal of Structural Geology, 109, 55–73. https://doi.org/10.1016/j.jsg.2018.01.004
    [Google Scholar]
  46. Etheve, N., Mohn, G., Frizon de Lamotte, D., Roca, E., Tugend, J., & Gómez‐Romeu, J. (2018). Extreme Mesozoic crustal thinning in the Eastern Iberia Margin: The example of the Columbrets Basin (Valencia Trough). Tectonics, 37(2), 636–662. https://doi.org/10.1002/2017TC004613
    [Google Scholar]
  47. Ferrer, O., Jackson, M. P. A., Roca, E., & Rubinat, M. (2012). Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay). Geological Society, London, Special Publications, 363(1), 361–380. https://doi.org/10.1144/SP363.16
    [Google Scholar]
  48. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel‐Daveau, J.‐C., Blanpied, C., & Ringenbach, J.‐C. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30(3), TC3002. https://doi.org/10.1029/2010TC002691
    [Google Scholar]
  49. Galán‐Abellán, B., López‐Gómez, J., Barrenechea, J. F., Marzo, M., De la Horra, R., & Arche, A. (2013). The beginning of the Buntsandstein cycle (Early‐Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications. Sedimentary Geology, 296, 86–102. https://doi.org/10.1016/j.sedgeo.2013.08.006
    [Google Scholar]
  50. Garcia, R., Moreno‐Bedmar, J. A., Bover‐Arnal, T., Company, M., Salas, R., Latil, J.‐L., … Grauges, A. (2014). Lower Cretaceous (Hauterivian‐Albian) ammonite biostratigraphy in the Maestrat Basin (E Spain). Journal of Iberian Geology, 40(1), 99–112. https://doi.org/10.5209/rev_JIGE.2014.v40.n1.44090
    [Google Scholar]
  51. Gautier, F. (1979). Mapa Geológico de España 1: 50.000, Hoja 543 (Villarluengo). Segunda Serie. (MAGNA): Primera Edición IGME.
  52. Gil, J., Carenas, B., Segura, M., Hidalgo, J. F. G., & García, A. (2004). Revisión y correlación de las unidades litoestratigráficas del Cretácico Superior en la región central y oriental de España. Revista de la Sociedad Geológica de España, 17(3–4), 249–266. https://doi.org/10.1109/POWERCON.2014.6993577
    [Google Scholar]
  53. Giles, K. A., Druke, D. C., Mercer, D. W., & Hunnivutt‐Mack, L. (2008). Controls on Upper Cretaceous (Maastrichtian) heterozoan carbonate platforms developed on salt diapirs, La Popa Basin, NE Mexico. SEPM Special Publication, 89(89), 107–124.
    [Google Scholar]
  54. Giles, K. A., & Lawton, T. F. (2002). Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. AAPG Bulletin, 86(5), 823. Retrieved from http://aapgbull.geoscienceworld.org/cgi/content/abstract/86/5/823
    [Google Scholar]
  55. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. From: G. I.Alsop, S. G.Archer, A. J.Hartley, N. T.Grant, & R.Hodgkinson (Eds) 2012. Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363(1), 7–31. doi: https://doi.org/10.1144/SP363.2
    [Google Scholar]
  56. Gómez, J. J., & Fernández‐López, S. R. (2006). The Iberian Middle Jurassic carbonate‐platform system: Synthesis of the palaeogeographic elements of its eastern margin (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 236(3–4), 190–205. https://doi.org/10.1016/j.palaeo.2005.11.008
    [Google Scholar]
  57. González, A., & Guimerà, J. (1993). Sedimentación sintectónica en uuna cuenca transportada sobre una lámina de cabalgamiento: La cubeta Terciaria de Aliaga. Revista de La Sociedad Geológica De España, 6, 151–165.
    [Google Scholar]
  58. Gradstein, F. M., & Ogg, J. G. (2012). The chronostratigraphic scale. In The geologic time scale (pp. 31–42). Elsevier. https://doi.org/10.1016/B978‐0‐444‐59425‐9.00002‐0
    [Google Scholar]
  59. Graham, R., Jackson, M., Pilcher, R., & Kilsdonk, B. (2012). Allochthonous salt in the sub‐Alpine fold‐thrust belt of Haute Provence, France. Geological Society, London, Special Publications, 363(1), 595–615. https://doi.org/10.1144/SP363.30
    [Google Scholar]
  60. Guimerà, J. (1984). Palaeogene evolution of deformation in the northeastern Iberian Peninsula. Geological Magazine, 121(5), 413–420. https://doi.org/10.1017/S0016756800029940
    [Google Scholar]
  61. Guimerà, J. (1988). Estudi estructural de l’enllaç entre la Serralada Ibèrica i la Serralada Costanera Catalana. Universitat de Barcelona.Retrieved fromhttp://diposit.ub.edu/dspace/handle/2445/34924
  62. Guimerà, J., Mas, R., & Alonso, A. (2004). Intraplate deformation in the NW Iberian Chain: Mesozoic extension and Tertiary contractional inversion. Journal of the Geological Society, 161(2), 291–303. https://doi.org/10.1144/0016‐764903‐055
    [Google Scholar]
  63. Guimerà, J., Rivero, L., Salas, R., & Casas, A. (2016). Moho depth inferred from gravity and topography in an intraplate area (Iberian Chain). Tectonophysics, 666, 134–143. https://doi.org/10.1016/j.tecto.2015.10.021
    [Google Scholar]
  64. Guimerà, J., Salas, R., Vergés, J., & Casas, A. (1996). Extensión mesozoica e inversión compresiva terciaria en la Cadena Ibérica: aportaciones a partir del análisis de un perfil gravimétrico. Geogaceta, 1996(20), 1691–1694.
    [Google Scholar]
  65. Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., & Bernoulli, D. (2010). Reconciling plate‐tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth‐Science Reviews, 102(3–4), 121–158. https://doi.org/10.1016/j.earscirev.2010.06.002
    [Google Scholar]
  66. Hudec, M., & Jackson, M. (2007). Terra infirma: Understanding salt tectonics. Earth‐Science Reviews, 82(1–2), 1–28. https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  67. Hunt, D., & Tucker, M. E. (1992). Stranded parasequences and the forced regressive wedge systems tract: Deposition during base‐level fall. Sediment. Geol., 81, 1–9. https://doi.org/10.1016/0037‐0738(92)90052‐S
    [Google Scholar]
  68. IGME
    IGME . (1979). Mapa Geológico de España 1:50.000, Hoja de Villarluengo (543).
  69. Jackson, M. P. A., & Hudec, M. R. (2017). Salt tectonics. Principles and Practice. Cambridge, UK: Cambridge University Press. https://doi.org/10.1016/0040‐1951(89)90177‐7
    [Google Scholar]
  70. Jackson, M. P. A., & Vendeville, B. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106(1), 57–73. Retrieved from http://gsabulletin.gsapubs.org/content/106/1/57.short
    [Google Scholar]
  71. Jammes, S., Tiberi, C., & Manatschal, G. (2010). 3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay‐Western Pyrenees. Tectonophysics, 489(1–4), 210–226. https://doi.org/10.1016/j.tecto.2010.04.023
    [Google Scholar]
  72. Krzywiec, P., Peryt, T. M., Kiersnowski, H., Pomianowski, P., Czapowski, G., & Kwolek, K. (2017). Chapter 11 – Permo‐Triassic evaporites of the Polish Basin and their bearing on the tectonic evolution and hydrocarbon system, an overview. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic Margins (pp. 243–261). New York, NY: Elsevier Science Publishing Co, Inc. https://doi.org/10.1016/B978‐0‐12‐809417‐4.00012‐4
    [Google Scholar]
  73. Lawver, L. A., Dalziel, I. W. D., Norton, I. O., & Gahagan, L. M. (2009). The PLATES 2009 Atlas of Plate Reconstructions (750 Ma to present day): PLATES Progress Report 325–0509. University of Texas Technical Report, 196, 63.
    [Google Scholar]
  74. Letouzey, J., Colletta, B., Vially, R., & Chermette, J. C. (1995). Evolution of salt‐related structures in compressional settings. In M. P. A.Jackson, D. C.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective: AAPG Memoir65, 41–60.
    [Google Scholar]
  75. Liesa, C. L., Casas, A. M., & Simón, J. L. (2018). La tectónica de inversión en una región intraplaca: La Cordillera Ibérica. Revista de la Sociedad Geologica de España, 31(2), 23–50.
    [Google Scholar]
  76. Liesa, C. L., & Simón, J. L. (2009). Evolution of intraplate stress fields under multiple remote compressions: The case of the Iberian Chain (NE Spain). Tectonophysics, 474(1–2), 144–159. https://doi.org/10.1016/j.tecto.2009.02.002
    [Google Scholar]
  77. Liesa, C. L., Soria, A. R., Meléndez, N., & Meléndez, A. (2006). Extensional fault control on the sedimentation patterns in a continental rift basin: El Castellar Formation, Galve sub‐basin, Spain. Journal of the Geological Society, 163(3), 487–498. https://doi.org/10.1144/0016‐764904‐169
    [Google Scholar]
  78. López‐Horgue, M. A., Iriarte, E., Schröder, S., Fernández‐Mendiola, P. A., Caline, B., Corneyllie, H., … Zerti, S. (2010). Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón Valley, Basque Cantabrian Basin, Northern Spain. Marine and Petroleum Geology, 27(5), 1069–1092. https://doi.org/10.1016/j.marpetgeo.2009.10.015
    [Google Scholar]
  79. Lopez‐Mir, B., Anton Muñoz, J., & García Senz, J. (2014). Restoration of basins driven by extension and salt tectonics: Example from the Cotiella Basin in the central Pyrenees. Journal of Structural Geology, 69, 147–162. https://doi.org/10.1016/j.jsg.2014.09.022
    [Google Scholar]
  80. López‐Mir, B., Muñoz, J. A., & García‐Senz, J. (2015). Extensional salt tectonics in the partially inverted Cotiella post‐rift basin (south‐central Pyrenees): Structure and evolution. International Journal of Earth Sciences, 104(2), 419–434. https://doi.org/10.1007/s00531‐014‐1091‐9
    [Google Scholar]
  81. Macchiavelli, C., Vergés, J., Schettino, A., Fernàndez, M., Turco, E., Casciello, E., … Tunini, L. (2017). A new Southern North Atlantic Isochron map: Insights into the drift of the Iberian plate since the Late Cretaceous. Journal of Geophysical Research: Solid Earth, 122(12), 9603–9626. https://doi.org/10.1002/2017JB014769
    [Google Scholar]
  82. Martín, M., & Canérot, J. (1977). Mapa Geológico de España 1: 50.000, Hoja 517 (Argente). Segunda Serie (MAGNA), Primera Edición IGME.
  83. Martín‐Chivelet, J., & Chacón, B. (2007). Event stratigraphy of the upper Cretaceous to lower Eocene hemipelagic sequences of the Prebetic Zone (SE Spain): Record of the onset of tectonic convergence in a passive continental margin. Sedimentary Geology, 197(1–2), 141–163. https://doi.org/10.1016/j.sedgeo.2006.09.007
    [Google Scholar]
  84. Martín‐Chivelet, J., López‐Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M. E., & Vilas, L. (2019). The Late Jurassic‐Early Cretaceous Rifting. In C.Quesada & J. T.Oliveira (Eds.), The geology of Iberia: A geodynamic approach. Volume 5: The Alpine cycle (pp. 60–63). Heidelberg, Germany: Springer.
    [Google Scholar]
  85. Martínez del Olmo, W., Motis, K., & Martín, D. (2015). El papel del diapirismo de la sal Triásica en la estructuración del Prebético (SE de España). Revista de La Sociedad Geológica de España28, 3–24.
    [Google Scholar]
  86. Martín‐Martín, J. D., Vergés, J., Saura, E., Moragas, M., Messager, G., Baqués, V., … Hunt, D. W. (2017). Diapiric growth within an Early Jurassic rift basin: The Tazoult salt wall (central High Atlas, Morocco). Tectonics, 36(1), 2–32. https://doi.org/10.1002/2016TC004300
    [Google Scholar]
  87. Martín‐Rojas, L., Somma, R., Delgado, F., Estévez, A., Iannace, A., Perrone, V., & Zamparelli, V. (2009). Triassic continental rifting of Pangea: Direct evidence from the Alpujarride carbonates, Betic Cordillera, SE Spain. Journal of the Geological Society, 166(3), 447–458. https://doi.org/10.1144/0016‐76492008‐091
    [Google Scholar]
  88. McClay, K. R. (Ed.) (1992). Thrust tectonics.London, UK/New York, NY: Chapman & Hall.
    [Google Scholar]
  89. McClay, K. R., Muñoz, J. A., & García‐Senz, J. (2004). Extensional salt tectonics in a contractional orogen: A newly identified tectonic event in the Spanish Pyrenees. Geology, 32(9), 737–740. https://doi.org/10.1130/G20565.1
    [Google Scholar]
  90. McClay, K. R., & Price, N. J. (Ed.). (1981). Thrust and Nappe Tectonics. Geological Society of London by Blackwell Scientific (vol. 9).
    [Google Scholar]
  91. Meléndez, N., Liesa, C. L., Soria, A. R., & Meléndez, A. (2009). Lacustrine system evolution during early rifting: El Castellar Formation (Galve sub‐basin, Central Iberian Chain). Sedimentary Geology, 222(1–2), 64–77. https://doi.org/10.1016/j.sedgeo.2009.05.019
    [Google Scholar]
  92. Moragas, M., Vergés, J., Nalpas, T., Saura, E., Martín‐Martín, J. D., Messager, G., & Hunt, D. W. (2017). The impact of syn‐ and post‐extension prograding sedimentation on the development of salt‐related rift basins and their inversion: Clues from analogue modelling. Marine and Petroleum Geology, 88, 985–1003. https://doi.org/10.1016/j.marpetgeo.2017.10.001
    [Google Scholar]
  93. Moragas, M., Vergés, J., Saura, E., Martín‐Martín, J.‐D., Messager, G., Merino‐Tomé, Ó., … Hunt, D. W. (2018). Jurassic rifting to post‐rift subsidence analysis in the Central High Atlas and its relation to salt diapirism. Basin Research, 30, 336–362. https://doi.org/10.1111/bre.12223
    [Google Scholar]
  94. Moreno‐Bedmar, J. A., Company, M., Bover‐Arnal, T., Salas, R., Delanoy, G., Martínez, R., & Grauges, A. (2009). Biostratigraphic characterization by means of ammonoids of the lower Aptian Oceanic Anoxic Event (OAE 1a) in the eastern Iberian Chain (Maestrat Basin, eastern Spain). Cretaceous Research, 30(4), 864–872. https://doi.org/10.1016/j.cretres.2009.02.004
    [Google Scholar]
  95. Moreno‐Bedmar, J. A., Company, M., Bover‐Arnal, T., Salas, R., Delanoy, G., Maurrasse, F.‐M.‐R., … Martínez, R. (2010). Lower Aptian ammonite biostratigraphy in the Maestrat Basin (Eastern Iberian Chain, Eastern Spain). A Tethyan transgressive record enhanced by synrift subsidence. Geologica Acta, 8(3), 281–299.
    [Google Scholar]
  96. Moseley, F., Cuttelll, J., Lange, E., Stevens, D., & Warbrick, J. (1981). Alpine tectonics and diapiric structures in the Pre‐Betic zone of southeast Spain. Journal of Structural Geology, 3(3), 237–251. https://doi.org/10.1016/0191‐8141(81)90020‐1
    [Google Scholar]
  97. Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the South and Equatorial Atlantic Ocean. Earth‐Science Reviews, 98, 1–37. https://doi.org/10.1016/j.earscirev.2009.08.001
    [Google Scholar]
  98. Nalpas, T., & Brun, J.‐P. (1993). Salt flow and diapirism related to extension at crustal scale. Tectonophysics, 228(3–4), 349–362. https://doi.org/10.1016/0040‐1951(93)90348‐N
    [Google Scholar]
  99. Navarrete, R., Liesa, C. L., Castanera, D., Soria, A. R., Rodríguez‐López, J. P., & Canudo, J. I. (2014). A thick Tethyan multi‐bed tsunami deposit preserving a dinosaur megatracksite within a coastal lagoon (Barremian, eastern Spain). Sedimentary Geology, 313, 105–127. https://doi.org/10.1016/j.sedgeo.2014.09.007
    [Google Scholar]
  100. Navarrete, R., Rodríguez‐López, J. P., Liesa, C. L., Soria, A. R., de Veloso, F. M. L. (2013). Changing physiography of rift basins as a control on the evolution of mixed siliciclastic‐carbonate back‐barrier systems (Barremian Iberian Basin, Spain). Sedimentary Geology, 289, 40–61. https://doi.org/10.1016/j.sedgeo.2013.02.003
    [Google Scholar]
  101. Nebot, M., & Guimerà, J. (2016a). Structure of an inverted basin from subsurface and field data: The Late Jurassic‐Early Cretaceous Maestrat Basin (Iberian Chain). Geologica Acta, 14(2), 155–177. https://doi.org/10.1344/GeologicaActa2016.14.2.5
    [Google Scholar]
  102. Nebot, M., & Guimerà, J. (2016b). Kinematic evolution of a fold‐and‐thrust belt developed during basin inversion: the Mesozoic Maestrat basin, EIberian Chain. Geological Magazine, 155(3), 630–640. https://doi.org/10.1017/S001675681600090X
    [Google Scholar]
  103. Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., & Sauter, D. (2018). Kinematic evolution of the Southern North Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37(1), 89–118. https://doi.org/10.1002/2017TC004495
    [Google Scholar]
  104. Olivé, A., Godoy, A., & Moissenet, E. (1981). Mapa de la Hoja no 542 (Alfambra). Mapa Geológico de España E. 1: 50.000. Segunda Serie. (MAGNA),Primera Edición IGME.
  105. Ortí, F., Pérez‐López, A., & Salvany, J. M. (2017). Triassic evaporites of Iberia: Sedimentological and palaeogeographical implications for the western Neotethys evolution during the Middle Triassic‐Earliest Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 471, 157–180. https://doi.org/10.1016/j.palaeo.2017.01.025
    [Google Scholar]
  106. Pedrera, A., Marín‐Lechado, C., Galindo‐Zaldívar, J., & García‐Lobón, J. L. (2014). Control of preexisting faults and near‐surface diapirs on geometry and kinematics of fold‐and‐thrust belts (Internal Prebetic, Eastern Betic Cordillera). Journal of Geodynamics, 77, 135–148. https://doi.org/10.1016/j.jog.2013.09.007
    [Google Scholar]
  107. Pena dos Reis, R., Pimentel, N., Fainstein, R., Reis, M., & Rasmussen, B. (2017). Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313–329). New York, NY: Elsevier Science Publishing Co, Inc. https://doi.org/10.1016/B978‐0‐12‐809417‐4.00015‐X
    [Google Scholar]
  108. Peropadre, C., Liesa, C. L., & Meléndez, N. (2013). High‐frequency, moderate to high‐amplitude sea‐level oscillations during the late Early Aptian: Insights into the Mid‐Aptian event (Galve sub‐basin, Spain). Sedimentary Geology, 294, 233–250. https://doi.org/10.1016/j.sedgeo.2013.05.019
    [Google Scholar]
  109. Poprawski, Y., Basile, C., Agirrezabala, L. M., Jaillard, E., Gaudin, M., & Jacquin, T. (2014). Sedimentary and structural record of the Albian growth of the Bakio salt diapir (the Basque Country, northern Spain). Basin Research, 26(6), 746–766. https://doi.org/10.1111/bre.12062
    [Google Scholar]
  110. Poprawski, Y., Basile, C., Jaillard, E., Gaudin, M., & Lopez, M. (2016). Halokinetic sequences in carbonate systems: An example from the Middle Albian Bakio Breccias Formation (Basque Country, Spain). Sedimentary Geology, 334, 34–52. https://doi.org/10.1016/j.sedgeo.2016.01.013
    [Google Scholar]
  111. Purkis, S. J., Harris, P. M., & Ellis, J. (2012). Patterns of sedimentation in the contemporary red sea as an analog for ancient carbonates in rift settings. Journal of Sedimentary Research, 82(11), 859–870. https://doi.org/10.2110/jsr.2012.77
    [Google Scholar]
  112. Querol, X., Salas, R., Pardo, G., & Ardevol, L. (1992). Albian coal‐bearing deposits of the Iberian Range in northeastern Spain. Controls on the Distribution and Quality of Cretaceous Coals. Boulder, CO, 257(JANUARY 1992), 193–208. doi: 10.1130/SPE267‐p193
  113. Quesada, C., & Oliveira, T. (2020). The geology of Iberia: A geodynamic approach. In Regional geology reviews (Vol. 3, 589 p). Basel, Switzerland: Springer Nature Switzerland AG 2019. https://doi.org/10.1007/978‐3‐030‐10931‐8
    [Google Scholar]
  114. Quintà, A., Tavani, S., & Roca, E. (2012). Fracture pattern analysis as a tool for constraining the interaction between regional and diapir‐related stress fields: Poza de la Sal Diapir (Basque Pyrenees, Spain). Geological Society, London, Special Publications, 363(1), 521–532. https://doi.org/10.1144/SP363.25
    [Google Scholar]
  115. Ramos, A., Fernández, O., Terrinha, P., & Muñoz, J. A. (2016). Extension and inversion structures in the Tethys‐Atlantic linkage zone, Algarve Basin, Portugal. International Journal of Earth Sciences, 105(5), 1663–1679. https://doi.org/10.1007/s00531‐015‐1280‐1
    [Google Scholar]
  116. Ringenbach, J., Salel, J., Kergaravat, C., Ribes, C., Bonnel, C., & Callot, J.‐P. (2013). Salt tectonics in the Sivas Basin, Turkey: Outstanding seismic analogues from outcrops. First Break, 31, 57–65.
    [Google Scholar]
  117. Ríos, J. M. (1948). Diapirismo. Boletín Del Instituto Geológico y Minero de España, Tomo LX, pp. 155–390.
  118. Roca, E., & Guimerà, J. (1992). The Neogene structure of the eastern Iberian margin: Structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics, 203, 203–218. https://doi.org/10.1002/pbc.27374
    [Google Scholar]
  119. Roca, E., Guimerà, J., & Salas, R. (1994). Mesozoic extensional tectonics in the southeast Iberian Chain. Geological Magazine, 131(2), 155–168. https://doi.org/10.1017/S0016756800010694
    [Google Scholar]
  120. Rodríguez‐Fernández, L. R., & Oliveira, J. T. (Eds.). (2014). Mapa geológico de España y Portugal 1/1.000.000. Madrid, Spain: Instituto Geológico y Minero de España (IGME) y Laboratório Nacional de Energia e Geologia (LNEG).
    [Google Scholar]
  121. Rodríguez‐López, J. P., Meléndez, N., Soria, A. R., & De Boer, P. L. (2009). Reinterpretación estratigráfica y sedimentológica de las Formaciones Escucha y Utrillas de la Cordillera Ibérica. Revista de la Sociedad Geológica de España, 22(3–4), 13–22.
    [Google Scholar]
  122. Rowan, M. G., Giles, K. A., Hearon, T. E., & Fiduk, J. C. (2016). Megaflaps adjacent to salt diapirs. AAPG Bulletin, 100(11), 1723–1747. https://doi.org/10.1306/05241616009
    [Google Scholar]
  123. Rowan, M. G., Jackson, M. P. A., & Trudgill, B. D. (1999). Salt‐related fault families and fault welds in the Northern Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 83, 1454–1484.
    [Google Scholar]
  124. Salas, R. (1987). El Malm i el Cretaci inferior entre el Massís de Garraf i la Serra d'Espadà: anàlisi de conca. PhD Thesis University of Barcelona, 345 p.
  125. Salas, R., & Casas, A. (1993). Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228(1–2), 33–55. https://doi.org/10.1016/0040‐1951(93)90213‐4
    [Google Scholar]
  126. Salas, R., Guimerà, J., Mas, R., Martin‐closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian chain). In P. A.Ziegler, W.Cavazza, A. H. F.Robertson, & S.Crasquin‐Soleau (Eds), Peri‐tethys memoir 6: Peri‐tethyan riftiwrench basins and passive margins. Mem. M, 186, 145–185.
    [Google Scholar]
  127. Salas, R., & Guimerà, J. (1996). Rasgos estructurales principales de la cuenca cretácica inferior del Maestrazgo (Cordiellera Ibérica oriental). Geogaceta, 20(7), 1704–1706. ISSN: 0213683X.
    [Google Scholar]
  128. Sallarès, V., Gailler, A., Gutscher, M.‐A., Graindorge, D., Bartolomé, R., Gràcia, E., … Zitellini, N. (2011). Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin). Earth and Planetary Science Letters, 311(1–2), 112–123. https://doi.org/10.1016/j.epsl.2011.09.003
    [Google Scholar]
  129. San Román, J., & Aurell, M. (1992). Palaeogeographical significance of the Triassic‐Jurassic unconformity in the north Iberian basin (Sierra del Moncayo, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 99(1–2), 101–117. https://doi.org/10.1016/0031‐0182(92)90009‐T
    [Google Scholar]
  130. Saura, E., Ardèvol i Oró, L., Teixell, A., & Vergés, J. (2016). Rising and falling diapirs, shifting depocenters, and flap overturning in the Cretaceous Sopeira and Sant Gervàs subbasins (Ribagorça Basin, southern Pyrenees). Tectonics, 35(3), 638–662. https://doi.org/10.1002/2015TC004001
    [Google Scholar]
  131. Saura, E., Vergés, J., Martín‐Martín, J. D., Messager, G., Moragas, M., Razin, P., … Hunt, D. W. (2014). Syn‐ to post‐rift diapirism and minibasins of the Central High Atlas (Morocco): The changing face of a mountain belt. Journal of the Geological Society of London, 171, 97–105. https://doi.org/10.1144/jgs2013‐079
    [Google Scholar]
  132. Schettino, A., & Turco, E. (2011). Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin, 123(1–2), 89–105. https://doi.org/10.1130/B30064.1
    [Google Scholar]
  133. Seillé, H., Salas, R., Pous, J., Guimerà, J., Gallart, J., Torne, M., … Mas, R. (2015). Crustal structure of an intraplate thrust belt: The Iberian Chain revealed by wide‐angle seismic, magnetotelluric soundings and gravity data. Tectonophysics, 663, 339–353. https://doi.org/10.1016/j.tecto.2015.08.027
    [Google Scholar]
  134. Simón, J. L. (2004). Superposed buckle folding in the eastern Iberian Chain, Spain. Journal of Structural Geology, 26, 1447–1464. https://doi.org/10.1016/j.jsg.2003.11.026
    [Google Scholar]
  135. Simón, J. L., & Liesa, C. L. (2011). Incremental slip history of a thrust: Diverse transport directions and internal folding of the Utrillas thrust sheet (NE Iberian Chain, Spain). Geological Society, London, Special Publications, 349(1), 77–97. https://doi.org/10.1144/SP349.5
    [Google Scholar]
  136. Soto, J. I., Flinch, J. F., & Tari, G. (2017). Permo‐ Provinces of Europe, North Africa and the Atlantic Margins Tectonics and Hydrocarbon Potential. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  137. Soto, J. I., & Flinch, J. F. (2017). Allochthonous Triassic and Salt Tectonic processes in the Betic‐Rif Orogenic Arc. In J. I.Soto, J. F.Flinch, & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margin (pp. 417–446). Amsterdam, Netherlands: Elsevier.
    [Google Scholar]
  138. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1–2), 17–33. https://doi.org/10.1016/S0012‐821X(01)00588‐X
    [Google Scholar]
  139. Stewart, S. A., & Coward, M. P. (1995). Synthesis of salt tectonics in the southern North Sea, UK. Marine and Petroleum Geology, 12(5), 457–475. https://doi.org/10.1016/0264‐8172(95)91502‐G
    [Google Scholar]
  140. Teixell, A., Barnolas, A., Rosales, I., & Arboleya, M. (2017). Structural and facies architecture of a diapir‐related carbonate minibasin (lower and middle Jurassic, High Atlas, Morocco). Marine and Petroleum Geology, 81, 334–360. https://doi.org/10.1016/j.marpetgeo.2017.01.003
    [Google Scholar]
  141. Trell, A., Canérot, J., & Martín, M. (1979). Mapa Geológico de España 1: 50.000, Hoja 592 (Villahermosa Del Río). Segunda Serie (MAGNA), Primera Edición IGME.
  142. Van Wees, J. D., Arche, A., Beijdorff, C. G., López‐Gómez, J., & Cloetingh, S. A. P. L. (1998). Temporal and spatial variations in tectonic subsidence in the Iberian Basin (eastern Spain): Inferences from automated forward modelling of high‐resolution stratigraphy (Permian‐Mesozoic). Tectonophysics, 300(1–4), 285–310. https://doi.org/10.1016/S0040‐1951(98)00244‐3
    [Google Scholar]
  143. Vargas, H., Gaspar‐Escribano, J. M., López‐Gómez, J., Van Wees, J.‐D., Cloetingh, S., de La Horra, R., & Arche, A. (2009). A comparison of the Iberian and Ebro Basins during the Permian and Triassic, eastern Spain: A quantitative subsidence modelling approach. Tectonophysics, 474(1–2), 160–183. https://doi.org/10.1016/j.tecto.2008.06.005
    [Google Scholar]
  144. Vendeville, B. C., & Jackson, M. P. A. (1992). The rise of diapirs during thin‐skinned extension. Marine and Petroleum Geology, 9(4), 331–354. https://doi.org/10.1016/0264‐8172(92)90047‐I
    [Google Scholar]
  145. Vennin, E., & Aurell, M. (2001). Stratigraphie séquentielle de l’Aptien du sous‐bassin de Galvé (Province de Teruel, NE de l’Espagne). Bulletin de la Societe Geologique de France. 172(4), 397–410. https://doi.org/10.2113/172.4.397
    [Google Scholar]
  146. Vergés, J., & Fernàndez, M. (2012). Tethys‐Atlantic interaction along the Iberia‐Africa plate boundary: The Betic‐Rif orogenic system. Tectonophysics, 579, 144–172. https://doi.org/10.1016/j.tecto.2012.08.032
    [Google Scholar]
  147. Vergés, J., Kullberg, J. C., Casas‐Sainz, A., de Vicente, G., Duarte, L. V., Fernàndez, M., Vegas, R. (2019). An Introduction to the Alpine Cycle in Iberia. In C.Quesada & J. T.Oliveira (Eds.), The Geology of Iberia: A Geodynamic Approach, Regional Geology Reviews (vol. 3, pp. 1–14). Basel, Switzerland: Springer Nature Switzerland AG. https://doi.org/10.1007/978‐3‐030‐11295‐0_1
    [Google Scholar]
  148. Warsitzka, M., Kley, J., Jähne‐Klingberg, F., & Kukowski, N. (2016). Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes. International Journal of Earth Sciences, 106(1), 1–25. https://doi.org/10.1007/s00531‐016‐1306‐3
    [Google Scholar]
  149. Zamora, G., Fleming, M., & Gallastegui, J. (2017). Salt tectonics within the offshore Asturian Basin: North Iberian Margin. In G.Soto, J. I.Flinch, & J. F.Tari (Eds.), Permo‐Triassic salt provinces of Europe, North Africa and the Atlantic Margin (pp. 353–393). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12447
Loading
/content/journals/10.1111/bre.12447
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error