1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

A glossary of commonly used terms related to the geometric forms and geological settings of basement highs is presented to assist cross‐disciplinary understanding, qualifying prefixes for the term are discussed and a scheme for characterising basement highs is presented. This scheme is designed to standardise, and to add rigour to, description of basement highs. It will thereby enhance basement high comparisons and assist understanding of basement highs across technical disciplines. The scheme enables systematic characterisation of: the geometry of a basement high; the lithologic units and structures in, above and around it; timings; tectonics and origins of the basement high and play elements relating to resource prospectivity. Use of this scheme is demonstrated using the southern Rona Ridge (West of Shetland, UK Continental Shelf). The tectonic, isostatic, erosional and stratigraphic processes that form basement highs are also discussed, and examples in proven petroleum systems are presented.

,

Example of geometric features of a basement high, illustrated using the south Rona Ridge 3D Top Basement depth structure map. A = Lancaster Field oil‐water contact at 1678 m true vertical depth sub sea level (TVDSS) (Hurricane Energy, 2019c). B = Lincoln oil discovery “oil down to” at 2258 m TVDSS. C = Whirlwind Discovery “oil down to” at TVDSS. The basement high covers an area of ~ 1200 km , so it is a 4th order basement high. It has an approximately trapezoid shape in map view shape (including the Whirlwind downthrown block). The topography of the upper surface can be described as an undulating wedge (area i) and an undulating planar slope (areas labelled ii). Structures segmenting the basement high include: 1 = Westray Fault Zone; 2 = Brynhild Fault Zone. Contour increment 100 m.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12448
2020-11-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/6/bre12448.html?itemId=/content/journals/10.1111/bre.12448&mimeType=html&fmt=ahah

References

  1. Agosta, F., Alessandroni, M., Tondi, E., & Aydin, A. (2010). Oblique normal faulting along the northern edge of the Majella Anticline, central Italy: Inferences on hydrocarbon migration and accumulation. Journal of Structural Geology, 32, 1317–1333. https://doi.org/10.1016/j.jsg.2010.10.007
    [Google Scholar]
  2. Ahlbrandt, T. S. (2001). The Sirte Basin Province of Libya – Sirte‐Zelten total petroleum system. Denver, CO: United States Geological Survey. US Geological Survey Bulletin 2202‐F.
  3. Allaby, M. (2013). A dictionary of geology & earth sciences (4th ed.). Oxford, UK: Oxford University Press.
    [Google Scholar]
  4. Allen, M. B., Macdonald, D. I. M., Zhao, X., Vincent, S. J., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14, 951–972. https://doi.org/10.1016/s0264‐8172(97)00027‐5
    [Google Scholar]
  5. Anders, M. H., & Schlische, R. W. (1994). Overlapping faults, intrabasin highs, and the growth of normal faults. The Journal of Geology, 102, 165–179. https://doi.org/10.1086/629661
    [Google Scholar]
  6. Anell, I., Thybo, H., & Artemieva, I. M. (2009). Cenozoic uplift and subsidence in the North Atlantic region: Geological evidence revisited. Tectonophysics, 474, 78–105. https://doi.org/10.1016/j.tecto.2009.04.006
    [Google Scholar]
  7. Banks, G., Bernstein, S., Salehi, S., Guarnieri, P., Bird, D., Hamblett, C., … Foster, D. (2019). Liverpool Land Basement High, Greenland: Visualising inputs for fractured crystalline basement reservoir models. Geological Survey of Denmark and Greenland Bulletin, 43, e2019430204. https://doi.org/10.34194/GEUSB‐201943‐02‐04
    [Google Scholar]
  8. Banks, G. J., Walter, B. F., Marks, M. A., & Siegfried, P. R. (2019). A workflow to define, map and name a carbonatite‐ or alkaline igneous‐associated REE‐HFSE mineral system: A case study from SW Germany. Minerals, 9(2), 97. https://doi.org/10.3390/min9020097
    [Google Scholar]
  9. Barr, D.(1987). Structural stratigraphic models for extensional basins of half‐graben type. Journal of Structural Geology, 9, 491–500. https://doi.org/10.1016/0191‐8141(87)90124‐6
    [Google Scholar]
  10. Behrendt, J. C., & Wotorson, C. S. (1970). Aeromagnetic and gravity investigations of the coastal area and continental shelf of Liberia, West Africa, and their relation to continental drift. Geological Society of America Bulletin, 81, 3563–3574. https://doi.org/10.1130/0016‐7606(1970)81[3563:AAGIOT]2.0.CO;2
    [Google Scholar]
  11. Belaidi, A., Bonter, D. A., Slightam, C., & Trice, R. C. (2016). The Lancaster Field: Progress in opening the UK's fractured basement play. Geological Society, London, Petroleum Geology Conference Series, 8, 385–398. https://doi.org/10.1144/pgc8.20
    [Google Scholar]
  12. Blake, M. C., Campbell, R. H., Dibblee, T. W., Howell, D. G., Nilsen, T. H., Normark, W. R., … Silver, E. A. (1978). Neogene basin formation in relation to plate‐tectonic evolution of San Andreas fault system, California. AAPG Bulletin, 62, 344–372. https://doi.org/10.1306/c1ea484c‐16c9‐11d7‐8645000102c1865d
    [Google Scholar]
  13. Bluck, B. J., Gibbons, W., & Ingham, J. K. (1992) Terranes. In J. C. W.Cope, J. K.Ingham, & P. F.Rawson (Eds.), Atlas of palaeogeography and lithofacies (Vol. 13, pp. 1–4). London, UK: Memoirs of the Geological Society of London.
    [Google Scholar]
  14. Bonter, D. (2014). Employing conventional modelling software to evaluate fractured basement reservoirs. Presentation at the SIS Global Forum, Barcelona, Spain, April 2014. Retrieved from https://www.hurricaneenergy.com/download_file/force/398/258
    [Google Scholar]
  15. Bonter, D., & Singh, K. (2017). Real time data interpretation and integration leads to significant resource volume increase in Lancaster fractured basement field West of Shetland. Presentation at the Devex 2017 conference, 9–10 May, Aberdeen, UK.
    [Google Scholar]
  16. Borge, H.(2002). Modelling generation and dissipation of overpressure in sedimentary basins: An example from the Halten Terrace, offshore Norway. Marine and Petroleum Geology, 19, 377–388. https://doi.org/10.1016/s0264‐8172(02)00023‐5
    [Google Scholar]
  17. Boyer, S., & Elliott, D. (1982). Thrust systems. AAPG Bulletin, 66, 1196–1230.
    [Google Scholar]
  18. Bruvoll, V., Kristoffersen, Y., Coakley, B. J., Hopper, J. R., Planke, S., & Kandilarov, A. (2012). The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean. Tectonophysics, 514, 123–145. https://doi.org/10.1016/j.tecto.2011.10.015
    [Google Scholar]
  19. Buckley, J. P., Bosence, D., & Elders, C. (2015). Tectonic setting and stratigraphic architecture of an Early Cretaceous lacustrine carbonate platform, Sugar Loaf High, Santos Basin, Brazil. In D. W. J.Bosence, K. A.Gibbons, D. P. Le Heron, W. A.Morgan, T.Pritchard, & B. A.Vining (Eds.), Microbial carbonates in space and time: Implications for global exploration and production (Vol. 418, pp. 175–191). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  20. Burgess, J. D.(1974). Microscopic examination of kerogen (dispersed organic matter) in petroleum exploration. Geological Society of America Special Papers, 153, 19–30. https://doi.org/10.1130/spe153‐p19
    [Google Scholar]
  21. Butcher, N. E. (1962). The tectonic structure of the Malvern Hills. Proceedings of the Geologists' Association, 73, 103–123. https://doi.org/10.1016/s0016‐7878(62)80020‐0
    [Google Scholar]
  22. Carney, J. (2000). Igneous processes within late Precambrian volcanic centres near Whitwick, northwestern Charnwood Forest. Mercian Geologist, 15, 7–28.
    [Google Scholar]
  23. Coney, P. J. (1980a). Introduction. In M. D.Crittenden, P. J.Coney, & G. H.Davis (Eds.), Cordilleran metamorphic core complexes (Vol. 153, pp. 3–6). Boulder, CO: Memoirs: Geological Society of America.
    [Google Scholar]
  24. Coney, P. J. (1980b). Cordilleran metamorphic core complexes: An overview. In M. D.Crittenden, P. J.Coney, & G. H.Davis (Eds.), Cordilleran metamorphic core complexes (Vol. 153, pp. 7–31). Boulder, CO: Memoirs: Geological Society of America.
    [Google Scholar]
  25. Conti, S., Fontana, D., Mecozzi, S., Panieri, G., & Pini, G. A. (2010). Late Miocene seep‐carbonates and fluid migration on top of the Montepetra intrabasinal high (Northern Apennines, Italy): Relations with synsedimentary folding. Sedimentary Geology, 231(1–2), 41–54. https://doi.org/10.1016/j.sedgeo.2010.08.001
    [Google Scholar]
  26. Cooper, A. K., Davey, F. J., & Cochrane, G. R. (1987). Structure of extensionally rifted crust beneath the western Ross Sea and Iselin Bank, Antarctica, from sonobuoy seismic data. In A. K.Cooper & F. J.Davey (Eds.), The Antarctic continental margin: Geology and geophysics of the western Ross Sea (pp. 93–117). CPCEMR Earth Science Series 5B. Houston, TX: Circum Pacific Council for Energy and Mineral Resources (US Department of the Interior).
    [Google Scholar]
  27. Crittenden, M. D., Coney, P. J., & Davis, G. H. (Eds.). (1980). Cordilleran metamorphic core complexes. Boulder, CO: Geological Society of America Memoirs, 153 p.
    [Google Scholar]
  28. Cuong, T., & Warren, J. (2009). Bach ho field, a fractured granitic basement reservoir, Cuu Long Basin, offshore SE Vietnam: A “buried‐hill” play. Journal of Petroleum Geology, 32, 129–156. https://doi.org/10.1111/j.1747‐5457.2009.00440.x
    [Google Scholar]
  29. Dallmeyer, R. D., Johansson, L., & Möller, C. (1992). Chronology of Caledonian high‐pressure granulite‐facies metamorphism, uplift, and deformation within northern parts of the Western Gneiss Region, Norway. Geological Society of America Bulletin, 104(4), 444–455. https://doi.org/10.1130/0016‐7606(1992)104<0444:COCHPG>2.3.CO;2
    [Google Scholar]
  30. De Paola, N., Holdsworth, R. E., McCaffrey, K. J. W., & Barchi, M. R. (2005). Partitioned transtension: An alternative to basin inversion models. Journal of Structural Geology, 27, 607–625. https://doi.org/10.1016/j.jsg.2005.01.006
    [Google Scholar]
  31. Decelles, P. G., & Giles, K. A. (1996). Foreland basins. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  32. Dennis, J. G. (Ed.). (1967). International tectonic dictionary (Vol. 7). Tulsa, OH: Memoir: American Association of Petroleum Geologists, 196 pp.
    [Google Scholar]
  33. Dewey, J. F.(1988). Extensional collapse of orogens. Tectonics, 7, 1123–1139. https://doi.org/10.1029/TC007i006p01123
    [Google Scholar]
  34. Dickinson, W. R. (1979). Mesozoic forearc basin in central Oregon. Geology, 7, 166–170. https://doi.org/10.1130/0091‐7613(1979)7<166:MFBICO>2.0.CO;2
    [Google Scholar]
  35. Diller, J. S. (1886). Notes on the geology of northern California. Washington, DC: USGS Bulletin, 33 pp.
    [Google Scholar]
  36. Dinter, D. A., & Royden, L. (1993). Late Cenozoic extension in northeastern Greece: Strymon Valley detachment system and Rhodope metamorphic core complex. Geology, 21, 45–48. https://doi.org/10.1130/0091‐7613(1993)021<0045:LCEING>2.3.CO;2
    [Google Scholar]
  37. Donofrio, R. R. (2002). Impact craters: Implications for basement hydrocarbon production. Journal of Petroleum Geology, 3, 279–302. https://doi.org/10.1306/bf9ab5c9‐0eb6‐11d7‐8643000102c1865d
    [Google Scholar]
  38. Doré, A. G., & Jensen, L. N. (1996). The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: Offshore Norway and some other uplifted basins. Global and Planetary Change, 12, 415–436. https://doi.org/10.1016/0921‐8181(95)00031‐3
    [Google Scholar]
  39. Dunkl, I., Grasemann, B., & Frisch, W. (1998). Thermal effects of exhumation of a metamorphic core complex on hanging wall syn‐rift sediments: An example from the Rechnitz Window, Eastern Alps. Tectonophysics, 297, 31–50. https://doi.org/10.1016/S0040‐1951(98)00162‐0
    [Google Scholar]
  40. Dutro, J. T., Brosge, W. P., Lanphere, M. A., & Reiser, H. N. (1976). Geologic significance of Doonerak structural high, Central Brooks Range, Alaska. AAPG Bulletin, 60, 952–961. https://doi.org/10.1306/c1ea35e6‐16c9‐11d7‐8645000102c1865d
    [Google Scholar]
  41. Egan, S. S. (1992). The flexural isostatic response of the lithosphere to extensional tectonics. Tectonophysics, 202, 291–308. https://doi.org/10.1016/0040‐1951(92)90115‐M
    [Google Scholar]
  42. El Sharawy, M. (2015). Fractured basement reservoir identification using geophysical well log data, Gulf of Suez, Egypt. Advances in Applied Science Research, 6, 17–35.
    [Google Scholar]
  43. Faure, M., Lardeaux, J. M., & Ledru, P. (2009). A review of the pre‐Permian geology of the Variscan French Massif Central. Comptes Rendus Geoscience, 341, 202–213. https://doi.org/10.1016/j.crte.2008.12.001
    [Google Scholar]
  44. Fazlikhani, H., Fossen, H., Gawthorpe, R. L., Faleide, J. I., & Bell, R. E. (2017). Basement structure and its influence on the structural configuration of the northern North Sea rift. Tectonics, 36, 1151–1177. https://doi.org/10.1002/2017TC004514
    [Google Scholar]
  45. Fjeldskaar, W., Helset, H. M., Johansen, H., Grunnaleite, I., & Horstad, I. (2008). Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: Implications for vitrinite reflectance and hydrocarbon maturation. Basin Research, 20, 143–159. https://doi.org/10.1111/j.1365‐2117.2007.00347.x
    [Google Scholar]
  46. Fossen, H., Hesthammer, J., & Johansen, T. E. & Sygnabere, T. O. (2003). Structural geology of the Huldra Field, northern North Sea – Major tilted fault block at the eastern edge of the Horda Platform. Marine and Petroleum Geology, 20, 1105–1118. https://doi.org/10.1016/j.marpetgeo.2003.07.003
    [Google Scholar]
  47. Garbarino, C., Naitza, S., Tocco, S., Farci, A., & Rayner, J. (2003). Orogenic gold in the Paleozoic basement of SE Sardinia (Italy). 7th biennial meeting, Society for Geology Applied to Mineral Deposits, Mineral exploration and sustainable development, Athens,1, 767–770.
  48. Garzione, C. N., McQuarrie, N., Perez, N. D., Ehlers, T. A., Beck, S. L., Kar, N., … Horton, B. K. (2017). Tectonic evolution of the central Andean Plateau and implications for the growth of plateaus. Annual Review of Earth and Planetary Sciences, 45, 529–559. https://doi.org/10.1146/annurev‐earth‐063016‐020612
    [Google Scholar]
  49. Gessner, K., Collins, A. S., Ring, U., & Güngör, T. (2004). Structural and thermal history of poly‐orogenic basement: U‐Pb geochronology of granitoid rocks in the southern Menderes Massif, Western Turkey. Journal of the Geological Society, 161, 93–101. https://doi.org/10.1144/0016‐764902‐166
    [Google Scholar]
  50. Gibbs, A. D. (1984). Structural evolution of extensional basin margins. Journal of the Geological Society, 141, 609–620. https://doi.org/10.1144/gsjgs.141.4.0609
    [Google Scholar]
  51. Gibson, R. G. (1994). Fault‐zone seals in siliciclastic strata of the Columbus Basin, Offshore Trinidad. AAPG Bulletin, 78, 1372–1385. https://doi.org/10.1306/a25feca7‐171b‐11d7‐8645000102c1865d
    [Google Scholar]
  52. Grant, S., Milton, N., & Thompson, M. (1996). Play fairway analysis and risk mapping: An example using the Middle Jurassic Brent Group in the northern North Sea. In A. G.Doré & R.Sinding‐Larsen (Eds.), Quantification and prediction of hydrocarbon resources (Vol. 6, pp. 167–181), Special Publication Norwegian Petroleum Society. Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  53. Grogan, P., Østvedt‐Ghazi, A. M., Larssen, G. B., Fotland, B., Nyberg, K., Dahlgren, S., & Eidvin, T. (1999). Structural elements and petroleum geology of the Norwegian sector of the northern Barents Sea. In A. J.Fleet & S. A. R.Boldy (Eds.), Petroleum geology of northwest Europe: Proceedings of the 5th conference (pp. 247–259). London, UK: The Geological Society.
    [Google Scholar]
  54. Hajnorouzi, N., Pourkemani, M., & Maleki, Z. (2016). Hydrocarbon trap and folding style of the Pishvar Anticline, Sub‐Coastal Fars, Zagros. Open Journal of Geology, 6, 376–386. https://doi.org/10.4236/ojg.2016.66033
    [Google Scholar]
  55. Harding, T. P. (1985). Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. AAPG Bulletin, 69, 582–600. https://doi.org/10.1306/ad462538‐16f7‐11d7‐8645000102c1865d
    [Google Scholar]
  56. Hayes, J. B. (1991). Porosity evolution of sandstones related to vitrinite reflectance. Organic Geochemistry, 17, 117–129. https://doi.org/10.1016/0146‐6380(91)90070‐z
    [Google Scholar]
  57. Hennings, P., Allwardt, P., Paul, P., Zahm, C. K., Reid, R., Alley, H., … Hough, E. (2012). Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia. AAPG Bulletin, 96, 753–772. https://doi.org/10.1306/08161109084
    [Google Scholar]
  58. Hills, E. S. (1940). Outlines of structural geology (p. 182). London, UK: Methuen.
    [Google Scholar]
  59. Himmerkus, F., Reischmann, T., & Kostopoulos, D. (2009). Serbo‐Macedonian revisited: A Silurian basement terrane from northern Gondwana in the Internal Hellenides, Greece. Tectonophysics, 473, 20–35. https://doi.org/10.1016/j.tecto.2008.10.016
    [Google Scholar]
  60. Hinz, K. (1972). The seismic crustal structure of the Norwegian continental margin in the Vøring Plateau, in the Norwegian deep sea and on the eastern flank of the Jan Mayen Ridge between 66 and 58°N (Vol. 8, pp. 28–37). Montreal, Canada: International Geological Congress.
    [Google Scholar]
  61. Hitzman, M. W., & Valenta, R. K. (2005). Uranium in iron oxide‐copper‐gold (IOCG) systems. Economic Geology, 100, 1657–1661. https://doi.org/10.2113/gsecongeo.100.8.1657
    [Google Scholar]
  62. Horstad, I., Larter, S. R., & Mills, N. (1995). Migration of hydrocarbons in the Tampen Spur area, Norwegian North Sea: A reservoir geochemical evaluation. In J. M.Cubitt & W. A.England (Eds.), The geochemistry of reservoirs (Vol. 86, pp. 159–183). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  63. Hung, N. D., & Le, H. V. (2004). Petroleum geology of Cuu Long Basin – Offshore Vietnam. Search and Discovery Article #10062. Retrieved from http://www.searchanddiscovery.com/documents/2004/hung/
    [Google Scholar]
  64. Hurricane Energy
    Hurricane Energy . (2015). The Lancaster Field: Progress in opening the UK's fractured basement play. Presentation at 8th Conference on the Petroleum Geology of NW Europe, 30th September 2015, Geological Society of London, London, UK.
    [Google Scholar]
  65. Hurricane Energy
    Hurricane Energy . (2018). Establishing, predicting and modelling the hydrodynamic fracture network of basement reservoirs during the exploration and early appraisal phase: A case study from the West of Shetland. In Conference presentation at: Finding Petroleum Understanding Fractured Reservoirs & Rock, The Geological Society of London. 23rd January 2018. Retrived from http://www.findingpetroleum.com/video/Hurricane‐Energy/Dr‐Robert‐Trice/2007.aspx
    [Google Scholar]
  66. Hurricane Energy
    Hurricane Energy . (2019a). Assets webpage. Retrieved from https://www.hurricaneenergy.com/assets/
    [Google Scholar]
  67. Hurricane Energy
    Hurricane Energy . (2019b). Rona Ridge basement play update. Presentation at the American Association of Petroleum Geologists Prospect and Property Expo, Appex, 5th March 2019. Retrieved from https://www.hurricaneenergy.com/download_file/force/454/258
    [Google Scholar]
  68. Hurricane Energy
    Hurricane Energy . (2019c). Corporate presentation Q1 2019. Retrieved from https://www.hurricaneenergy.com/investors/presentations
    [Google Scholar]
  69. Jackson, C. A. L., Gawthorpe, R. L., Leppard, C. W., & Sharp, I. R. (2006). Rift‐initiation development of normal fault blocks: Insights from the Hammam Faraun fault block, Suez Rift, Egypt. Journal of the Geological Society, 163(1), 165–183. https://doi.org/10.1144/0016‐764904‐164
    [Google Scholar]
  70. Jackson, J., & McKenzie, D. (1983). The geometrical evolution of normal fault systems. Journal of Structural Geology, 5, 471–482. https://doi.org/10.1016/0191‐8141(83)90053‐6
    [Google Scholar]
  71. Jaswal, T. M., Lillie, R. J., & Lawrence, R. D. (1997). Structural and evolution of the Northern Potwar Deformation Zone, Pakistan. AAPG Bulletin, 81, 308–328. https://doi.org/10.1306/522b431b‐1727‐11d7‐8645000102c1865d
    [Google Scholar]
  72. Jordan, T. E., & Allmendinger, R. W. (1986). The Sierras Pampeanas of Argentina; a modern analogue of Rocky Mountain foreland deformation. American Journal of Science, 286, 737–764. https://doi.org/10.2475/ajs.286.10.737
    [Google Scholar]
  73. Kane, K. E., Jackson, C. A. L., & Larsen, E. (2010). Normal fault growth and fault‐related folding in a salt‐influenced rift basin: South Viking Graben, offshore Norway. Journal of Structural Geology, 32, 490–506. https://doi.org/10.1016/j.jsg.2010.02.005
    [Google Scholar]
  74. Kauffman, E. G., & Steidtmann, J. R. (1981). Are these the oldest metazoan trace fossils?Journal of Paleontology, 55, 923–947.
    [Google Scholar]
  75. Kley, J. (2018) Timing and spatial patterns of Cretaceous and Cenozoic inversion in the Southern Permian Basin. In B.Kilhams, P. A.Kukla, T.McKie, H. F.Mijnlieff, & K. Van Ojik (Eds.), Mesozoic Resource Potential in the Southern Permian Basin (Vol. 469, pp. 19–31). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  76. Klusman, R. W. (2006). Detailed compositional analysis of gas seepage at the National Carbon Storage Test Site, Teapot Dome, Wyoming, USA. Applied Geochemistry, 21, 1498–1521. https://doi.org/10.1016/j.apgeochem.2006.06.009
    [Google Scholar]
  77. Koning, T. (2003). Oil and gas production from basement reservoirs: Examples from Indonesia, USA and Venezuela. In N.Petford & K. J. W.McCaffrey (Eds.), Hydrocarbons in crystalline rocks (Vol. 214, pp. 83–92). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  78. Koning, T., & Darmono, F. X. (1984). The geology of the Beruk Northeast Field, Central Sumatra: Oil production from pre‐tertiary basement rocks. Indonesian Petroleum Association, 13th Annual Convention Proceedings, 1, 385–406. https://doi.org/10.29118/ipa.1399.385.406
    [Google Scholar]
  79. Lahtinen, R. (2012). Main geological features of Fennoscandia. Geological Survey of Finland, Special Paper, 53, 13–18.
    [Google Scholar]
  80. Landes, K. K., Amoruso, J. J., Charlesworth, L. J., Heany, F., & Lesperance, P. J. (1960). Petroleum resources in basement rocks. AAPG Bulletin, 44, 1682–1691. https://doi.org/10.1306/0bda622d‐16bd‐11d7‐8645000102c1865d
    [Google Scholar]
  81. Larsen, M., Rasmussen, T., & Hjelm, L. (2010). Cretaceous revisited: Exploring the syn‐rift play of the Faroe–Shetland Basin. Geological Society, London, Petroleum Geology Conference Series, 7(1), 953–962. https://doi.org/10.1144/0070953
    [Google Scholar]
  82. Lee, G. H., Kwon, Y. I., Yoon, C. S., Kim, H. J., & Yoo, H. S. (2006). Igneous complexes in the eastern Northern South Yellow Sea Basin and their implications for hydrocarbon systems. Marine and Petroleum Geology, 23, 631–645. https://doi.org/10.1016/j.marpetgeo.2006.06.001
    [Google Scholar]
  83. Lee, Y. D. E., & George, R. Y. (2004). High‐resolution geological AUV survey results across a portion of the eastern Sigsbee Escarpment. AAPG Bulletin, 88, 747–764. https://doi.org/10.1306/01260404011
    [Google Scholar]
  84. Leeder, M. R., & Gawthorpe, R. L. (1987). Sedimentary models for extensional tilt‐block/half‐graben. In M. P.Coward, J. F.Dewey, & P. L.Hancock (Eds.), Continental extensional tectonics (Vol. 28, pp. 139–152). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  85. Leith, C. K.(1923). Structural geology. New York, NY: Holt.
    [Google Scholar]
  86. Losh, S., Eglinton, L., Schoell, M., & Wood, J. (1999). Vertical and lateral fluid flow related to a large growth fault, South Eugene Island Block 330 Field, Offshore Louisiana. AAPG Bulletin, 83, 244–276. https://doi.org/10.1306/00aa9a5c‐1730‐11d7‐8645000102c1865d
    [Google Scholar]
  87. Lu, S., Zhao, G., Wang, H., & Hao, G. (2008). Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160, 77–93. https://doi.org/10.1016/j.precamres.2007.04.017
    [Google Scholar]
  88. Lundmark, A. M., Sæther, T., & Sørlie, R. (2013). Ordovician to Silurian magmatism on the Utsira High, North Sea: Implications for correlations between the onshore and offshore Caledonides. In F.Corfu, D.Gasser, & D. M.Chew (Eds.), New perspectives on the Caledonides of Scandinavia and related areas (Vol. 390, pp. 513–523). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  89. Mack, G. H., Seager, W. R., & Leeder, M. R. (2003). Synclinal‐horst basins: Examples from the southern Rio Grande rift and southern transition zone of southwestern New Mexico, USA. Basin Research, 15, 365–377. https://doi.org/10.1046/j.1365‐2117.2003.00212.x
    [Google Scholar]
  90. Maluski, H., Rajlich, P., & Matte, P. (1993). 40Ar‐39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics, 223, 313–337. https://doi.org/10.1016/0040‐1951(93)90143‐8
    [Google Scholar]
  91. Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco, CA: W.H Freeman, 460 pp.
    [Google Scholar]
  92. Mandl, G. (1987). Tectonic deformation by rotating parallel faults: The “bookshelf” mechanism. Tectonophysics, 141, 277–316. https://doi.org/10.1016/0040‐1951(87)90205‐8
    [Google Scholar]
  93. Marshak, S., Tinkham, D., Alkmim, F., Bruekner, H., & Bornhorst, T. (1997). Dome‐and‐keel provinces formed during Paleoproterozoic orogenic collapse‐core complexes, diapirs, or neither?: Examples from the Quadrilátero Ferrífero and the Penokean orogen. Geology, 25, 415–418. https://doi.org/10.1130/0091‐7613(1997)025<0415:DAKPFD>2.3.CO;2
    [Google Scholar]
  94. McClay, K., & Bonora, M. (2001). Analog models of restraining stepovers in strike‐slip fault systems. AAPG Bulletin, 85, 233–260. https://doi.org/10.1306/8626c7ad‐173b‐11d7‐8645000102c1865d
    [Google Scholar]
  95. McCuaig, T., Scarselli, S., O'Connor, T., Busuttil, S., & McCormack, N. (2018). The power of a systems approach to mineral and petroleum exploration in sedimentary basins. In R.Arribas, M.Antonio, & J. L.Mauk (Eds.), Metals, minerals, and society (Vol. 21, pp. 39–62). London, UK: Special Publication: Society of Economic Geology.
    [Google Scholar]
  96. Mckenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821x(78)90071‐7
    [Google Scholar]
  97. McLeod, A. E., Underhill, J. R., Davies, S. J., & Dawers, N. H. (2002). The influence of fault array evolution on synrift sedimentation patterns: Controls on deposition in the Strathspey‐Brent‐Statfjord half graben, northern North Sea. AAPG Bulletin, 86, 1061–1094. https://doi.org/10.1306/61eedc24‐173e‐11d7‐8645000102c1865d
    [Google Scholar]
  98. Mcquarrie, N. (2004). Crustal scale geometry of the Zagros fold–thrust belt, Iran. Journal of Structural Geology, 26, 519–535. https://doi.org/10.1016/j.jsg.2003.08.009
    [Google Scholar]
  99. Miller, J. F., & Mitra, S. (2011). Deformation and secondary faulting associated with basement‐involved compressional and extensional structures. AAPG Bulletin, 95, 675–689. https://doi.org/10.1306/09131010007
    [Google Scholar]
  100. Mohede, H., Malick, K. M., & Tyberoe, G. (2014). Suban – South Sumatra giant fractured gas reservoir development and challenges. Proceedings, Indonesian Petroleum Association Thirty‐Eighth Annual Convention & Exhibition.
    [Google Scholar]
  101. Moore, T. E., Grantz, A., Pitman, J. K., & Brown, P. J. (2011). Chapter 49 A first look at the petroleum geology of the Lomonosov Ridge microcontinent, Arctic Ocean. Geological Society, London, Memoirs, 35, 751–769. https://doi.org/10.1144/m35.49
    [Google Scholar]
  102. Morley, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. In J. J.Lambiase (Ed.), Hydrocarbon habitat in rift basins (Vol. 80, pp. 1–32). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  103. Morley, C. K., Ionnikoff, Y., Pinyochon, N., & Seusutthiya, K. (2007). Degradation of a footwall fault block with hanging‐wall fault propagation in a continental‐lacustrine setting: How a new structural model impacted field development plans, the Sirikit field, Thailand. AAPG Bulletin, 91(11), 1637–1661. https://doi.org/10.1306/06280707014
    [Google Scholar]
  104. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African Rift System and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74, 1234–1253. https://doi.org/10.1306/0c9b2475‐1710‐11d7‐8645000102c1865d
    [Google Scholar]
  105. Muñoz‐Barrera, J. M., Henstra, G., Kristensen, T., Gawthorpe, R., & Rotevatn, A. (in review). The role of structural inheritance in the development of necking breakaway faults complexes in passive margins: the Klakk Fault complex, Frøya High, offshore Mid‐Norway. Tectonics, in review.
    [Google Scholar]
  106. Naidu, B. S., Burley, S. D., Dolson, J., Farrimond, P., Sunder, V. R., Kothari, V., & Mohapatra, P. (2017). Hydrocarbon generation and migration modeling in the Barmer Basin of Western Rajasthan, India: Lessons for exploration in rift basins with late stage inversion, uplift and tilting. In M. A.AbuAli, I.Moretti, & H. M.Nordgård Bolås (Eds.), Petroleum systems analysis (Vol. 114, pp. 61–94), Tulsa, OH: Memoir: American Association of Petroleum Geologists.
    [Google Scholar]
  107. Nelson, R. A. (2001). Geologic analysis of naturally fractured reservoirs. Boston, MA: Gulf Professional Publishing, 352 pp.
    [Google Scholar]
  108. Nevin, C. M. (1931). Principles of structural geology. London, UK: Wiley. 303 pp.
    [Google Scholar]
  109. Nielsen, L.‐H., Petersen, H. I., Dybkjær, K., & Surlyk, F. (2010). Lake‐mire deposition, earthquakes and wildfires along a basin margin fault; Rønne Graben, Middle Jurassic, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 103–126. https://doi.org/10.1016/j.palaeo.2010.03.032
    [Google Scholar]
  110. Nunziata, C., & Rapolla, A. (1987). A gravity and magnetic study of the volcanic island of Ischia, Naples (Italy). Journal of Volcanology and Geothermal Research, 31, 333–344. https://doi.org/10.1016/0377‐0273(87)90076‐x
    [Google Scholar]
  111. Nuzzo, M., McBride, R., Neale, L., Wingfield, A., Farrimond, P., Slightam, C., & Trice, R. (2018). Charging and connectivity of fractured basement reservoirs in the West of Shetland (North Atlantic, UK) – Insights from oil geochemistry studies. Search and discovery article #51545.
  112. Nystuen, J. P. (Ed.). (1989). Rules and recommendations for naming geological units in Norway. Norwegian Journal of Geology, 69(Supplement), 2.
    [Google Scholar]
  113. Ocamb, R. D. (1961). Growth faults of South Louisiana. Gulf Coast Association of Geological Societies Transactions, 11, 139–176.
    [Google Scholar]
  114. Olsen, H., Briedis, N. A., & Renshaw, D. (2017). Sedimentological analysis and reservoir characterization of a multi‐darcy, billion barrel oil field – The Upper Jurassic shallow marine sandstones of the Johan Sverdrup field, North Sea, Norway. Marine and Petroleum Geology, 84, 102–134. https://doi.org/10.1016/j.marpetgeo.2017.03.029
    [Google Scholar]
  115. P'an, C. H. (1982). Petroleum in basement rocks. AAPG Bulletin, 66, 1597–1643. https://doi.org/10.1306/03b5a994‐16d1‐11d7‐8645000102c1865d
    [Google Scholar]
  116. Peacock, D. C. P., Knipe, R. J., & Sanderson, D. J. (2000). Glossary of normal faults. Journal of Structural Geology, 22, 291–305. https://doi.org/10.1016/s0191‐8141(00)80102‐9
    [Google Scholar]
  117. Peacock, D. C. P., & Sanderson, D. J. (2018). Structural analyses and fracture network characterisation: Seven pillars of wisdom. Earth Science Reviews, 184, 13–28. https://doi.org/10.1016/j.earscirev.2018.06.006
    [Google Scholar]
  118. Pollastro, R. M., Jarvie, D. M., Hill, R. J., & Adams, C. W. (2007). Geologic framework of the Mississippian Barnett Shale, Barnett‐Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas. AAPG Bulletin, 91, 405–436. https://doi.org/10.1306/10300606008
    [Google Scholar]
  119. Poulimenos, G., & Doutsos, T. (1997). Flexural uplift of rift flanks in central Greece. Tectonics, 16, 912–923. https://doi.org/10.1029/97TC01658
    [Google Scholar]
  120. Price, R. A. (2002). Chapter 2. Cordilleran Tectonics and the evolution of the western Canada sedimentary basin. In G. D.Mossop & I.Shetsen (Eds.), Geological atlas of the western Canada sedimentary basin. Edmonton, Canada: Alberta Geological Survey.
    [Google Scholar]
  121. Putnis, A., Jamtveit, B., & Austrheim, H. (2018). Metamorphic processes and seismicity: The Bergen Arcs as a natural laboratory. Journal of Petrology, 58, 1–27.
    [Google Scholar]
  122. Ramm, M., Forsberg, A. W., & Jahren, J. S. (1997). Porosity‐depth trends in deeply buried Upper Jurassic reservoirs in the Norwegian Central Graben: An example of porosity preservation beneath the normal economic basement by grain‐coating microquartz. In J. A.Kupecz, J.Gluyas, & S.Bloch (Eds.), Reservoir quality prediction in sandstones and carbonates (Vol. 69, pp. 177–199). Tulsa, OH: Memoir: American Association of Petroleum Geologists.
    [Google Scholar]
  123. Ramsay, J. G. (1967). Folding and fracturing of rocks. New York, NY: McGraw‐Hill, 568 pp.
    [Google Scholar]
  124. Reemst, P., & Cloetingh, S. (2000). Polyphase rift evolution of the Vøring margin (mid‐Norway): Constraints from forward tectonostratigraphic modeling. Tectonics, 19, 225–240. https://doi.org/10.1029/1999TC900025
    [Google Scholar]
  125. Reid, H. F., Davis, W. M., Lawson, A. C., & Ransome, F. L. (1913). Report on the committee on the nomenclature of faults. Geological Society of America Bulletin, 24, 163–186. https://doi.org/10.1130/gsab‐24‐163
    [Google Scholar]
  126. Riber, L., Dypvik, H., & Sørlie, R. (2015). Altered basement rocks on the Utsira High and its surroundings, Norwegian North Sea. Norwegian Journal of Geology, 95, 57–89. https://doi.org/10.17850/njg95‐1‐04
    [Google Scholar]
  127. Ritzmann, O., & Faleide, J. I. (2007). Caledonian basement of the western Barents Sea. Tectonics, 26. https://doi.org/10.1029/2006TC002059
    [Google Scholar]
  128. Roberts, A. M., & Yielding, G. (1991). Deformation around basin‐margin faults in the north sea/mid‐Norway rift. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The geometry of normal faults (Vol. 56, pp. 61–78). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  129. Rodgers, D. A. (1980). Analysis of pull‐apart basin development produced by en echelon strike‐slip faults. In P. F.Balance & H. G.Reading (Eds.), Sedimentation in oblique‐slip mobile zones (Vol. 4, pp. 27–41). Oxford, UK: Special Publications of the International Association of Sedimentologists.
    [Google Scholar]
  130. Rønnevik, H. C., van den Bosch, W., & Bandlien, E. H. (1975). A proposed nomenclature for the main structural features in the Norwegian North Sea north of the central highs. Proceedings of the Norwegian Petroleum Society, 18, 1–16.
    [Google Scholar]
  131. Ross, G. M., Broome, J., & Miles, W. (2004). Chapter 4. Potential fields and basement structure – Western Canada Sedimentary Basin.In G. D.Mossop, & I.Shetsen (Eds.), Geological atlas of the western Canada sedimentary basin (pp. 41–47). Edmonton, Canada: Alberta Geological Survey.
    [Google Scholar]
  132. Roy, K. J. (1979). Hydrocarbon assessment using subjective probability and Monte Carlo methods. Methods and models for assessing energy resources, first International Institute for Applied Systems Analysis Conference on Energy Resources, May 20–21, 1975, 279–290.
    [Google Scholar]
  133. Royal Dutch Shell
    Royal Dutch Shell . (2013). Play based exploration: A guide for AAPG's imperial barrel award participants. Retrieved from https://iba.aapg.org/Portals/0/docs/iba/Play_Based_ExplorationGuide.pdf
    [Google Scholar]
  134. RPS Energy Consultants
    RPS Energy Consultants . (2017a). Evaluation of Lancaster field within license P.1368 on behalf of Hurricane Energy plc. Competent person's report, 84 pp. Retrieved from https://www.hurricaneenergy.com/application/files/4615/4210/4673/Hurricane_Lancaster_CPR_2May17_Issued.pdf
    [Google Scholar]
  135. RPS Energy Consultants
    RPS Energy Consultants . (2017b). Evaluation of west of shetland assets on behalf of Hurricane Energy plc. Competent person's report, 88 pp. Retrieved from https://www.hurricaneenergy.com/application/files/7315/4210/9823/Hurricane_RPS_CPR_11‐Dec‐17.pdf
    [Google Scholar]
  136. Ryan, R. J., Calder, J. H., Donohoe, H. V., & Naylor, R. (1987). Late Paleozoic sedimentation and basin development adjacent to the Cobequid Highlands Massif, Eastern Canada. In C.Beaumont & A. J.Tankard (Eds.), Sedimentary basins and basin‐forming mechanisms (Vol. 12, pp. 311–317). Calgary, Canada: Special Publications Canadian Society of Petroleum Geologists.
    [Google Scholar]
  137. Salah, M. G., & Alsharan, A. S. (1998). The Precambrian basement: A major reservoir in the rifted basin, Gulf of Suez. Journal of Petroleum Science and Engineering, 19, 201–222. https://doi.org/10.1016/S0920‐4105(97)00024‐7
    [Google Scholar]
  138. Santini, A.(2018). The importance of referencing. The Journal of Critical Care Medicine, 4, 3–4. https://doi.org/10.2478/jccm‐2018‐0002
    [Google Scholar]
  139. Schlager, W., & Camber, O. (1986). Submarine slope angles, drowning unconformities, and self‐erosion of limestone escarpments. Geology, 14, 762–765. https://doi.org/10.1130/0091‐7613(1986)14<762:SSADUA>2.0.CO;2
    [Google Scholar]
  140. Schlische, R. W. (1992). Structural and stratigraphic development of the Newark extensional basin, eastern North America: Evidence for the growth of the basin and its bounding structures. Geological Society of America Bulletin, 104(10), 1246–1263. https://doi.org/10.1130/0016‐7606(1992)104<1246:SASDOT>2.3.CO;2
    [Google Scholar]
  141. Selley, R. C.(1978). Porosity gradients in North Sea oil‐bearing sandstones. Journal of the Geological Society, 135, 119–132. https://doi.org/10.1144/gsjgs.135.1.0119
    [Google Scholar]
  142. Simpson, J. A., & Weiner, E. S. C. (1989). Oxford English Dictionary, 2nd Edition. Oxford, UK: Clarendon Press.
    [Google Scholar]
  143. Skilbrei, J. R., Olesen, O., Osmundsen, P. T., Kihle, O., Aaro, S., & Fjellanger, E. (2002). A study of basement structures and onshore‐offshore correlations in Central Norway. Norwegian Journal of Geology, 82, 263–279.
    [Google Scholar]
  144. Spark Exploration
    Spark Exploration . (2018). The Bader Prospect: Extending the basement play on the Rona Ridge. Presentation at the PESGB Prospect Fair, 12th December 2018.
    [Google Scholar]
  145. Spark Exploration
    Spark Exploration . (2019). The Bader Prospect: Extending the basement play on the Rona Ridge. Presentation at the PESGB Prospect Fair, 12th December 2018.
    [Google Scholar]
  146. Stewart, I. S., & Hancock, P. L. (1991). What is a fault scarp?Episodes, 13, 256–263. https://doi.org/10.18814/epiiugs/1990/v13i4/005
    [Google Scholar]
  147. Stočes, B., & White, C. H. (1935). Structural geology with special reference to economic deposits. London, UK: McMillan, 460 pp.
    [Google Scholar]
  148. Storti, F., Balsamo, F., Clemenzi, L., Mozafari, M., Al‐Kindy, M. H. N., Solum, J., … Tueckmantel, C. (2015). Complex fault‐fold interactions during the growth of the Jabal Qusaybah anticline at the western tip of the Salakh Arch, Oman. Tectonics, 34, 488–509. https://doi.org/10.1002/2014TC003725
    [Google Scholar]
  149. Sylvester, A. G., & Smith, R. R. (1976). Tectonic transpression and basement‐controlled deformation in San Andreas fault zone, Salton Trough, California. AAPG Bulletin, 60, 2081–2102. https://doi.org/10.1306/c1ea3a73‐16c9‐11d7‐8645000102c1865d
    [Google Scholar]
  150. Tillmans, F., Gawthorpe, R. L., Rotevatn, A., & Jackson, C. A. L. (in review). Strain perturbation at oblique rift segment boundaries: Northern North Sea, offshore Norway. Journal of Structural Geology.
    [Google Scholar]
  151. Tomasso, M., Underhill, J. R., Hodgkinson, R. A., & Young, M. J. (2008). Structural styles and depositional architecture in the Triassic of the Ninian and Alwyn North fields: Implications for basin development and prospectivity in the Northern North Sea. Marine and Petroleum Geology, 25, 588–605. https://doi.org/10.1016/j.marpetgeo.2007.11.007
    [Google Scholar]
  152. Treitel, S., Clement, W. G., & Kaul, R. K. (1971). The spectral determination of depths to buried magnetic basement rocks. Geophysical Journal International, 24, 415–428. https://doi.org/10.1111/j.1365‐246x.1971.tb02187.x
    [Google Scholar]
  153. Trewin, N. H., Fryberger, S. G., & Kreutz, H. (2003). The Auk Field, Block 30/16, UK North Sea. Geological Society, London, Memoirs, 20, 485–496. https://doi.org/10.1144/gsl.mem.2003.020.01.39
    [Google Scholar]
  154. Trice, R. (2014). Basement exploration, West of Shetlands: Progress in opening a new play on the UKCS. In S. J. C.Cannon & D.Ellis (Eds.), Hydrocarbon exploration to exploitation West of Shetlands (Vol. 397, pp. 81–105). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  155. Trice, R., Hiorth, C., & Holdsworth, R. (2019). Fractured basement play development on the UK and Norwegian rifted margins. In D.Chiarella, S. G.Archer, J. A.Howell, C. A. L.Jackson, H.Kombrink, & S.Patruno (Eds.), Cross‐border themes in Petroleum Geology II: Atlantic Margin and Barents Sea. London, UK: Special Publications Geological Society of London, 495 pp.
    [Google Scholar]
  156. Underhill, J., Sawyer, M. J., & Hodgson, P. (1997). Implications of fault scarp degradation for Brent Group prospectivity, Ninian Field, northern North Sea. AAPG Bulletin, 81, 999–1022. https://doi.org/10.1306/522b49bf‐1727‐11d7‐8645000102c1865d
    [Google Scholar]
  157. Van Hoorn, B. (1987). Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics, 137, 239–284. https://doi.org/10.1016/0040‐1951(87)90322‐2
    [Google Scholar]
  158. Velayatham, T., Holford, S. P., & Bunch, M. A. (2018). Ancient fluid flow recorded by remarkably long, buried pockmark trains observed in 3D seismic data, Exmouth Plateau, Northern Carnarvon Basin. Marine and Petroleum Geology, 95, 303–313. https://doi.org/10.1016/j.marpetgeo.2018.05.007
    [Google Scholar]
  159. Vendeville, B. C., Ge, H., & Jackson, M. P. A. (1995). Scale models of salt tectonics during basement‐involved extension. Petroleum Geoscience, 1, 179–183. https://doi.org/10.1144/petgeo.1.2.179
    [Google Scholar]
  160. Watson, M. P., Hayward, A. B., Parkinson, D. N., & Zhang, Z. M. (1987). Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 4, 205–225. https://doi.org/10.1016/0264‐8172(87)90045‐6
    [Google Scholar]
  161. Weissel, J. K., & Karner, G. D. (1989). Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. Journal of Geophysical Research, 94, 13919–13950. https://doi.org/10.1029/jb094ib10p13919
    [Google Scholar]
  162. Whipp, P. S., Jackson, C., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda Platform, Norwegian North Sea. Basin Research, 26, 523–549. https://doi.org/10.1111/bre.12050
    [Google Scholar]
  163. Wild, J., & Briedis, N. (2010). Structural and stratigraphic relationships of the Palaeocene mounds of the Utsira High. Basin Research, 22, 533–547. https://doi.org/10.1111/j.1365‐2117.2010.00479.x
    [Google Scholar]
  164. Wilkinson, J. J., Lonergan, L., Fairs, T., & Herrington, R. J. (1998). Fluid inclusion constraints on conditions and timing of hydrocarbon migration and quartz cementation in Brent Group reservoir sandstones, Columba Terrace, northern North Sea. In J. Parnell (Ed.), Dating and duration of fluid flow and fluid‐rock interaction (Vol. 144, pp. 69–89). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  165. Woodside, J., Mascle, J., Huguen, C., & Volkonskaia, A. (2000). The Rhodes Basin, a post‐Miocene tectonic trough. Marine Geology, 165, 1–12. https://doi.org/10.1016/s0025‐3227(99)00140‐1
    [Google Scholar]
  166. Wright, E. P. (1992). The hydrogeology of crystalline basement aquifers in Africa. In E. P.Wright & W. G.Burgess (Eds.), Hydrogeology of crystalline basement aquifers in Africa (Vol. 66, pp. 1–27). London, UK: Special Publications Geological Society of London.
    [Google Scholar]
  167. Yielding, G. (1990). Footwall uplift associated with Late Jurassic normal faulting in the northern North Sea. Journal of the Geological Society, 147, 219–222. https://doi.org/10.1144/gsjgs.147.2.0219
    [Google Scholar]
  168. Young, M. J., Gawthorpe, R. L., & Hardy, S. (2001). Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison‐Statfjord North Fault, northern North Sea. Journal of Structural Geology, 23, 1933–1952. https://doi.org/10.1016/S0191‐8141(01)00038‐4
    [Google Scholar]
  169. Ziegler, P. A., & Dèzes, P. (2007). Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Global and Planetary Change, 58, 237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12448
Loading
/content/journals/10.1111/bre.12448
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basement highs; basement plays; characterisation; geometries; origins

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error