1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Sedimentary geochemistry data demonstrated relatively juvenile, baslatic sources for the upper Kyalla Formation. Weathering of these source rocks resulted an increase of nutrient supply (e.g. phosphorous) to the basin, which further, enhanced the organic carbon productivity.

, Abstract

The Beetaloo Sub‐basin, northern Australia, is considered the main depocentre of the 1,000‐km scale Mesoproterozoic Wilton package of the greater McArthur Basin – the host to one of the oldest hydrocarbon global resources. The 1.40–1.31 Ga upper Roper Group and the latest Mesoproterozoic to early Neoproterozoic unnamed group of the Beetaloo Sub‐basin, together, record 500 million years of depositional history within the North Australia Craton. Whole‐rock shale Sm–Nd and Pb isotope data from these sediments reveal sedimentary provenance and their evolution from 1.35 to 0.85 Ga. Furthermore, these data, together with shale major/trace elements data from this study and pyrolysis data from previous publications, are used to develop a dynamic tectonic geography model that links the organic carbon production and burial to an enhanced weathering of nutrients from a large igneous province. The 1.35–1.31 Ga Kyalla Formation of the upper Roper Group is composed of isotopically evolved sedimentary detritus that passes up, into more isotopically juvenile Pb values towards the top of the formation. The increase in juvenile compositions coincides with elevated total organic carbon (TOC) contents of these sediments. The coherently enriched juvenile compositions and TOC the upper portions of the Kyalla Formation are interpreted to reflect an increase in nutrient supply associated with the weathering of basaltic sources (e.g. phosphorous). Possible, relatively juvenile, basaltic sources include the Wankanki Supersuite in the western Musgraves and the Derim Derim–Galiwinku large igneous province (LIP). The transition into juvenile, basaltic sources directly before a supersequence‐bounding unconformity is here interpreted to reflect uplift and erosion of the Derim Derim–Galiwinku LIP, rather than an influx of southern Musgrave sources. A new baddeleyite crystallisation age of 1,312.9 ± 0.7 Ma provides both a tight constraint on the age of this LIP, along with its associated magmatic uplift, as well as providing a minimum age constraint for Roper Group deposition. The unconformably overlying lower and upper Jamison sandstones are at least 300 million years younger than the Kyalla Formation and were sourced from the Musgrave Province. An up‐section increase in isotopically juvenile compositions seen in these rocks is interpreted to document the progressive exhumation of the western Musgrave Province. The overlying Hayfield mudstone received detritus from both the Musgrave and Arunta regions, and its isotopic geochemistry reveals affinities with other early Neoproterozoic basins (e.g. Amadeus, Victoria and Officer basins), indicating the potential for inter‐basin correlations.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12450
2020-11-22
2024-03-28
Loading full text...

Full text loading...

References

  1. Abbott, S. T., & Sweet, I. P. (2000). Tectonic control on third‐order sequences in a siliciclastic ramp‐style basin: An example from the Roper Superbasin (Mesoproterozoic), northern Australia. Australian Journal of Earth Sciences, 47(3), 637–657. https://doi.org/10.1046/j.1440‐0952.2000.00795.x
    [Google Scholar]
  2. Abbott, S. T., Sweet, I. P., Plumb, K. A., Young, D. N., Cutovinos, A., Ferenczi, P. A., & Pietsch, B. A. (2001). Roper Region: Urapunga and Roper River Special, Northern Territory (Second Edition; 1:250 000 geological map series explanatory notes). Northern Territory Geological Survey and Geoscience Australia. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81859.
    [Google Scholar]
  3. Ahmad, M., & Munson, T. J. (2013). Northern Territory Geological Survey, Geology and mineral resources of the Northern Territory, Special Publication 5. Northern Territory Geological Survey., https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81446
    [Google Scholar]
  4. Anbar, A. D., & Knoll, A. H. (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge?Science, 297(5584), 1137–1142. https://doi.org/10.1126/science.1069651
    [Google Scholar]
  5. Betts, P., Armit, R., & Ailleres, L. (2015). Potential‐field interpretation mapping of the greater McArthur Basin. PGN Geoscience Report 15/2014: in Geophysical and structural interpretation of the greater McArthur Basin. Northern Territory Geological Survey, Digital Information Package DIP 015. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81754
    [Google Scholar]
  6. Brantley, S. L., Kubicki, J. D., & White, A. F. (2008). Kinetics of water‐rock interaction. New York: Springer. https://doi.org/10.1007/978‐0‐387‐73563‐4
    [Google Scholar]
  7. Carson, C. J. (2013). The Victoria and Birrindudu Basins, Victoria River Region, Northern Territory, Australia: A SHRIMP U‐Pb detrital zircon and Sm–Nd study. Journal of the Geological Society of Australia, 60(2), 175–196. https://doi.org/10.1080/08120099.2013.772920
    [Google Scholar]
  8. Champion, D. C. (2013). Neodymium depleted mantle model age map of Australia: Explanatory notes and user guide. Geoscience Australia, Record 2013/44. https://doi.org/10.11636/Record.2013.044
    [Google Scholar]
  9. Close, D. F. (2014). The McArthur Basin: NTGS’ approach to a frontier petroleum basin with known base metal prospectivity. Annual Geoscience Exploration Seminar (AGES) Proceedings, 2014‐001, 19–22. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/82357
    [Google Scholar]
  10. Cox, G. M., Halverson, G. P., Stevenson, R. K., Vokaty, M., Poirier, A., Kunzmann, M., … Macdonald, F. A. (2016). Continental flood basalt weathering as a trigger for Neoproterozoic snowball earth. Earth & Planetary Science Letters, 446, 89–99. https://doi.org/10.1016/j.epsl.2016.04.016
    [Google Scholar]
  11. Cox, G. M., Jarrett, A., Edwards, D., Crockford, P. W., Halverson, G. P., Collins, A. S., … Li, Z. X. (2016). Basin redox and primary productivity within the Mesoproterozoic Roper Seaway. Chemical Geology, 440, 101–114. https://doi.org/10.1016/j.chemgeo.2016.06.025
    [Google Scholar]
  12. Cox, G. M., Sansjofre, P., Blades, M. L., Farkas, J., & Collins, A. S. (2019). Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Scientific Reports, 9, 5200. https://doi.org/10.1038/s41598‐019‐40783‐4
    [Google Scholar]
  13. Ernst, R. E., Wingate, M. T. D., Buchan, K. L., & Li, Z. X. (2008). Global record of 1600–700 Ma Large Igneous Provinces (LIPS): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160(1), 159–178. https://doi.org/10.1016/j.precamres.2007.04.019
    [Google Scholar]
  14. Frogtech Geoscience
    Frogtech Geoscience . (2018). SEEBASE® study and GIS for greater McArthur Basin. Northern Territory Geological Survey, Digital Information Package DIP 017. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87064
    [Google Scholar]
  15. Garçon, M., & Chauvel, C. (2014). Where is basalt in river sediments, and why does it matter?Earth & Planetary Science Letters, 407, 61–69. https://doi.org/10.1016/j.epsl.2014.09.033
    [Google Scholar]
  16. Glorie, S., Agostino, K., Dutch, R., Pawley, M., Hall, J., Danišík, M., … Collins, A. S. (2017). Thermal history and differential exhumation across the eastern Musgrave Province, South Australia: Insights from low‐temperature thermochronology. Tectonophysics, 703–704, 23–41. https://doi.org/10.1016/j.tecto.2017.03.003
    [Google Scholar]
  17. Gorter, J. D., & Grey, K. (2013). Middle Proterozoic biostratigraphy and log correlations of the Kyalla and Chambers River Formations Beetaloo Sub‐basin, Northern Territory, Australia. In West Australian Basins Symposium (WABS) III. Poster. Petroleum Exploration Society of Australia.
    [Google Scholar]
  18. Haines, P. W., & Allen, H. J. (2016). The Murraba Basin: Another piece of the Centralian Superbasin jigsaw puzzle falls into place. GSWA 2016 extended abstracts: Promoting the prospectivity of Western Australia. https://geodocs.dmirs.wa.gov.au/Web/documentlist/3/Combined/N15DC%2F9
    [Google Scholar]
  19. Horton, F. (2015). Did phosphorus derived from the weathering of Large Igneous Provinces fertilize the Neoproterozoic ocean?Geochemistry Geophysics Geosystems, 16(6), 1723–1738. https://doi.org/10.1002/2015GC005792
    [Google Scholar]
  20. Howard, H. M., Smithies, R. H., Kirkland, C. L., Kelsey, D. E., Aitken, A., Wingate, M. T. D., … Maier, W. D. (2015). The burning heart — The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia. Gondwana Research, 27(1), 64–94. https://doi.org/10.1016/j.gr.2014.09.001
    [Google Scholar]
  21. Jarrett, A. J. M., Edwards, D. S., Hong, Z., Palatty, P., Byass, J., & Webster, T. (2017). Geochemistry of drillcore Balmain 1, Beetaloo Sub‐basin, McArthur Basin, NT. Geoscience Australia, Record, 2017–3001. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/86287
    [Google Scholar]
  22. Jourdan, F., Hodges, K., Sell, B., Schaltegger, U., Wingate, M. T. D., Evins, L. Z., … Blenkinsop, T. (2014). High‐precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early‐Middle Cambrian (Stage 4–5) extinction. Geology, 42(6), 543–546. https://doi.org/10.1130/G35434.1
    [Google Scholar]
  23. Kirkland, C. L., Smithies, R. H., Woodhouse, A. J., Howard, H. M., Wingate, M. T. D., Belousova, E. A., … Spaggiari, C. V. (2013). Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia. Gondwana Research, 23(2), 759–781. https://doi.org/10.1016/j.gr.2012.06.001
    [Google Scholar]
  24. Kirkland, C. L., Wingate, M. T. D., Spaggiari, C. V., & Tyler, I. M. (2009).184339: Sandstone, Pollock Hills. Geochronology Record 817. Geological Survey of Western Australia, Record 2011/4.
    [Google Scholar]
  25. Kirscher, U., Mitchell, R., Liu, Y., Li, Z. X., Cox, G. M., Nordsvan, A., … Pisarevsky, S. (2018). Long lived supercontinent Nuna ‐ updated paleomagnetic constraints from Australia. 2018, AGU Fall Meeting (abstract #GP21B‐0647).
    [Google Scholar]
  26. Lanigan, K., Hibbird, S., Menpes, S., & Torkinton, J. (1994). Petroleum exploration in the Proterozoic Beetaloo sub‐basin. Northern Territory. APEA Journal, 34, 674–674. https://doi.org/10.1071/AJ93050
    [Google Scholar]
  27. Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2015). The rise of oxygen in earth's early ocean and atmosphere. Nature, 506(7488), 307–315. https://doi.org/10.1038/nature13068
    [Google Scholar]
  28. Maidment, D. W., Williams, I. S., & Hand, M. (2010). Testing long‐term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin. Australia. Basin Research, 19(3), 335–360. https://doi.org/10.1111/j.1365‐2117.2007.00326.x
    [Google Scholar]
  29. Melville, P. M. (2010). Geophysics and drilling collaboration final report for drilling program, Lake Woods Project, EL23687, EL24520, EL25631, EL27317, EL27318. Northern Territory Geological Survey, Open File Report CR2010‐0226. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/75769
    [Google Scholar]
  30. Merdith, A. S., Collins, A. S., Williams, S. E., Pisarevsky, S., Foden, J. F., Archibald, D., … Müller, R. D. (2017). A full‐plate global reconstruction of the Neoproterozoic. Gondwana Research, 50, 84–134. https://doi.org/10.1016/j.gr.2017.04.001
    [Google Scholar]
  31. Mukherjee, I., & Large, R. R. (2016). Pyrite trace element chemistry of the Velkerri Formation, Roper Group, McArthur Basin: Evidence for atmospheric oxygenation during the Boring Billion. Precambrian Research, 281, 13–26. https://doi.org/10.1016/j.precamres.2016.05.003
    [Google Scholar]
  32. Mukherjee, I., Large, R. R., Corkrey, R., & Danyushevsky, L. V. (2018). The Boring Billion, a slingshot for Complex Life on Earth. Scientific Reports, 8, 4432. https://doi.org/10.1038/s41598‐018‐22695‐x
    [Google Scholar]
  33. Munson, T. J. (2016). Sedimentary characterisation of the Wilton package, greater McArthur Basin. Northern Territory. Northern Territory Geological Survey, Record 2016–003. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/82741.
    [Google Scholar]
  34. Munson, T. J., Kruse, P. D., & Ahmad, M. (2013). Chapter 22 Centralian Superbasin. In M.Ahmad, & T. J.Munson (Eds.). Geology and mineral resources of the Northern Territory (Special Publication 5, pp. 22.1–22.19). Darwin, Australia: Northern Territory Geological Survey. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81502
    [Google Scholar]
  35. Munson, T. J., & Revie, D. (2018). Stratigraphic subdivision of Velkerri Formation, Roper Group, McArthur Basin, Northern Territory. Northern Territory Geological Survey, Record, 2018–3006. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87322
    [Google Scholar]
  36. Munson, T. J., Thompson, J. M., Zhukova, I., Meffre, S., Beyer, E. E., Woodhead, J. D., & Whelan, J. A. (2018). Summary of results. NTGS laser ablation ICP‐MS U‐Pb and Lu–Hf geochronology project: Roper Group and overlying ungrouped units (McArthur Basin), Renner Group (Tomkinson Province), Tijunna Group (Birrindudu Basin). Northern Territory Geological Survey, Record 2018–007. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87656
    [Google Scholar]
  37. Piper, D. Z., & Calvert, S. E. (2009). A marine biogeochemical perspective on black shale deposition. Earth Science Reviews, 95(1–2), 63–96. https://doi.org/10.1016/j.earscirev.2009.03.001
    [Google Scholar]
  38. Rawlings, D. J. (1999). Stratigraphic resolution of a multiphase intracratonic basin system: The McArthur Basin, northern Australia. Australian Journal of Earth Sciences, 46(5), 703–723. https://doi.org/10.1046/j.1440‐0952.1999.00739.x
    [Google Scholar]
  39. Revie, D. (2017). Volumetric resource assessment of the lower Kyalla and middle Velkerri formations of the McArthur Basin. Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory 28–29 March 2017. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/85107
    [Google Scholar]
  40. Revie, D., & Normington, V. (2018). Shale resource data from the greater McArthur Basin. Northern Territory Geological Survey, Digital Information Package DIP 014. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/82595
  41. Sageman, B. B., & Lyons, T. W. (2003). Geochemistry of fine‐grained sediments and sedimentary rocks. Treatise on Geochemistry, 7, 115–158. https://doi.org/10.1016/B0‐08‐043751‐6/07157‐7
    [Google Scholar]
  42. Shaw, R. D. (1991). The tectonic development of the Amadeus Basin, central Australia. In R. J.Korsch, & J. M.Kennard (Eds.), Geological and geophysical studies in the Amadeus basin, Central Australia (pp. 429–461). Australia: Bureau of Mineral Resources. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/33
    [Google Scholar]
  43. Silverman, M. R., Landon, S. M., Leaver, J. S., Mather, T. J., & Berg, E. (2007). No fuel like an old fuel: Proterozoic oil and gas potential in the Beetaloo Basin, Northern Territory, Australia. In T. J.Munson, & G. J.Ambrose (Eds.), Proceedings of the Central Australian Basins Symposium (CABS) Northern territory geological survey, special publication (Vol. 2). Darwin, Australia: Northern Territory Geological Survey.
    [Google Scholar]
  44. Smithies, R. H., Howard, H. M., Evins, P. M., Kirkland, C. L., Kelsey, D. E., Hand, M., … Allchurch, S. (2010). Geochemistry, geochronology, and petrogenesis of Mesoproterozoic felsic rocks in the west Musgrave Province, central Australia, and implications for the Mesoproterozoic tectonic evolution of the region. Geological Survey of Western Australia, Report 106.
    [Google Scholar]
  45. Smithies, R. H., Howard, H. M., Evins, P. M., Kirkland, C. L., Kelsey, D. E., Hand, M., … Belousova, E. A. (2011). High‐temperature granite magmatism, crust–mantle interaction and the Mesoproterozoic intracontinental evolution of the Musgrave Province, central. Australia. Journal of Petrology, 52(5), 931–958. https://doi.org/10.1093/petrology/egr010
    [Google Scholar]
  46. Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1), 314–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    [Google Scholar]
  47. Taylor, S. R., & Mclennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262
    [Google Scholar]
  48. Wade, B. P. (2005). Nd isotopic and geochemical constraints on provenance of sedimentary rocks in the eastern Officer Basin, Australia: Implications. Journal of Geological Society London, 162, 513–530. https://doi.org/10.1144/0016‐764904‐001
    [Google Scholar]
  49. Walter, M. R., Veevers, J. J., Calver, C. R., & Grey, K. (1995). Neoproterozoic stratigraphy of the Centralian Superbasin. Australia. Precambrian Research, 73(1–4), 173–195. https://doi.org/10.1016/0301‐9268(94)00077‐5
    [Google Scholar]
  50. Whelan, J. A., Beyer, E. E., Donnellan, N., Bleeker, W., Chamberlin, K. R., Soderlund, U., & Ernst, R. E. (2016). 1.4 billion years of Northern Territory geology: Insights from collaborative U‐Pb zircon and baddeleyite dating. Annual Geoscience Exploration Seminar (AGES) Proceedings, 2016‐001, 116–123. https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/82750
    [Google Scholar]
  51. Wingate, M. T. D., Pirajno, F., & Morris, P. A. (2004). Warakurna large igneous province: A new Mesoproterozoic large igneous province in west‐central Australia. Geology, 32(2), 105–108. https://doi.org/10.1130/G20171.1
    [Google Scholar]
  52. Winter, J. D. (2010). Principles of igneous and metamorphic petrology, 2nd ed. New York: Prentice Hall.
    [Google Scholar]
  53. Yang, B., Collins, A. S., Blades, M. L., Capogreco, N., Payne, J. L., Munson, T. J., … Glorie, S. (2019). Middle‐late Mesoproterozoic tectonic geography of the North Australia Craton: U‐Pb and Hf isotopes of detrital zircons in the Beetaloo Sub‐basin, Northern Territory, Australia. Journal of the Geological Society, London, 176(4), 771–784. https://doi.org/10.1144/jgs2018‐159
    [Google Scholar]
  54. Yang, B., Smith, T. M., Collins, A. S., Munson, T. J., Schoemaker, B., Nicholls, D., … Glorie, S. (2018). Spatial and temporal detrital zircon U‐Pb provenance of the hydrocarbon‐bearing upper Roper Group, Beetaloo Sub‐Basin, Northern Territory, Australia. Precambrian Research, 304, 140–155. https://doi.org/10.1016/j.precamres.2017.10.025
    [Google Scholar]
  55. Zhang, S. H., Zhao, Y., Li, X. H., Ernst, R. E., & Yang, Z. Y. (2017). The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 465, 122–125. https://doi.org/10.1016/j.epsl.2017.02.034
    [Google Scholar]
  56. Zhao, J. X., McCulloch, M. T., & Bennett, V. C. (1992). Sm–Nd and U‐Pb zircon isotopic constraints on the provenance of sediments from the Amadeus Basin, central Australia: Evidence for REE fractionation. Geochimica Et Cosmochimica Acta, 56(3), 921–940. https://doi.org/10.1016/00167037(92)90037‐J
    [Google Scholar]
  57. Zhao, J. X., Mcculloch, M. T., & Korsch, R. J. (1994). Characterisation of a plume‐related ∼ 800 Ma magmatic event and its implications for basin formation in central‐southern Australia. Earth & Planetary Science Letters, 121(3–4), 349–367. https://doi.org/10.1016/0012‐821X(94)90077‐9
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12450
Loading
/content/journals/10.1111/bre.12450
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error