1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

This article presents 60 detrital zircon age spectra for samples from the Paleogene outcrop belt of the U.S. Gulf Coast region, with a particular emphasis on middle and upper Eocene strata. We group the age spectra along the strike of the outcrop belt and evaluate how they change through time at given points in the basin. The data facilitate a discussion of drainage patterns to the Gulf Coast in the middle and upper Eocene.

, Abstract

Recently reported detrital zircon (DZ) data help to associate the Paleogene strata of the Gulf of Mexico region to various provenance areas. By far, recent work has emphasised upper Paleocene‐lower Eocene and upper Oligocene strata that were deposited during the two episodes of the highest sediment supply in the Paleogene. The data reveal a dynamic drainage history, including (1) initial routing of western Cordilleran drainages towards the Gulf of Mexico in the Paleocene, (2) an eastward shift of the western continental divide, from the Jura‐Cretaceous cordilleran arc to the eastern edge of the Laramide province after the Paleocene and (3) a southward shift, along the eastern Laramide province, of the headwaters of river systems draining to the Mississippi and Houston embayments at some time between the early Eocene and Oligocene. However, DZ characterisation of most (~20 Myr) of the middle Eocene‐lower Oligocene section remains limited. We present 60 DZ age spectra, most of which are from the middle or upper Eocene outcrop belts, with 50–200‐km spacing. We define six to eight distinct groups of DZ age spectra for middle and upper Eocene strata. Data from this and other studies resolve at least six substantial temporal changes in age spectra at various positions along the continental margin. The evolving age spectra constrain the middle and upper Eocene drainage patterns of large parts of interior North America. The most well‐resolved aspects of these drainage patterns include (1) persistent rivers that flowed from erosional landscapes across the Paleozoic Appalachian orogen either into the low‐lying Mississippi embayment or directly into the eastern Gulf; (2) at least during marine regressions, a trunk channel that likely flowed southward along the axial part of Mississippi Embayment and integrated tributaries from the east and west; and (3) rivers that flowed to the Houston embayment in the middle Eocene that likely originated in the Laramide province in central Colorado and southern Wyoming, as Precambrian basement highs in those source areas were being unroofed.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12464
2021-01-22
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12464.html?itemId=/content/journals/10.1111/bre.12464&mimeType=html&fmt=ahah

References

  1. Becker, T. P., Thomas, W. A., Samson, S. D., & Gehrels, G. E. (2005). Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America. Sedimentary Geology, 182, 59–86. https://doi.org/10.1016/j.sedgeo.2005.07.014
    [Google Scholar]
  2. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13, 2169–2205. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  3. Blum, M. D., & Pecha, M. A. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42, 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  4. Bush, M. A., Horton, B. K., Murphy, M. A., & Stockli, D. F. (2016). Detrital record of initial basement exhumation along the Laramide deformation front, southern Rocky Mountains. Tectonics, 35, 2117–2130. https://doi.org/10.1002/2016TC004194
    [Google Scholar]
  5. Carroll, A. R., Chetel, L. M., & Smith, M. E. (2006). Feast to famine: Sediment supply control on Laramide basin fill. Geology, 34, 197–200. https://doi.org/10.1130/G22148.1
    [Google Scholar]
  6. Cather, S. M., Chapin, C. E., & Kelley, S. A. (2012). Diachronous episodes of Cenozoic erosion in southwestern North America and their relationship to surface uplift, paleoclimate, paleodrainage, and paleoaltimetry. Geosphere, 8, 1177–1206. https://doi.org/10.1130/GES00801.1
    [Google Scholar]
  7. Combellas‐Bigott, R. I., & Galloway, W. E. (2006). Depositional and structural evolution of the middle Miocene depositional episode, east‐central Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 90(3), 335–362. https://doi.org/10.1306/10040504132
    [Google Scholar]
  8. Cottle, J. M., Horstwood, M. S. A., & Parrish, R. R. (2009). A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. Journal of Analytic Atomic Spectrometry, 24, 1355–1363. https://doi.org/10.1039/b821899d
    [Google Scholar]
  9. Cottle, J. M., Kylander‐Clark, A. R. C., & Vrijmoed, J. C. (2012). U‐Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS‐LA‐ICPMS). Chemical Geology, 332–333, 136–147. https://doi.org/10.1016/j.chemgeo.2012.09.035
    [Google Scholar]
  10. Craddock, W. H., & Kylander‐Clark, A. R. C. (2013). U‐Pb ages of detrital zircons from the Tertiary Mississippi River delta in central Louisiana: Insights into sediment provenance. Geosphere, 9, 1832–1851. https://doi.org/10.1130/GES00917.1
    [Google Scholar]
  11. Craddock, W. H., Kylander‐Clark, A. R. C., & Coleman, J. L. (2020). U‐Pb of detrital zircons in Paleogene strata of the Gulf Coast. U.S. Geological Survey Data Release. https://doi.org/10.5066/P9122ZD7
    [Google Scholar]
  12. Davis, S. J., Mulch, A., Carroll, A. R., Horton, T. W., & Chamerlain, C. P. (2009). Paleogene landscape evolution of the central North American Cordillera: Developing topography and hydrology in the Laramide foreland. Geological Society of America Bulletin, 121(1/2), 100–116. https://doi.org/10.1130/B26308.1
    [Google Scholar]
  13. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 228, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  14. Dickinson, W. R., Klute, M. A., Hayes, M. J., Janecke, S. U., Lundin, E. R., McKittrick, M. A., & Olivares, M. D. (1988). Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of America Bulletin, 100, 1023–1039. https://doi.org/10.1130/0016‐7606(1988)100<1023:PAPSOL>2.3.CO;2
    [Google Scholar]
  15. Eriksson, K. A., Campbell, I. H., Palin, J. M., Allen, C. M., & Bock, B. (2004). Evidence for multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the central Appalachian basin. Journal of Geology, 112, 261–276. https://doi.org/10.1086/382758
    [Google Scholar]
  16. Fan, M., Brown, E., & Li, L. (2019). Cenozoic drainage evolution of the Rio Grande paleoriver recorded in detrital zircons in South Texas. International Geology Review, 61, 622–636. https://doi.org/10.1080/00206814.2018.1446368
    [Google Scholar]
  17. Fisher, W. L., Galloway, W. E., Proctor, C. V.Jr., & Nagle, J. S. (1970). Depositional Systems in the Jackson Group of Texas and their relationship to oil gas, and uranium. Gulf Coast Association of Geological Societies, 20, 234–261.
    [Google Scholar]
  18. Galloway, W. E. (2008). Depositional evolution of the Gulf of Mexico sedimentary basin. In A. D.Miall (Ed.), Sedimentary Basins of the World: Volume 5. The Sedimentary Basins of the United States and Canada (pp. 505–549). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/S1874‐5997(08)00015‐4
    [Google Scholar]
  19. Galloway, W. E., Ganey‐Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico basin. American Association of Petroleum Geologists Bulletin, 84, 1743–1774.
    [Google Scholar]
  20. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  21. Garrity, C. P., & Soller, D. R. (2009). Database of the Geologic Map of North America; adapted from the map by J.C. Reed, Jr. et al. (2005). U.S. Geological Survey Data Series 424. Retrieved from https://pubs.usgs.gov/ds/424/
    [Google Scholar]
  22. Gleason, J. D., Finney, S. C., & Gehrels, G. E. (2002). Paleotectonic implications of a Mid‐ to Late‐Ordovician provenance shift, as recorded in sedimentary strata of the Ouachita and southern Appalachian Mountains. Journal of Geology, 110, 291–304. https://doi.org/10.1086/339533
    [Google Scholar]
  23. Gorham, T. W., & Ingersoll, R. V. (1979). Evolution of the Eocene Galisteo basin, north‐central New Mexico. In R. V.Ingersoll, L. A.Woodward, & H. L.James (Eds.), Fall field conference guidebook 30: Santa fe country (pp. 219–224). Socorro, NM: New Mexico Geological Society.
    [Google Scholar]
  24. Hatcher, R. D.Jr. (1987). Tectonics of the southern and central Appalachian internides. Annual Reviews of Earth and Planetary Science, 15, 337–362.
    [Google Scholar]
  25. Lawton, T. F. (2008). Laramide sedimentary basins. In A. D.Miall (Ed.), Sedimentary Basins of the World: Volume 5. The Sedimentary Basins of the United States and Canada (pp. 429–450). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/S1874‐5997(08)00012‐9
    [Google Scholar]
  26. Lawton, T. F., Bradford, I. A., Vega, F. J., Gehrels, G. E., & Amato, J. M. (2009). Provenance of Upper Cretaceous‐Paleogene sandstones in the foreland basin system of the Sierra Madre Oriental, northeastern Mexico, and its bearing on fluvial dispersal systems of the Mexican Laramide Province. Geological Society of America Bulletin, 121, 820–836. https://doi.org/10.1130/B26450.1
    [Google Scholar]
  27. Ludwig, K. R. (2012). User's manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75 p.
    [Google Scholar]
  28. Mackey, G. N., Horton, B. K., & Milliken, K. L. (2012). Provenance of the Paleocene‐Eocene Wilcox Group, western Gulf of Mexico basin: Evidence for integrated drainage of the southern Laramide Rocky Mountains and Cordilleran arc. Geological Society of America Bulletin, 124, 1007–1024. https://doi.org/10.1130/B30458.1
    [Google Scholar]
  29. Mancini, E. A., & Tew, B. H. (1994). Claiborne‐Jackson Group Contact (Eocene) in Alabama and Mississippi. Gulf Coast Association of Geological Societies Transactions, 44, 431–439.
    [Google Scholar]
  30. McCarley, A. B. (1981). Metamorphic terrane favored over Rocky Mountains as source of Claiborne Group, Eocene, Texas coastal plain. Journal of Sedimentary Petrology, 51, 1267–1276.
    [Google Scholar]
  31. Park, H., Barbeau, D. L.Jr., Rickenbacker, A., Bachmann‐Krug, D., & Gehrels, G. E. (2010). Application of foreland basin detrital‐zircon geochronology to the reconstruction of the southern and central Appalachian Orogen. Journal of Geology, 118, 23–44. https://doi.org/10.1086/648400
    [Google Scholar]
  32. Reed, J. C.Jr., Wheeler, J. O., & Tucholke, J. E., compilers. (2005). Geologic map of North America. Boulder, CO: Geological Society of America, Decade of North American Geology Continental Scale Map 001, scale 1:5,000,000.
    [Google Scholar]
  33. Salvador, A., & Muñeton, J. M. Q., compilers. (1989). Stratigraphic correlation chart, Gulf of Mexico Basin. In A.Salvador (Ed.), The Gulf of Mexico basin, The Geology of North America (Vol. J, plate 5). Boulder, CO: Geological Society of America.
    [Google Scholar]
  34. Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, A.‐ F.‐J., & Bush, M. A. (2017). Early Cenozoic drainage reorganization of the United States Western Interior‐Gulf of Mexico sediment routing system. Geology, 45, 187–190. https://doi.org/10.1130/G38765.1
    [Google Scholar]
  35. Smith, L. N., Lucas, S. G., & Elston, W. E. (1985). Paleogene stratigraphy, sedimentation, and volcanism of New Mexico. In R. M.Flores & S. S.Kaplan (Eds.), Rocky Mountain Paleogeography Symposium 3: Cenozoic Paleogeography of the West‐Central United States (pp. 293–316). Denver, CO. Rocky Mountain Section of the Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  36. Smith, M. E., Carroll, A. R., & Singer, B. S. (2008). Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Geological Society of America Bulletin, 120(1/2), 54–84. https://doi.org/10.1130/B26073.1
    [Google Scholar]
  37. Smith, T. M., Sundell, K. E., Johnston, S. N., Guilherme Andrade, C. N., Andrea, R. A., Dickinson, J. N., … Saylor, J. E. (2019). Drainage reorganization and Laramide tectonics in north‐central New Mexico and downstream effects in the Gulf of Mexico. Basin Research, 32(3), 419–452. https://doi.org/10.1111/bre.12373
    [Google Scholar]
  38. Thomas, W. A., Gehrels, G. E., Greb, S. F., Nadon, G. C., Satkoski, A. M., & Romero, M. C. (2017). Detrital zircons and sediment dispersal in the Appalachian foreland. Geosphere, 13(6), 2206–2230. https://doi.org/10.1130/GES01525.1
    [Google Scholar]
  39. Todd, T. W., & Folk, R. L. (1957). Basal Claiborne of Texas, record of Appalachian tectonism during Eocene. American Association of Petroleum Geologists Bulletin, 41, 2545–2566.
    [Google Scholar]
  40. Van Arsdale, R. B., & TenBrink, R. K. (2000). Late Cretaceous and Cenozoic Geology of the New Madrid Seismic Zone. Geological Society of America Bulletin, 90, 345–356. https://doi.org/10.1785/0119990088
    [Google Scholar]
  41. Vermeesch, P. (2009). RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44(4), 409–410.
    [Google Scholar]
  42. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  43. Wahl, P. J., Yancey, T. E., Pope, M. C., Miller, B. V., & Ayers, W. B. (2016). U‐Pb detrital zircon geochronology of the Upper Paleocene to Lower Eocene Wilcox Group, east‐central Texas. Geosphere, 12, 1517–1531. https://doi.org/10.1130/GES01313.1
    [Google Scholar]
  44. Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the Proterozoic growth of North America. Geosphere, 3, 220–259. https://doi.org/10.1130/GES00055.1
    [Google Scholar]
  45. Winker, C. D. (1982). Cenozoic shelf margins, northwestern Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 32, 427–448.
    [Google Scholar]
  46. Wissink, G. K., Wilkinson, B. H., & Hoke, G. D. (2018). Pairwise comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings. Lithosphere, 10(3), 478–491. https://doi.org/10.1130/L700.1
    [Google Scholar]
  47. Xu, J., Snedden, J. W., Stockli, D. F., Fulthorpe, C. S., & Galloway, W. E. (2017). Early Miocene continental‐scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of America Bulletin, 129(1–2), 3–22. https://doi.org/10.1130/B31465.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12464
Loading
/content/journals/10.1111/bre.12464
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error