1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Based on sedimentological information and detailed provenance analysis, it is suggested that tectonic uplift of the northern Tian Shan was likely the principal factor driving the change in sediment supply at ca. 7.0 Ma. The shift in sedimentation at ca. 3.3–2.5 Ma was mostly occurred by the contemporaneous glaciation. The growth of the northern Tian Shan during the early Pleistocene might obey critical‐taper wedge theory highlights that crucial role of glaciation in driving physical erosion and surface processes in glacier‐covered mountainous ranges.

, Abstract

The Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12466
2021-01-22
2024-04-19
Loading full text...

Full text loading...

References

  1. Andersen, T. (2002). Correction of common lead in U‐Pb analyses that do not report 204Pb. Chemical Geology, 192(1–2), 59–79. https://doi.org/10.1016/S0009‐2541(02)00195‐X
    [Google Scholar]
  2. Angela, M. H., Jacob, A. C., Daniel, F. S., & Andrea, F. (2018). Late Cenozoic cooling favored glacial over tectonic controls on sediment supply to the western Gulf of Mexico. Geology, 46(11), 995–998. https://doi.org/10.1130/G45528.1
    [Google Scholar]
  3. Berger, A. L., Gulick, S. P. S., Spotila, J. A., Upton, P., Jaeger, J. M., Chapman, J. B., … McAleer, R. J. (2008). Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nature Geoscience, 1(11), 793–799. https://doi.org/10.1038/ngeo334
    [Google Scholar]
  4. Brigham‐Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R., … Herzschuh, U. (2013). Pliocene warmth, polar amplification, and stepped pleistocene cooling recorded in NE Arctic Russia. Science, 340, 1421–1427. https://doi.org/10.1126/science.1233137
    [Google Scholar]
  5. Burchfiel, B. C., Brown, E. T., Deng, Q., Li, J., Feng, X., Molnar, P., … You, H. (1999). Crustal shortening on the margins of the Tian Shan: Xinjiang, China. International Geology Review, 41(8), 663–700. https://doi.org/10.1080/00206819909465164
    [Google Scholar]
  6. Charreau, J., Avouac, J. P., Chen, Y., Dominguez, S., & Gilder, S. (2008). Miocene to present kinematics of fault‐bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data. Geology, 36(11), 871–874. https://doi.org/10.1130/G25073A.1
    [Google Scholar]
  7. Charreau, J., Blard, P.‐H., Puchol, N., Avouac, J.‐P., Lallier‐Vergès, E., Bourlès, D., … Roy, P. (2011). Paleo‐erosion rates in central asia since 9 Ma: A transient increase at the onset of Quaternary glaciations?Earth and Planetary Science Letters, 304(1–2), https://doi.org/10.1016/j.epsl.2011.01.018
    [Google Scholar]
  8. Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, J. P., Sevket, S., … Wang, W. M. (2005). Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): Implications for Late Cenozoic uplift of the Tianshan mountains. Earth and Planetary Science Letters, 230, 177–192. https://doi.org/10.1016/j.epsl.2004.11.002
    [Google Scholar]
  9. Charreau, J., Gumiaux, C., Avouac, J. P., Augier, R., Chen, Y., Barrier, L., … Wang, Q. (2009). The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan: Climatic and tectonic implications. Earth and Planetary Science Letters., 287, 283–310. https://doi.org/10.1016/j.epsl.2009.07.035
    [Google Scholar]
  10. Chen, Y., Fang, X. M., Song, C. H., & Meng, Q. Q. (2012). The uplift and erosion of the Tianshan Mountains recorded by detrital zircon geochronology from the Cenozoic sediments in the southern Junggar Basin. Earth Science Frontiers, 19, 225–233. (in Chinese with English abstract). Retrieved from: http://www.earthsciencefrontiers.net.cn/CN/
    [Google Scholar]
  11. Cheng, F., Garzione, C. N., Mitra, G., Jolivet, M., Guo, G. Z., Lu, H. Y., … Wang, L. (2019). The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau. Earth‐Science Reviews, 198, 102945. https://doi.org/10.1016/j.earscirev.2019.102945
    [Google Scholar]
  12. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., … Lin, J. C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648–651. https://doi.org/10.1038/nature02150
    [Google Scholar]
  13. DeCelles, P. G., & Mitra, G. (1995). History of the Sevier orogenic wedge in terms of critical taper models, northeast Utah and southwest Wyoming. Geological Society of America Bulletin. 107(4), 454–462. https://doi.org/10.1130/0016‐7606(1995)107<0454:HOTSOW>2.3.CO;2
    [Google Scholar]
  14. Deng, Q. D., Feng, X. Y., Zhang, P. Z., Xu, X. W., Yang, X. P., Peng, S. Z., & Li, J. (2000). Active Tectonics of the Tian Shan Mountains (in Chinese) (p. 399). Beijing: Seismology Press.
    [Google Scholar]
  15. Deng, T., Li, Q., Tseng, Z. J., Takeuchi, G. T., Wang, Y., Xie, G. P., … Wang, X. M. (2012). Locomotive implication of a Pliocene three‐toed horse skeleton from Tibet and its paleo‐altimetry significance. Proceedings of National Academy of Sciences of the United States of America, 109, 7374–7378. https://doi.org/10.1073/pnas.1201052109
    [Google Scholar]
  16. Dreimanis, A., & Schlüchter, C. (1985). Field criteria for the recognition of till or tillite: Palaeogeography. Palaeoclimatology, Palaeoecology, 51, 7–14. https://doi.org/10.1016/0031‐0182(85)90079‐3
    [Google Scholar]
  17. Fang, S. H., Guo, Z. J., Jia, C. Z., Zhang, Z. C., Wang, X. L., & Wang, M. N. (2006). Meso‐Cenozoic heavy minerals assemblages in the southern Junggar basin and its implications for basin‐orogem pattern. Chinese Journal of Geology, 4, 648–662 (in Chinese with English abstract). Retrieved form: http://www.dzkx.org/CN/abstract/abstract9306.shtml
    [Google Scholar]
  18. Fang, X., Wang, J., Zhang, W., Zan, J., Song, C., Yan, M., … Lu, Y. (2016). Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Global and Planetary Change, 145, 78–97. https://doi.org/10.1016/j.gloplacha.2016.08.015
    [Google Scholar]
  19. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., … Yin, A. (2011). Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics, 30, TC5016. https://doi.org/10.1029/2011TC002868
    [Google Scholar]
  20. Gillespie, J., Glorie, S., Jepson, G., Zhang, Z. Y., Xiao, W. J., Danišik, M., & Collins, A. S. (2017). Differential exhumation and crustal tilting in the easternmost Tianshan (Xinjiang, China), revealed by low‐temperature thermochronology. Tectonics, 36, 2142–2158. https://doi.org/10.1002/2017TC004574
    [Google Scholar]
  21. Hammer, Ø., Harper, D. A. T., & Ryan, P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeonotologia Electronica, 4, 9. https://palaeo‐electronica.org/2001_1/past/issue1_01.htm
    [Google Scholar]
  22. Han, B. F., Guo, Z. J., Zhang, Z. C., Zhang, L., Chen, J. F., & Song, B. (2010). Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geological Society of America Bulletin, 122(3–4), 627–640. https://doi.org/10.1130/B26491.1
    [Google Scholar]
  23. Heermance, R. V., Pullen, A., Kapp, P., Garzione, C. N., Bogue, S., Ding, L., & Song, P. P. (2013). Climatic and tectonic controls on sedimentation and erosion during the Pliocene‐Quaternary in the Qaidam basin (China). Geological Society of America Bulletin, 125(5–6), 833–856. https://doi.org/10.1130/B30748.1
    [Google Scholar]
  24. Hendrix, M. S., Dumitru, T. A., & Graham, A. S. (1994). Late Oligocene–early Miocene unroofing in the Chinese Tian Shan: An early effect of the India‐Asia collision. Geology, 22, 487–490. https://doi.org/10.1130/0091‐7613
    [Google Scholar]
  25. Herman, F., Seward, D., Valla, P. G., Carter, A., Kohn, B., Willett, S. D., & Ehlers, T. A. (2013). World‐wide acceleration of mountain erosion under a cooling climate. Nature, 504, 423–426. https://doi.org/10.1038/nature12877
    [Google Scholar]
  26. Hoskin, P., & Black, L. (2000). Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18, 423–439. https://doi.org/10.1046/j.1525‐1314.2000.00266.x
    [Google Scholar]
  27. Hu, G., Yi, C. L., Zhang, J. F., Liu, J. H., Jiang, T., & Li, S. H. (2016). Late quaternary glacial advances in the eastern Qilianshan, North‐Eastern Tibet, as inferred from luminescence dating of fluvioglacial sediments. Journal of Quaternary Science, 31(6), 587–597. https://doi.org/10.1002/jqs.2882
    [Google Scholar]
  28. Hu, G., Yi, C. L., Zhang, J. F., Liu, J. H., Jiang, T., & Qin, X. (2014). Optically stimulated luminescence dating of a moraine and a terrace in Laohugou valley, western Qilian Shan, northeastern tibet. Quaternary International, 321, 37–49. https://doi.org/10.1016/j.quaint.2013.12.019
    [Google Scholar]
  29. Jolivet, M., Barrier, L., Dauteuil, O., Laborde, A., Li, Q., Reichenbacher, B., … Guo, Z. J. (2018). Late Cretaceous‐Palaeogene topography of the Chinese Tian Shan: New insights from geomorphology and sedimentology. Earth and Planetary Science Letters, 49, 95–106. https://doi.org/10.1016/j.epsl.2018.07.004
    [Google Scholar]
  30. Kong, P., Zheng, Y., & Fu, B. H. (2011). Cosmogenic nuclide burial ages and provenance of Late Cenozoic deposits in the Sichuan Basin: Implications for Early Quaternary glaciations in east Tibet. Quaternary Geochronology, 6(3–4), 304–312. https://doi.org/10.1016/j.quageo.2011.03.006
    [Google Scholar]
  31. Lease, O. R. (2018). Pliocene erosional pulse and glacier‐landscape feedbacks in the western Alaska Range. Earth and Planetary Science Letters, 497, 62–68. https://doi.org/10.1016/j.epsl.2018.06.009
    [Google Scholar]
  32. Li, J. J., Zhou, S. Z., & Pan, B. T. (1991). The problems of Quaternary glaciation in the eastern part of Qinghai‐Xizang plateau. Quaternary Sciences, 11(3), 193–203 (in Chinese with English abstract). Retrieved from: http://www.dsjyj.com.cn/CN/
    [Google Scholar]
  33. Litty, C., Lanari, P., Burn, M., & Schlunegger, F. (2017). Climate‐controlled shifts in sediment provenance inferred from detrital zircon ages, western Peruvian Andes. Geology, 45(1), 59–62. https://doi.org/10.1130/G38371.1
    [Google Scholar]
  34. Lu, H. H., Burbank, D. W., Li, Y. L., & Liu, Y. M. (2010). Late Cenozoic structural and stratigraphic evolution of the northern Chinese Tian Shan foreland. Basin Research, 22, 249–269. https://doi.org/10.1111/j.1365‐2117.2009.00412.x
    [Google Scholar]
  35. Lu, H. H., Li, B. J., Wu, D. Y., Zhao, J. X., Zheng, X. M., Xiong, J. G., & Li, Y. L. (2019). Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth‐Science Reviews, 194, 19–37. https://doi.org/10.1016/j.earscirev.2019.04.026
    [Google Scholar]
  36. Lu, H. H., Wang, Z., Zhang, T. Q., Zhao, J. X., Zheng, X. M., & Li, Y. L. (2015). Latest Miocene to Quaternary deformation in the southern Chaiwopu Basin, northern Chinese Tian Shan foreland. Journal of Geophysical Research: Solid Earth., 120(12), 8656–8671. https://doi.org/10.1002/2015JB012135
    [Google Scholar]
  37. Lu, H. H., Zhang, W. G., Li, Y. L., Dong, C. Y., Zhang, T. Q., Zhou, Z. Y., & Zheng, X. M. (2013). Rock magnetic properties and paleoenvironmental implications of an 8‐Ma late cenozoic Terrigenous succession from the northern Tian Shan foreland basin, northwestern China. Global & Planetary Change, 111, 43–56. https://doi.org/10.1016/j.gloplacha.2013.08.007
    [Google Scholar]
  38. Miall, A. D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology (pp. 582–584). Berlin: Springer.
    [Google Scholar]
  39. Miall, A. D. (2006). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology (pp. 99–130). Berlin: Springer.
    [Google Scholar]
  40. Miall, A. D. (2016). Stratigraphy: A Modern Synthesis. Switzerland: Springer International Publishing.
    [Google Scholar]
  41. Michel, L., Ehlers, T., Glotzbach, C., Adams, B., & Stübner, K. (2018). Tectonic and glacial contributions to focused exhumation in the Olympic Mountains, Washington, USA. Geology, 46(6), 491–494. https://doi.org/10.1130/G39881.1
    [Google Scholar]
  42. Molnar, P. (2004). Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?Annual Review of Earth and Planetary Sciences, 32, 67–89. https://doi.org/10.1146/annurev.earth.32.091003.143456
    [Google Scholar]
  43. Montgomery, D. R. (2002). Valley formation by fluvial and glacial erosion. Geology, 30, 1047–1050. https://doi.org/10.1130/0091
    [Google Scholar]
  44. Morton, A. C., & Hallsworth, C. (2007). Stability of detrital heavy minerals during burial diagenesis. In M. A.Mange, & D. T.Wright (Eds.), Heavy Minerals in Use, Developments in Sedimentology Series (Vol. 58, pp. 215–245). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/S0070‐4571(07)58007‐6
    [Google Scholar]
  45. Pang, J. Z., Yu, J. X., Zheng, D. W., Wang, W. T., Ma, Y., Wang, Y. Z., … Wang, Y. (2019). Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3), 1018–1032. https://doi.org/10.1029/2018TC005258
    [Google Scholar]
  46. Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., … Sharp, M. J. (2014). The randolph glacier inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176
    [Google Scholar]
  47. Rickenbach, D., & Koschni, A. (2010). Sediment loads due to fluvial and debris flows during the 2005 flood events in Switzerland. Hydrological Process, 24, 993–1007. https://doi.org/10.1002/hyp.7536
    [Google Scholar]
  48. RSGXJR (Regional stratigraphic table compilation group of Xinjiang Uygur Autonomous Region) , (1981). Regional stratigraphic table of Northwest China (pp. 74–76). Beijing: Geological Publishing House.
    [Google Scholar]
  49. Schlunegger, F., Norton, K. P., Delunel, R., Ehlers, T. A., & Madella, A. (2017). Late miocene increase in precipitation in the western cordillera of the andes between 18–19°s latitudes inferred from shifts in sedimentation patterns. Earth and Planetary Science Letters, 462, 157–168. https://doi.org/10.1016/j.epsl.2017.01.002
    [Google Scholar]
  50. Searle, M., Avouac, J. P., Elliott, J., & Dyck, B. (2017). Ductile shearing to brittle thrusting along the Nepal Himalaya: Linking Miocene channel flow and critical wedge tectonics to 25th April 2015 Gorkha earthquake. Tectonophysics, 714–715, 117–124. https://doi.org/10.1016/j.tecto.2016.08.003
    [Google Scholar]
  51. Sircombe, K. N. (1999). Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology, 124(1–4), 47–67. https://doi.org/10.1016/S0037‐0738(98)00120‐1
    [Google Scholar]
  52. Sobel, E., Chen, J., & Heermance, R. V. (2006). Late Oligocene‐Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: Implications for Neogene shortening rate variations. Earth and Planetary Science Letters, 247, 70–81. https://doi.org/10.1016/j.epsl.2006.03.048
    [Google Scholar]
  53. Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E., Sobel, E. R., & Trauth, M. H. (2007). Tectonics and climate of the southern central Andes. Annual Review of Earth and Planetary Sciences, 35, 747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158
    [Google Scholar]
  54. Sun, J. M., Li, Y., Zhang, Z. Q., & Fu, B. H. (2009). Magnetostratigraphic data on neogene growth folding in the foreland basin of the southern tianshan mountains. Geology, 37(11), 1051–1054. https://doi.org/10.1130/G30278A.1
    [Google Scholar]
  55. Sun, J. M., Xu, Q. H., & Huang, B. C. (2007). Late Cenozoic magnetochronology and paleoenvironmental changes in the northern foreland basin of the Tian Shan Mountains. Journal of Geophysical Research: Solid Earth, 112, B04107. https://doi.org/10.1029/2006JB004653
    [Google Scholar]
  56. Sun, J. M., Zhu, R. X., & Bowler, J. (2004). Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth and Planetary Science Letters, 219, 239–253. https://doi.org/10.1016/S0012‐821X(04)00008‐1
    [Google Scholar]
  57. Sun, Y., An, Z., Clemens, S. C., Bloemendal, J., & Vandenberghe, J. (2010). Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Sciences Letter, 297(3–4), 525–535.
    [Google Scholar]
  58. Sun, Y. B., Yan, Y., Nie, J. S., Li, G. J., Shi, Z. G., Qiang, X. K., … An, Z. S. (2020). Source‐to‐sink fluctuations of Asian aeolian deposits since the late Oligocene. Earth‐Science Reviews, 200, 102963. https://doi.org/10.1016/j.earscirev.2019.102963
    [Google Scholar]
  59. Tang, Z. H., Huang, B. C., Dong, X. X., Ji, J. L., & Ding, Z. L. (2012). Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan. Geochemistry Geophysics Geosystems, 13(3), https://doi.org/10.1029/2011GC003966
    [Google Scholar]
  60. Thomson, S. N., Brandon, M. T., Tomkin, J. H., Reiners, P. W., Vásquez, C., & Wilson, N. J. (2010). Glaciation as a destructive and constructive control on mountain building. Nature, 7313(467), 313–317. https://doi.org/10.1038/nature09365
    [Google Scholar]
  61. Tian, J., Zhao, Q. H., Wang, P. X., Li, Q. Y., & Cheng, X. R. (2008). Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography. 23, PA3210. https://doi.org/10.1029/2007PA001552
    [Google Scholar]
  62. Vermeesch, P. (2013). Multi‐sample comparison of detrital age distributions. Chemical Geology, 341, 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010
    [Google Scholar]
  63. Wang, B., Shu, L. S., Cluzel, D., Faure, M., & Charvet, J. (2007). Geochronological and geochemical studies on the Borohoroplutons, north of Yili, NW Tianshan and their Tectonic implication. Acta Petrologica Sinica, 23(8), 1885–1900.
    [Google Scholar]
  64. Wang, Q., Wyman, D. A., Zhao, Z. H., Xu, J. F., Bai, Z. H., Xiong, X. L., … Chu, Z. Y. (2007). Petrogenesis of Carboniferous adakites and Nb‐enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chemical Geology, 236, 42–64. https://doi.org/10.1016/j.chemgeo.2006.08.013
    [Google Scholar]
  65. Wang, S. F., Zhang, W. L., Fang, X. M., Dai, S., & Kempf, O. (2008). Magnetostratigraphy of the Zanda basin in southwest Tibet Plateau and its tectonic implications. Chinese Science Bulletin, 53, 1393–1400. https://doi.org/10.1007/s11434‐008‐0132‐9
    [Google Scholar]
  66. Wang, W. T., Zhang, P. Z., Yu, J. X., Wang, Y., Zheng, D. W., Zheng, W. J., … Pang, J. Z. (2016). Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin. Scientific Reports, 6(1), 27604. https://doi.org/10.1038/srep27604
    [Google Scholar]
  67. Wei, X. C., Zheng, H. B., Wang, P., Tada, R., Clift, P. D., Jourdan, F., … Chen, H. L. (2018). Miocene volcaniclastic sequence within the Xiyu Formation from source to sink: Implications for drainage development and tectonic evolution in eastern Pamir, NW Tibetan Plateau. Tectonics, 37, 3261–3284. https://doi.org/10.1029/2018TC005008
    [Google Scholar]
  68. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2(2), 97. https://doi.org/10.1038/ngeo413
    [Google Scholar]
  69. Windley, B. F., Allen, M. B., Zhang, C., Zhao, Z. Y., & Wang, G. R. (1990). Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range. Central Asia. Geology, 18(2), 128. https://doi.org/10.1130/0091‐7613(1990)018<0128:PAACRO>2.3.CO;2
    [Google Scholar]
  70. Xiang, D. F., Zhang, Y. Z., Xiao, W. J., Zhu, W. B., Zheng, D. W., Li, G. W., … Pang, J. Z. (2019). Episodic Meso‐Cenozoic denudation of Chinese Tianshan: Evidence from detrital apatite fission track and zircon U‐Pb data, southern Junggar Basin margin, NW China. Journal of Asian Earth Sciences, 175, 199–212. https://doi.org/10.1016/j.jseaes.2018.07.042
    [Google Scholar]
  71. Yang, Y. T., Song, C. C., & He, S. (2015). Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics, 34, 86–115. https://doi.org/10.1002/2014TC003640
    [Google Scholar]
  72. Yin, A., Dang, Y. Q., Zhang, M., Chen, X. H., & McRivette, M. W. (2008). Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7–8), 847–876. https://doi.org/10.1093/petrology/egl007
    [Google Scholar]
  73. Yin, A., Nie, S., Craig, P., Harrison, T. M., Ryerson, F. J., Qian, X. L., & Yang, G. (1998). Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17, 1–27. https://doi.org/10.1029/97TC03140
    [Google Scholar]
  74. Yin, J. Y., Chen, W., Hodges, K. V., Xiao, W. J., Cai, K. D., Yuan, C., … Soest, M. C. (2017). The thermal evolution of Chinese central Tianshan and its implications: Insights from multi‐method chronometry. Tectonophysics, 722(2), 536–548.
    [Google Scholar]
  75. Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Günther, D., & Wu, F. Y. (2004). Accurate U‐Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry. Geostandards & Geoanalytical Research, 28, 335–370. https://doi.org/10.1111/j.1751‐908X.2004.tb00755.x
    [Google Scholar]
  76. Zachos, J. C., Dichens, G. D., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451, 279–283. https://doi.org/10.1038/nature06588
    [Google Scholar]
  77. Zhang, H. Y. (1985). Quaternary glaciation in the northern Tianshan. In: D. H.Mao, Z. X.Yang, C. J.Zhou, J. F.Li, X. C.Xia, S. J.Wang, X. L.Peng, L.Hong, S. T.Han, & H. Y.Zhang (Eds.), Proceedings of Quaternary Research of Arid Xinjiang (pp. 55–68). Urumuqi: Xinjiang Renmin Press.
    [Google Scholar]
  78. Zhang, H. Z., Lu, H. Y., Stevens, T., Han, F., Fu, Y., Geng, J. Y., & Wang, H. L. (2018). Expansion of dust provenance and aridification of Asia since ~7.2 Ma revealed by detrital zircon U‐Pb dating. Geophysical Research Letters, 45(24), 13,437–13,448. https://doi.org/10.1029/2018GL079888
    [Google Scholar]
  79. Zhang, H. P., Oskin, E. O., Liu‐Zeng, J., Zhang, P. Z., Reiners, P. W., & Xiao, P. (2016). Pulsed exhumation of interior eastern tibet: Implications for relief generation mechanisms and the origin of high‐elevation planation surfaces. Earth and Planetary Science Letters, 449, 176–185. https://doi.org/10.1016/j.epsl.2016.05.048
    [Google Scholar]
  80. Zhang, P. Z., Molnar, P., & Downs, W. R. (2001). Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897. https://doi.org/10.1038/35073504
    [Google Scholar]
  81. Zhang, X. R., Zhao, G. C., Sun, M., Paul, R. E., Han, Y. G., Liu, D. X., … Xu, B. (2015). Tectonic evolution from subduction to arc‐continent collision of the Junggar ocean: Constraints from U‐Pb dating and Hf isotopes of Detrital zircons from the north Tanshan belt, NW China. Geological Society of America Bulletin, 128, 644–660. https://doi.org/10.1130/B31230.1
    [Google Scholar]
  82. Zhao, J. D., Liu, S. Y., He, Y. Q., & Song, Y. G. (2009). Quaternary glacial chronology of the Ateaoyinake river valley, Tianshan Mountains, China. Geomorphology, 103, 276–284. https://doi.org/10.1016/j.geomorph.2008.04.014
    [Google Scholar]
  83. Zhao, J. D., Zhou, S. Z., He, Y. Q., Ye, Y. G., & Liu, S. Y. (2006). ESR dating of glacial tills and glaciations in the Urumqi river headwaters, Tianshan Mountains, China. Quaternary International, 144(1), https://doi.org/10.1016/j.quaint.2005.05.013
    [Google Scholar]
  84. Zhao, Z. J., Granger, D. E., Chen, Y., Shu, Q., Liu, G. F., Zhang, M. H., … Qiao, L. L. (2017). Cosmogenic nuclide burial dating of an alluvial conglomerate sequence: An example from the Hexi corridor, NE Tibetan Plateau. Quaternary Geochronology, 39, 68–78. https://doi.org/10.1016/j.quageo.2017.02.007
    [Google Scholar]
  85. Zhu, Y. F., Zhang, L. F., Gu, L. B., Guo, X., & Zhou, J. (2005). The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chinese Science Bulletin, 50, 2201–2212. https://doi.org/10.1007/BF03182672
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12466
Loading
/content/journals/10.1111/bre.12466
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error