1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Frasnian reef complexes along the northern margin of the Canning Basin in northwestern Australia evolved during rifting of the Fitzroy Trough. Geological investigations of the Frasnian Hull platform, which developed on an active tilted fault‐block, reveal significant lateral and vertical facies variations superimposed on prominent metre‐scale cyclicity. This study uses numerical analyses of facies and magnetic susceptibility data from three measured sections along the Hull platform to test whether a tectonic signal can be distinguished from eustatic and other signals.

Geostatistical analysis of facies variations reveals an exponential distribution of thin (<3 m) facies, characteristic of stochastic depositional processes. Thick subtidal facies predominate in the Guppy Hills (GH) and southeastern Hull Range (SHR) sections near the hangingwall margin, and thick shallow‐subtidal to intertidal facies dominate the Horse Springs drillcore (HD 14) section near the footwall margin. Power and wavelet spectral analyses indicate a strong periodic component; Average Spectral Misfit and spectral optimisation methods confirm the presence of Milankovitch eccentricity signals and suggest the presence of obliquity and precession signals. However, the results also expose strong temporal and spatial variation providing evidence for tectonic control. Spectral analyses show strongest periodicity is recorded in short intervals that are not correlated across the platform and provide evidence of variations in sedimentation rate and hiatuses. Time series for the neighbouring GH and SHR sections show no overall statistical correlation, and Markov analysis indicates weakly ordered vertical facies transitions that do not correlate across the platform. Subtidal to intertidal facies data from HD 14 core suggest that at least 35% of the section is absent, almost obscuring the Milankovitch signal. The results indicate a complex set of controls on deposition on the Hull platform with local tectonic effects having produced spatio‐temporal moderation of the underlying eustatic signals and autogenic processes adding a localised stochastic response.

,

Multi‐method numerical analyses of facies and magnetic susceptibility data indicate that Hull platform sedimentation was controlled by a complex interplay of global orbital forcing and local tectonic and autogenic processes.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12468
2021-01-22
2024-04-24
Loading full text...

Full text loading...

References

  1. AGICO . (2003). Kappabridge KLY‐3/KLY‐3S user’s manual (Ver. 2.3). Retrieved from https://www.agico.com/downloads/documents/manuals/kly3‐man.pdf
    [Google Scholar]
  2. Bailey, R. J., & Smith, D. G. (2005). Quantitative evidence for the fractal nature of the stratigraphic record: Results and implications. Proceedings of the Geological Association, 116, 129–138. https://doi.org/10.1016/S0016‐7878(05)80004‐5
    [Google Scholar]
  3. Becker, R. T., Gradstein, F. M., & Hammer, O. (2012). The Devonian Period. In: F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), The geologic time scale 2012 (pp. 559–601). Amsterdam: Elsevier.
    [Google Scholar]
  4. Belkhedim, S., Jarochowska, E., Benhamou, M., Nemra, A., Sadji, R., & Munnecke, A. (2019). Interplay of autogenic and allogenic processes on the formation of shallow carbonate cycles in a synrift setting (Lower Pliensbachian, Traras Mountains, NW Algeria). Journal of Sedimentary Research, 89, 784–807. https://doi.org/10.2110/jsr.2019.33
    [Google Scholar]
  5. Berger, A., Loutre, M. F., & Laskar, J. (1992). Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science, 255, 560–566. https://doi.org/10.1126/science.255.5044.560
    [Google Scholar]
  6. Bosence, D., Procter, E., Aurell, M., Kahla, A. B., Boudagher‐Fadel, M., Casaglia, F., … Waltham, D. (2009). A dominant tectonic signal in high‐frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from Western Tethys. Journal of Sedimentary Research, 79, 389–415. https://doi.org/10.2110/jsr.2009.038
    [Google Scholar]
  7. Boulila, S., Galbrun, B., Huret, E., Hinnov, L. A., Rouget, I., Gardin, S., & Bartolini, A. (2014). Astronomical calibration of the Toarcian Stage: Implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth and Planetary Science Letters, 386, 98–111. https://doi.org/10.1016/j.epsl.2013.10.047
    [Google Scholar]
  8. Brownlaw, R. L. S. (2000). Rugose coral stratigraphy and cyclostratigraphy of the Middle and Upper Devonian carbonate complexes, Lennard Shelf, Canning Basin, Western Australia. Ph.D. Thesis, University of Queensland, Brisbane, Australia, 325 p.
  9. Brownlaw, R. L. S., Hearn, S. J., & Jell, J. S. (1998). Spectral analysis of the back‐reef limestones of the “Devonian Great Barrier Reef”, Western Australia. Proceedings of the Royal Society of Queensland, 107, 99–107.
    [Google Scholar]
  10. Brownlaw, R. L. S., Hocking, R. M., & Jell, J. S. (1996). High frequency sea‐level fluctuations in the Pillara Limestone, Guppy Hills, Lennard Shelf, Northwestern Australia. Historical Biology, 11, 187–212. https://doi.org/10.1080/10292389609380541
    [Google Scholar]
  11. Brownlaw, R. L. S., & Jell, J. S. (2008). Middle and Upper Devonian rugose corals from the Canning Basin, Western Australia. Memoirs of the Association of Australasian Palaeontologists, 35, 1–126.
    [Google Scholar]
  12. Burgess, P. M. (2006). The signal and the noise: Forward modeling of allocyclic and autocyclic processes influencing peritidal carbonate stacking patterns. Journal of Sedimentary Research, 76, 962–977. https://doi.org/10.2110/jsr.2006.084
    [Google Scholar]
  13. Burgess, P. M. (2016). Identifying ordered strata: Evidence, methods, and meaning. Journal of Sedimentary Research, 86, 148–167. https://doi.org/10.2110/jsr.2016.10
    [Google Scholar]
  14. Burgess, P. M., Wright, V. P., & Emery, D. (2001). Numerical forward modelling of peritidal carbonate parasequence development: Implications for outcrop interpretation. Basin Research, 13, 1–16. https://doi.org/10.1046/j.1365‐2117.2001.00130.x
    [Google Scholar]
  15. Carr, T. R. (1982). Log‐linear models, Markov chains and cyclic sedimentation. Journal of Sedimentary Petrology, 52, 905–912. https://doi.org/10.1306/212F808A‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  16. Chen, C., & Hiscott, R. N. (1999a). Statistical analysis of turbidite cycles in submarine fan successions: Tests for short‐term persistence. Journal of Sedimentary Research, 69, 486–504. https://doi.org/10.2110/jsr.69.486
    [Google Scholar]
  17. Chen, C., & Hiscott, R. N. (1999b). Statistical analysis of facies clustering in submarine‐fan turbidite successions. Journal of Sedimentary Research, 69, 505–517. https://doi.org/10.2110/jsr.69.505
    [Google Scholar]
  18. Chen, D., Tucker, M. E., Jiang, M., & Zhu, J. (2001). Long‐distance correlation between tectonic controlled, isolated carbonate platforms by cyclostratigraphy and sequence stratigraphy in the Devonian of South China. Sedimentology, 48, 57–78. https://doi.org/10.1111/j.1365‐3091.2001.00351.x
    [Google Scholar]
  19. Chow, N., George, A. D., & Trinajstic, K. M. (2004). Tectonic control on development of a Frasnian‐Famennian (Late Devonian) palaeokarst surface, Canning Basin reef complexes, northwestern Australia. Australian Journal of Earth Sciences, 51, 911–917. https://doi.org/10.1111/j.1400‐0952.2004.01493.x
    [Google Scholar]
  20. Chow, N., George, A. D., Trinajstic, K. M., & Chen, Z. Q. (2013). Stratal architecture and platform evolution of an early Frasnian syn‐tectonic carbonate platform, Canning Basin, Australia. Sedimentology, 60, 1583–1620. https://doi.org/10.1111/sed.12041
    [Google Scholar]
  21. Crick, R. E., Ellwood, B. B., Hladil, J., El Hassani, A., Feist, R., & Hladil, J. (1997). Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian ‐Givetian GSSP and associated boundary sequences in North Africa and Europe. Episodes, 20, 167–175. https://doi.org/10.18814/epiiugs/1997/v20i3/004
    [Google Scholar]
  22. Da Silva, A. C., & Boulvain, F. (2006). Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 373–388. https://doi.org/10.1016/j.palaeo.2006.02.012
    [Google Scholar]
  23. Da Silva, A. C., De Vleeschouwer, D., Boulvain, F., Claeys, P., Fagel, N., Humblet, M., … Dekkers, M. J. (2013). Magnetic susceptibility as a high‐resolution correlation tool and as a climatic proxy in Paleozoic rocks – Merits and pitfalls: Examples from the Devonian in Belgium. Marine and Petroleum Geology, 46, 173–189. https://doi.org/10.1016/j.marpetgeo.2013.06.012
    [Google Scholar]
  24. Da Silva, A. C., Dekkers, M. J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., & Hilgen, F. J. (2018). Millennial‐scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world. Geology, 47, 19–22. https://doi.org/10.1130/G45511.1
    [Google Scholar]
  25. Da Silva, A. C., Dekkers, M. J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., & Hilgen, F. J. (2019). Millennial‐scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: REPLY. Geology, 47, e489–e490. https://doi.org/10.1130/G46732Y.1
    [Google Scholar]
  26. Da Silva, A. C., Hladil, J., Chadimova, L., Slavík, L., Hilgen, F. J., Bábek, O., & Dekkers, M. J. (2016). Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian‐Pragian sediments (Prague Synform, Czech Republic). Earth and Planetary Science Letters, 455, 125–139. https://doi.org/10.1016/j.epsl.2016.09.009
    [Google Scholar]
  27. Da Silva, A. C., Mabille, C., & Boulvain, F. (2009). Influence of sedimentary setting on the use of magnetic susceptibility: Examples from the Devonian of Belgium. Sedimentology, 56, 1292–1306. https://doi.org/10.1111/j.1365‐3091.2008.01034.x
    [Google Scholar]
  28. Da Silva, A. C., Potma, K., Weissenberger, J. A. W., Whalen, M. T., Mabille, C., & Boulvain, F. (2009). Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and from Alberta. Sedimentary Geology, 214, 3–18. https://doi.org/10.1016/j.sedgeo.2008.01.010
    [Google Scholar]
  29. Da Silva, A. C., Whalen, M. T., Hladil, J., Chadimova, L., Chen, D., Spassov, S., … Devleeschouwer, X. (2015). Magnetic susceptibility application: a window onto ancient environments and climatic variations: foreword. In: A. C.Da Silva, & M. T.WhalenJ.Hladil, L.Chadimova, D.Chen, S.Spassov, F.Boulvain, & X.Devleeschouwer (Eds.), Magnetic susceptibility application: a window onto ancient environments and climate (Vol. 414, pp. 1–13). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.12
    [Google Scholar]
  30. De Benedictis, D., Bosence, D., & Waltham, D. (2007). Tectonic control on peritidal carbonate parasequence formation: An investigation using forward tectono‐stratigraphic modelling. Sedimentology, 54, 587–605. https://doi.org/10.1111/j.1365‐3091.2006.00851.x
    [Google Scholar]
  31. De Vleeschouwer, D., Boulvain, F., Da Silva, A. C., Pas, D., Labaye, C., & Claeys, P. (2014). The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium). In: A. C. Da Silva, M. T.Whalen, J.Hladil, L.Chadimova, D.Chen, S.Spassov, F.Boulvain, & X.Devleeschouwer (Eds.), Magnetic susceptibility application: a window onto ancient environments and climate (Vol. 414, pp. 245–256). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.3
    [Google Scholar]
  32. De Vleeschouwer, D., Da Silva, A. C., Sinnesael, M., Chen, D., Day, J. E., Whalen, M. T., … Claeys, P. (2017). Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nature Communications, 8, 2268. https://doi.org/10.1038/s41467‐017‐02407‐1
    [Google Scholar]
  33. De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P., Sobień, K., & Claeys, P. (2013). The astronomical rhythm of Late‐Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth and Planetary Science Letters, 365, 25–37. https://doi.org/10.1016/j.epsl.2013.01.016
    [Google Scholar]
  34. De Vleeschouwer, D., Whalen, M. T., Day, J. E., & Claeys, P. (2012). Cyclostratigraphic calibration of the Frasnian (Late Devonian) time‐scale (Western Alberta, Canada). GSA Bulletin, 124, 928–942. https://doi.org/10.1130/B30547.1
    [Google Scholar]
  35. Doglioni, C., & Goldhammer, R. K. (1988). Compaction‐induced subsidence in the margin of a carbonate platform. Basin Research, 1, 237–246. https://doi.org/10.1111/j.1365‐2117.1988.tb00019.x
    [Google Scholar]
  36. Dörling, S. L., Dentith, M. C., Groves, D. I., Playford, P. E., Vearncombe, J. R., Muhling, P., & Windrim, D. (1996). Heterogeneous brittle deformation in the Devonian carbonate rocks of the Pillara Range, Canning Basin: Implications for the structural evolution of the Lennard Shelf. Australian Journal of Earth Sciences, 43, 15–29. https://doi.org/10.1080/08120099608728232
    [Google Scholar]
  37. Dorobek, S. L. (2008). Tectonic and depositional controls on syn‐rift carbonate platform sedimentation. In: J.Lukasik, & J. A.Simo (Eds.), Controls on carbonate platform and reef development (Vol. 89, pp. 57–81). Society of Sedimentary Geology, Special Publication. https://doi.org/10.2110/pec.08.89.0057
    [Google Scholar]
  38. Drummond, C. N. (1999). Bed‐thickness structure of multi‐sourced ramp turbidites: Devonian Brallier Formation, Central Appalachian Basin. Journal of Sedimentary Research, 69, 115–121. https://doi.org/10.2110/jsr.69.115
    [Google Scholar]
  39. Drummond, C. N., & Coates, J. (2000). Exploring the statistics of sedimentary bed thicknesses ‐ two case studies. Journal of Geoscience Education, 48, 487–499. https://doi.org/10.5408/1089‐9995‐48.4.487
    [Google Scholar]
  40. Eberli, G. P. (2013). The uncertainties involved in extracting amplitude and frequency of orbitally driven sea‐level fluctuations from shallow‐water carbonate cycles. Sedimentology, 60, 64–84. https://doi.org/10.1111/sed.12011
    [Google Scholar]
  41. Ellwood, B. B., Algeo, T. J., El Hassani, A., Tomkin, J. H., & Rowe, H. D. (2011). Defining the timing and duration of the Kačák Interval within the Eifelian/Givetian boundary GSSP, Mech Irdane, Morocco, using geochemical and magnetic susceptibility patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 74–84. https://doi.org/10.1016/j.palaeo.2010.10.012
    [Google Scholar]
  42. Ellwood, B. B., Crick, R. E., El Hassani, A., Benoist, S. L., & Young, R. H. (2000). Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: Detrital input versus carbonate productivity. Geology, 28, 1135–1138. https://doi.org/10.1130/0091‐7613(2000)28%3C1135:MEACMA%3E2.0.CO;2
    [Google Scholar]
  43. Ellwood, B. B., Tomkin, J. H., El Hassani, A., Bultynck, P., Brett, C. E., Schindler, E., … Bartholomew, A. J. (2011). A climate‐driven model and development of a floating point time scale for the entire Middle Devonian Givetian Stage: A test using magnetostratigraphy susceptibility as a climate proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 85–95. https://doi.org/10.1016/j.palaeo.2010.10.014
    [Google Scholar]
  44. Ellwood, B. B., Wang, W. H., Tomkin, J. H., Ratcliffe, K. T., El Hassani, A., & Wright, A. M. (2013). Testing high resolution magnetic susceptibility and gamma radiation methods in the Cenomanian‐Turonian (Upper Cretaceous) GSSP and near‐by coeval section. Palaeogeography, Palaeoclimatology, Palaeoecology, 378, 75–90. https://doi.org/10.1016/j.palaeo.2013.02.018
    [Google Scholar]
  45. Fischer, A. G. (1964). The Lofer cyclothems of the Alpine Triassic. In: D. F.Merriam (Ed.), Symposium on cyclic sedimentation (Vol. 169, pp. 107–149). Kansas Geological Survey Bulletin.
    [Google Scholar]
  46. García‐Alcalde, J. L., Ellwood, B. B., Soto, F., Truyóls‐Massoni, M., & Tomkin, J. H. (2012). Precise timing of the Upper Taghanic Biocrisis, Geneseo Bioevent, in the Middle‐Upper Givetian (Middle Devonian) boundary in Northern Spain using biostratigraphic and magnetic susceptibility data sets. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–314, 26–40. https://doi.org/10.1016/j.palaeo.2011.10.006
    [Google Scholar]
  47. George, A. D., Chow, N., & Trinajstic, K. M. (2009). Syndepositional fault control on Lower Frasnian platform evolution, Lennard Shelf, Canning Basin, Australia. Geology, 37, 331–334. https://doi.org/10.1130/G25461A.1
    [Google Scholar]
  48. George, A. D., Trinajstic, K. M., & Chow, N. (2009). Frasnian reef evolution and palaeogeography, SE Lennard Shelf, Canning Basin, Australia. In: P.Könighsof (Ed.), Devonian change: case studies in palaeogeography and palaeoecology (Vol. 314, pp. 73–107). Geological Society, London, Special Publications. doi: 10.1144/SP314.4. https://doi.org/10.1144/SP314.4
    [Google Scholar]
  49. Goldhammer, R. K. (1997). Compaction and decompaction algorithms for sedimentary carbonates. Journal of Sedimentary Research, 67, 26–35. https://doi.org/10.1306/D42684E1‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  50. Goldhammer, R. K., Lehmann, P. J., & Dunn, P. A. (1993). The origin of high‐frequency platform carbonate cycles and third‐order sequences (Lower Ordovician El Paso Gp, West Texas); constraints from outcrop data and stratigraphic modeling. Journal of Sedimentary Research, 63, 318–359. https://doi.org/10.1306/D4267AFA‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  51. Goodman, L. A. (1968). The analysis of cross‐classified data: Independence, quasi‐independance and interactions in contingency tables with or without missing entries. Journal of the American Statistical Association, 63, 1091–1131. https://doi.org/10.1080/01621459.1968.10480916
    [Google Scholar]
  52. Grabowski, J., Narkiewicz, M., & De Vleeschouwer, D. (2015). Forcing factors of the magnetic susceptibility signal in lagoonal and subtidal depositional cycles from the Zachełmie section (Eifelian, Holy Cross Mountains, Poland). In: A. C. Da Silva, M. T.Whalen, J.Hladil, L.Chadimova, D.Chen, S.Spassov, F.Boulvain, & X.Devleeschouwer (Eds.), Magnetic susceptibility application: A window onto ancient environments and climate (Vol. 414, pp. 225–244). Geological Society, London, Special Publications. https://doi.org/10.1144/SP414.5
    [Google Scholar]
  53. Harper, C. W. J. (1984a). Facies model revisited: An examination of quantitative methods. Geoscience Canada, 11, 203–207.
    [Google Scholar]
  54. Harper, C. W. J. (1984b). Improved methods of facies sequence analysis, In: R. G.Walker (Ed.), Facies models (Second Edition, pp. 1–13), Geoscience Canada Reprint Series 1, Geological Association of Canada.
    [Google Scholar]
  55. Hilgen, F. J., Hinnov, L. A., Aziz, H. A., Abels, H. A., Batenburg, S., Bosmans, J. H., … Zeeden, C. (2015). Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. In: D. G.Smith, R. J.Bailey, P. M.Burgess, & A. J.Fraser (Eds.), Strata and time: Probing the gaps in our understanding (Vol. 404, pp. 157–197). Geological Society, London, Special Publications. https://doi.org/10.1144/SP404.12
    [Google Scholar]
  56. Hill, J., Wood, R., Curtis, A., & Tetzlaff, D. M. (2012). Preservation of forcing signals in shallow water carbonate sediments. Sedimentary Geology, 275, 79–92. https://doi.org/10.1016/j.sedgeo.2012.07.017
    [Google Scholar]
  57. Hillbun, K. N. (2015). Re‐evaluating the late devonian mass extinction: A geochemical investigation of the relationship between carbon isotope fluctuations, faunal turnover, and paleoenvironmental change recorded in Upper Devonian carbonates of the Lennard Shelf, Western Australia. Ph.D. Thesis, Seattle: University of Washington, 266 p.
  58. Hillbun, K., Playton, T. E., Katz, D. A., Tohver, E., Trinajstic, K., Haines, P. W., … Montgomery, P. (2016). Correlation and sequence stratigraphic interpretation of Upper Devonian carbonate slope facies using carbon isotope chemostratigraphy, Lennard Shelf, Canning Basin, Western Australia. In: T. E.Playton, C.Kerans, & J. A. W.Weissenberger (Eds.), New advances in Devonian carbonates: outcrop analogs, reservoirs, and chronostratigraphy (Vol. 107, pp. 248–301). SEPM Special Publication. https://doi.org/10.2110/sepmsp.107.09
    [Google Scholar]
  59. Hinnov, L. A. (2000). New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28, 419–475. https://doi.org/10.1146/annurev.earth.28.1.419
    [Google Scholar]
  60. Hinnov, L. A. (2018). Cyclostratigraphy and astrochronology in 2018. In: M.Montenari (Ed.), Stratigraphy & timescales: Cyclostratigraphy and astrochronology (pp. 1–80). Cambridge, MA: Academic Press. https://doi.org/10.1016/bs.sats.2018.08.004
    [Google Scholar]
  61. Hinnov, L. A., Wu, H., & Fang, Q. (2016). Reply to the comment on “Geologic evidence for chaotic behavior of the planets and its constraints on the third‐order eustatic sequences at the end of the Late Paleozoic Ice Age” by Qiang Fang, Huaichun Wu, Linda A. Hinnov, Xiuchun Jing, Xunlian Wang, and Qingchun Jiang [Palaeogeography Palaeoclimatology Palaeoecology 400 (2015) 848–859]. Palaeogeography, Palaeoclimatology, Palaeoecology, 461, 475–480. https://doi.org/10.1016/j.palaeo.2016.07.030
    [Google Scholar]
  62. Hocking, R. M., & Playford, P. E. (2000). Cycle types in carbonate platform facies, Devonian reef complexes, Canning Basin, Western Australia. Geological Survey of Western Australia, Annual Review, 2000–2001, 74–80.
    [Google Scholar]
  63. Kaufmann, B. (2006). Calibrating the Devonian Time Scale: A synthesis of U‐Pb ID‐TIMS ages and conodont stratigraphy. Earth‐Science Reviews., 76, 175–190. https://doi.org/10.1016/j.earscirev.2006.01.001
    [Google Scholar]
  64. Kemp, D. B. (2011). Shallow‐water records of astronomical forcing and the eccentricity paradox. Geology, 39, 491–494. https://doi.org/10.1130/G31878.1
    [Google Scholar]
  65. Kemp, D. B., & Van Manen, S. M. (2019). Metre‐scale cycles in shallow water carbonate successions: Milankovitch and stochastic origins. Sedimentology, https://doi.org/10.1111/sed.12609
    [Google Scholar]
  66. Kemp, D. B., Van Manen, S. M., Pollitt, D. A., & Burgess, P. M. (2016). Investigating the preservation of orbital forcing in peritidal carbonates. Sedimentology, 63, 1701–1718. https://doi.org/10.1111/sed.12282
    [Google Scholar]
  67. Klapper, G. (2007). Frasnian (Upper Devonian) conodont succession at Horse Spring and correlative sections, Canning Basin, Western Australia. Journal of Paleontology, 81, 513–537. https://doi.org/10.1666/05088.1
    [Google Scholar]
  68. Koerschner, W. F.III, & Read, J. F. (1989). Field and modelling studies of Cambrian carbonate cycles, Virginia Appalachians. Journal of Sedimentary Research, 59, 654–687. https://doi.org/10.1306/212F9048‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  69. Königshof, P., Da Silva, A. C., Suttner, T. J., Kido, E., Waters, J., Carmichael, S. K., … Spassov, S. (2015). Shallow‐water facies setting around the Kačák Event: a multidisciplinary approach. In: R. T.Becker, P.Könighsof, & C. E.Brett (Eds.), Devonian climate, sea level and evolutionary events (Vol. 423, pp. 171–199). Geological Society, London, Special Publications. https://doi.org/10.1144/SP423.4
    [Google Scholar]
  70. Lehrmann, D. J., & Goldhammer, R. K. (1999). Secular variation in parasequence and facies stacking patterns of platform carbonates: a guide to application of stacking pattern analysis in strata of diverse ages and settings. In: P. M.Harris, A. H.Saller, & J. A.Simo (Eds.), Advances in carbonate sequence stratigraphy: applications to reservoirs, outcrops, and models (Vol. 63, pp. 187–225). SEPM Special Publication.
    [Google Scholar]
  71. Machlus, M. L., Olsen, P. E., Christie‐Blick, N., & Hemming, S. R. (2008). Spectral analysis of the lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: Support for Milankovitch cyclicity. Earth and Planetary Science Letters, 268, 64–75. https://doi.org/10.1016/j.epsl.2007.12.024
    [Google Scholar]
  72. Martinez, M. (2018). Chapter four ‐ mechanisms of preservation of the eccentricity and longer‐term milankovitch cycles in detrital supply and carbonate production in hemipelagic marl‐limestone alternations. In: M.Montenari (Ed.), Stratigraphy & timescales: Cyclostratigraphy and Astrochronology (pp. 189–218). Cambridge, MA: Academic Press. https://doi.org/10.1016/bs.sats.2018.08.002
    [Google Scholar]
  73. Martinez, M., Kotov, S., De Vleeschouwer, D., Damien, P., & Pälike, H. (2016). Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series. Climate of the past, 12, 1765–1783. https://doi.org/10.5194/cp‐12‐1765‐2016
    [Google Scholar]
  74. McLean, D. J., & Mountjoy, E. W. (1994). Allocyclic control on Late Devonian buildup development, southern Canadian Rocky Mountains. Journal of Sedimentary Research, 64, 326–394. https://doi.org/10.1306/D4267FBE‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  75. Meyers, S. R. (2015). The evaluation of eccentricity‐related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography, 30, 1625–1640. https://doi.org/10.1002/2015PA002850
    [Google Scholar]
  76. Meyers, S. R. (2019). Cyclostratigraphy and the problem of astrochronologic testing. Earth‐Science Reviews, 190, 190–223. https://doi.org/10.1016/j.earscirev.2018.11.015
    [Google Scholar]
  77. Meyers, S. R., & Sageman, B. B. (2007). Quantification of deep‐time orbital forcing by average spectral misfit. American Journal of Science, 307, 773–792. https://doi.org/10.2475/05.2007.01
    [Google Scholar]
  78. Meyers, S. R., Sageman, B. B., & Hinnov, L. A. (2001). Integrated quantitative stratigraphy of the Cenomanian‐Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71, 628–644. https://doi.org/10.1306/012401710628
    [Google Scholar]
  79. Miall, A. D. (1973). Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20, 347–364. https://doi.org/10.1111/j.1365‐3091.1973.tb01615.x
    [Google Scholar]
  80. Ndiaye, M. A. (2007a). A multipurpose software for stratigraphic signal analysis. Ph.D. Thesis. Université de Genève, Département de Géologie et Paléontologie, 118 p.
  81. Ndiaye, M. A. (2007b). Multipurpose software for stratigraphic signal analysis (version 1.0.4). Retrieved from http://home.etu.unige.ch/~ndiayma8/
    [Google Scholar]
  82. Osleger, D. (1991). Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls. Geology, 19, 917–920. https://doi.org/10.1130/0091‐7613(1991)019%3C0917:SCCIFA%3E2.3.CO;2
    [Google Scholar]
  83. Pas, D., Hinnov, L., Day, J. E., Kodama, K., Sinnesael, M., & Liu, W. (2018). Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth and Planetary Science Letters, 488, 102–114. https://doi.org/10.1016/j.epsl.2018.02.010
    [Google Scholar]
  84. Peterhänsel, A., & Egenhoff, S. O. (2008) Lateral variabilities of cycle stacking patterns in the Latemar, Triassic, Italian Dolomites. In: J.Lukasik, & J. A.Simo (Ed.), Controls on carbonate platform and reef development (Vol. 89 pp. 217–229), SEPM Special Publication. https://doi.org/10.2110/pec.08.89.0217
    [Google Scholar]
  85. Playford, P. E. (1980). Devonian “Great Barrier Reef” of Canning Basin, Western Australia. AAPG Bulletin, 64, 814–840. https://doi.org/10.1306/2F9193BE‐16CE‐11D7‐8645000102C1865D
    [Google Scholar]
  86. Playford, P. E., Hocking, R. M., & Cockbain, A. E. (2009). Devonian reef complexes of the Canning Basin, Western Australia. Bulletin of the Geological Survey of. Western Australia, 145, 444. https://doi.org/10.2110/sepmsp.106.05
    [Google Scholar]
  87. Playford, P. E., Hurley, N. F., Kerans, C., & Middleton, M. F. (1989). Reefal platform development, Devonian of the Canning Basin, Western Australia. In: P. D.Crevello, J. L.Wilson, J. F.Sarg, & J. F.Read (Eds.), Controls on carbonate platform and basin development (Vol. 44, pp. 187–202). SEPM Special Publication. https://doi.org/10.2110/pec.89.44.0187
    [Google Scholar]
  88. Playton, T. E., Hocking, R. M., Tohver, E., Hillbun, K., Haines, P. W., & Trinajstic, K. … Wray, D. (2016). Integrated stratigraphic correlation of Upper Devonian platform‐to‐basin carbonate sequences, Lennard Shelf, Canning Basin, Western Australia: advances in carbonate margin‐to‐slope sequence stratigraphy and stacking patterns. In: T. E.Playton, C.Kerans, & J. A. W.Weissenberger (Eds), New advances in Devonian carbonates: outcrop analogs, reservoirs, and chronostratigraphy (Vol. 107, 248–301). SEPM Special Publication. https://doi.org/10.2110/sepmsp.107.10
    [Google Scholar]
  89. Playton, T. E., & Kerans, C. (2015). Late Devonian carbonate margins and foreslopes of the Lennard Shelf, Canning Basin, Western Australia, part A: Development during backstepping and the aggradation‐to‐progradation transition. Journal of Sedimentary Research, 85, 1334–1361. https://doi.org/10.2110/jsr.2015.84
    [Google Scholar]
  90. Pollitt, D. A., Burgess, P. M., & Wright, V. P. (2014). Investigating the occurrence of hierarchies of cyclicity in platform carbonates. In: D. G.Smith, R. J.Bailey, P. M.Burgess, & A. J.Fraser (Eds.), Strata and Time: Probing the Gaps in Our Understanding (Vol. 404, pp. 123–150). Geological Society, London, Special Publications. https://doi.org/10.1144/SP404.3
    [Google Scholar]
  91. Powers, D. W., & Easterling, R. G. (1982). Improved methodology for using embedded Markov chains to describe cyclical sediments. Journal of Sedimentary Petrology, 52, 913–923. https://doi.org/10.1306/212F808F‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  92. Pratt, B. R., & James, N. P. (1986). The St George Group (Lower Ordovician) of western Newfoundland: Tidal flat island model for carbonate sedimentation in shallow epeiric seas. Sedimentology, 33, 313–343. https://doi.org/10.1111/j.1365‐3091.1986.tb00540.x
    [Google Scholar]
  93. Prokoph, A., & Agterberg, F. P. (1999). Detection of sedimentary cyclicity and stratigraphic completeness by wavelet analysis: An application to late Albian cyclostratigraphy of the western Canada sedimentary basin. Journal of Sedimentary Research, 69, 862–875. https://doi.org/10.2110/jsr.69.862
    [Google Scholar]
  94. Rankey, E. C. (2002). Spatial patterns of sediment accumulation on a Holocene carbonate tidal flat, northwest Andros Island, Bahamas. Journal of Sedimentary Research, 72, 591–601. https://doi.org/10.1306/020702720591
    [Google Scholar]
  95. Read, J. F. (1973). Carbonate cycles, Pillara Formation (Devonian), Canning Basin, Western Australia. Bulletin of Canadian Petroleum Geology, 21, 38–51. https://doi.org/10.35767/gscpgbull.21.1.038
    [Google Scholar]
  96. Read, J. F., Osleger, D., & Elrick, M. (1991). Two‐dimensional modeling of carbonate ramp sequences and component cycles. In: E. K.Franseen, W. L.Watney, C. G.St. Kendall, & W.Ross (Eds.), Sedimentary modeling: Computer simulations and methods for improved parameter definition. (Vol. 233, pp. 473–488). Kansas Geological Survey Bulletin.
    [Google Scholar]
  97. Riquier, L., Averbuch, O., Devleeschouwer, X., & Tribovillard, N. (2010). Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian‐Famennian boundary sections from Northern Africa and Western Europe: Implications for paleoenvironmental reconstructions. International Journal of Earth Sciences, 99, 57–73. https://doi.org/10.1007/s00531‐009‐0492‐7
    [Google Scholar]
  98. Rothman, D. H., & Grotzinger, J. P. (1995). Scaling properties of gravity‐driven sediments. Nonlinear Processes in Geophysics, 2, 178–185. https://doi.org/10.5194/npg‐2‐178‐1995
    [Google Scholar]
  99. Samankassou, E., & Enos, P. (2019). Lateral facies variations in the Triassic Dachstein platform: A challenge for cyclostratigraphy. The Depositional Record, 5, 469–485. https://doi.org/10.1002/dep2.80
    [Google Scholar]
  100. Sardar Abadi, A., Da Silva, A. C., Amini, A., Boulvain, F., Sardar Abadi, M. H., & Aliabadi, A. A. (2014). Tectonically‐controlled sedimentation: Impact on sediment supply and basin evolution during the Middle Jurassic Kashafrud Formation, Kopeh‐Dagh Basin, northeast Iran. International Journal of Earth Sciences, 103, 2233–2254. https://doi.org/10.1007/s00531‐014‐1041‐6
    [Google Scholar]
  101. Schlager, W. (2005). Carbonate Sedimentology and Sequence Stratigraphy. Concepts in Sedimentology and Paleontology (Vol. 8, 200 p.). SEPM. https://doi.org/10.2110/csp.05.08
    [Google Scholar]
  102. Schwarzacher, W. (2000). Repetitions and cycles in stratigraphy. Earth‐Science Reviews, 50, 51–75. https://doi.org/10.1016/S0012‐8252(99)00070‐7
    [Google Scholar]
  103. Śliwiński, M. G., Whalen, M. T., Meyer, F. J., & Majs, F. (2012). Constraining clastic input controls on magnetic susceptibility and trace element anomalies during the Late Devonian punctata Event in the Western Canada Sedimentary Basin. Terra Nova, 24, 301–309. https://doi.org/10.1111/j.1365‐3121.2012.01063.x
    [Google Scholar]
  104. Smith, D. G. (2019). Millennial‐scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: Comment. Geology, 47, e488–e488. https://doi.org/10.1130/G46475C.1
    [Google Scholar]
  105. Southgate, P. N., Kennard, J. M., Jackson, M. J., O’Brien, P. E., & Sexton, M. J. (1993). Reciprocal lowstand clastic and highstand carbonate sedimentation, subsurface Devonian reef complex, Canning Basin, Western Australia. In: R. G.Loucks, & J. F.Sarg (Eds.), Carbonate sequence stratigraphy (Vol. 57, pp. 157–179). AAPG Memoir. https://doi.org/10.1306/M57579C6
    [Google Scholar]
  106. Strasser, A. (2018). Cyclostratigraphy of shallow‐marine carbonates: limitations and opportunities. In: M.Montenari (Ed.), Stratigraphy & timescales: cyclostratigraphy and astrochronology (pp. 151–187). Cambridge, MA: Academic Press. https://doi.org/10.1016/bs.sats.2018.07.001
    [Google Scholar]
  107. Tucker, M., & Garland, J. (2010). High‐frequency cycles and their sequence stratigraphic context: Orbital forcing and tectonic controls on Devonian cyclicity, Belgium (The André Dumont medallist lecture). Geologica Belgica, 13, 213–240.
    [Google Scholar]
  108. Türk, G. (1979). Transition analysis of structural sequences: Discussion. Geological Society of America Bulletin, 90, 989–991. https://doi.org/10.1130/0016‐7606(1979)90%3C989:TAOSSD%3E2.0.CO;2
    [Google Scholar]
  109. Ward, B. W. (1999). Tectonic control on backstepping sequences revealed by mapping of Frasnian backstepped platforms, Devonian reef complexes, Napier Range, Canning Basin, Western Australia. In: P. M.Harris, A. H.Saller, & J. A.Simo (Eds.), Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models (Vol. 63, pp. 47–74). SEPM Special Publication. https://doi.org/10.2110/pec.99.11.0047
    [Google Scholar]
  110. Weedon, G. P. (2003). Time‐series analysis and cyclostratigraphy: Examining stratigraphic records of environmental cycles, Cambridge: Cambridge University Press.
    [Google Scholar]
  111. Weij, R., Reijmer, J. J. G., Eberli, G. P., & Swart, P. K. (2018). The limited link between accommodation space, sediment thickness, and inner platform facies distribution (Holocene‐Pleistocene, Bahamas). The Depositional Record, 5, 400–420. https://doi.org/10.1002/dep2.50
    [Google Scholar]
  112. Westphal, H., Hilgen, F., & Munnecke, A. (2010). An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth‐Science Reviews, 99, 19–30. https://doi.org/10.1016/j.earscirev.2010.02.001
    [Google Scholar]
  113. Whalen, M. T., & Day, J. E. (2008). Magnetic susceptibility, biostratigraphy, and sequence stratigraphy: Insights into Devonian carbonate platform development and basin infilling, Western Alberta. In: J.Lukasik, & J. A.Simo (Eds.), Controls on carbonate platform and reef development (Vol. 89, pp. 291–314). Society of Sedimentary Geology, Special Publication. https://doi.org/10.2110/pec.08.89.0291
    [Google Scholar]
  114. Whalen, M. T., & Day, J. (2010). Cross‐basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate: Upper Devonian, Western Canada. Journal of Sedimentary Research, 80, 1109–1127. https://doi.org/10.2110/jsr.2010.093
    [Google Scholar]
  115. Wilkinson, B. H., Drummond, C. N., Diedrich, N. W., & Rothman, E. D. (1999). Poisson processes of carbonate accumulation on Paleozoic and Holocene platforms. Journal of Sedimentary Research, 69, 338–350. https://doi.org/10.2110/jsr.69.338
    [Google Scholar]
  116. Wilkinson, B. H., Drummond, C. N., Rothman, E. D., & Diedrich, N. W. (1997). Stratal order in peritidal carbonate sequences. Journal of Sedimentary Research, 67, 1068–1082. https://doi.org/10.1306/D42686CB‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  117. Xu, H., & Maccarthy, I. A. J. (1998). Markov chain analysis of vertical facies sequences using a computer software package (SAVFS): Courtmacsherry Formation (Tournaisian), Southern Ireland. Computers & Geosciences, 24, 131–139. https://doi.org/10.1016/S0098‐3004(97)00086‐1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12468
Loading
/content/journals/10.1111/bre.12468
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error