1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Quartz‐rich sandstones can be produced through multiple sedimentary processes, potentially acting in combination, such as extensive sedimentary recycling or intense chemical weathering. Determining the provenance of such sedimentary rocks can be challenging due to low amounts of accessory minerals, the fact that the primary mineralogy may have been altered during transport, storage or burial and difficulties in the recognition of polycyclic components. This study uses zircon and apatite U‐Pb geochronology, apatite trace elements, zircon‐tourmaline‐rutile indices and petrographic observations to investigate the sedimentary history of mineralogically mature mid‐Carboniferous sandstones of the Tullig Cyclothem, Clare Basin, western Ireland. The provenance data show that the sandstones have been dominantly and ultimately sourced from three basement terranes: older Laurentian‐ associated rocks (ca. 900–2500 Ma) which lay to the north of the basin, peri‐Gondwanan terranes (ca. 500–700 Ma) to the south and igneous intrusive rocks associated with the Caledonian Orogenic Cycle (ca. 380–500 Ma). However, the multi‐proxy approach also helps constrain the sedimentary history and suggests that not all grain populations were derived directly from their original source. Grains with a Laurentian or a Caledonian affinity have likely been recycled through Devonian basins to the south. Grains with a peri‐Gondwanan affinity appear to be first cycle and are potentially derived from south/southwest of the basin. Taken as a whole, these data are consistent with input into the basin from the south and southwest, with the reworking of older sedimentary rocks, rather than intensive first‐cycle chemical weathering, likely explaining the compositional maturity of the sandstones. This study highlights the need for a multi‐proxy provenance approach to constrain sedimentary recycling, particularly in compositionally mature sandstones, as the use of zircon geochronology alone would have led to erroneous provenance interpretations. Zircon, together with U‐Pb geochronology from more labile phases such as apatite, can help distinguish first‐cycle versus polycyclic detritus.

,

This multi‐proxy provenance approach identifies partly recycled sandstones in the mid‐Carboniferous Tullig Cyclothem of the Clare Basin. Taken as a whole, these data are consistent with input into the basin from the south and southwest, with first cycle peri‐Gondwanan grains and recycling of Caledonian and Laurentian grains through Devonian basins to the south.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12469
2021-01-22
2021-03-07
Loading full text...

Full text loading...

References

  1. Andersen, T. (2005). Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216, 249–270. https://doi.org/10.1016/j.chemgeo.2004.11.013
    [Google Scholar]
  2. Andò, S., Garzanti, E., Padoan, M., & Limonta, M. (2012). Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280, 165–178. https://doi.org/10.1016/j.sedgeo.2012.03.023
    [Google Scholar]
  3. Bailey, I., Hole, G. M., Foster, G. L., Wilson, P. A., Storey, C. D., Trueman, C. N., & Raymo, M. E. (2013). An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice‐rafted debris. Quaternary Science Reviews, 75, 181–194. https://doi.org/10.1016/j.quascirev.2013.06.004
    [Google Scholar]
  4. Barros, R., & Menuge, J. F. (2016). The origin of spodumene pegmatites associated with the leinster granite in Southeast Ireland. The Canadian Mineralogist, 54, 847–862. https://doi.org/10.3749/canmin.1600027
    [Google Scholar]
  5. Bateman, R. M., & Catt, J. A. (2007). Provenance and Palaeoenvironmental Interpretation of Superficial Deposits, with Particular Reference to Post‐Depositional Modification of Heavy Mineral Assemblages. In M. A.Mange, & D. T.Wright (Eds.), Heavy minerals in use, developments in sedimentology, Vol. 58 (pp. 151–188). Amsterdam: Elsevier. https://doi.org/10.1016/S0070‐4571(07)58005‐2.
    [Google Scholar]
  6. Bea, F., & Montero, P. (2013). Diffusion‐induced disturbances of the U‐Pb isotope system in pre‐magmatic zircon and their influence on SIMS dating. A Numerical Study. Chemical Geology, 349–350, 1–17. https://doi.org/10.1016/j.chemgeo.2013.04.014
    [Google Scholar]
  7. Best, J. L., & Wignall, P. B. (2016a). A Field guide to the carboniferous sediments of the Shannon Basin, Western Ireland, Hoboken, NJ: Wiley‐Blackwell. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119257141.
    [Google Scholar]
  8. Best, J. L., & Wignall, P. B. (2016b).Introduction to the field guide. In J. L.Best, & P. B.Wignall (Eds.), A field guide to the carboniferous sediments of the Shannon Basin, Western Ireland (pp. 1–15). Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781119257141.ch1.
    [Google Scholar]
  9. Best, J. L., Wignall, P. B., Stirling, E. J., Obrock, E., & Bryk, A. (2016). The tullig and kilkee cyclothems in Southern County Clare. In J. L.Best, & P. B.Wignall (Eds.), A field guide to the carboniferous sediments of the Shannon Basin, Western Ireland (pp. 240–328). Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781119257141.ch9.
    [Google Scholar]
  10. Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J., & Foudoulis, C. (2003). TEMORA 1: A new zircon standard for Phanerozoic U‐Pb geochronology. Chemical Geology, 200, 155–170. https://doi.org/10.1016/S0009‐2541(03)00165‐7
    [Google Scholar]
  11. Blanchard, S., Matheson, E. J., Fielding, C. R., Best, J. L., Bryk, A. B., Howell, K. J., … Peakall, J. (2019). Early burial mud diapirism and its impact on stratigraphic architecture in the Carboniferous of the Shannon Basin, County Clare, Ireland. Sedimentology, 66, 329–361. https://doi.org/10.1111/sed.12492
    [Google Scholar]
  12. Blatt, H. (1967). Provenance determinations and recycling of sediments. Journal of Sedimentary Petrology, 37, 1031–1044. https://doi.org/10.1306/74D71825‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  13. Buchwaldt, R. (1999). Geochemistry, Geochronology and Isotopic Investigation on the Galway Granite Batholith, Western Ireland. (PhD), Johannes Gutenberg‐Universität Mainz.https://doi.org/10.13140/RG.2.1.4450.6963
  14. Chew, D. M., Babechuk, M. G., Cogné, N., Mark, C., O'Sullivan, G. J., Henrichs, I. A., … McKenna, C. A. (2016). (LA, Q)‐ICPMS trace‐element analyses of Durango and McClure Mountain apatite and implications for making natural LA‐ICPMS mineral standards. Chemical Geology, 435, 35–48. https://doi.org/10.1016/j.chemgeo.2016.03.028
    [Google Scholar]
  15. Chew, D. M., & Donelick, R. A. (2012). Combined Apatite Fission Track and U‐Pb dating by LA‐ICP‐MS and its application in apatite provenance analysis. In P. J.Sylvester (Ed.), Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks (Vol. 42, pp. 219–247). Mineralogical Association of Canada.
    [Google Scholar]
  16. Chew, D., Drost, K., & Petrus, J. A. (2019). Ultrafast, > 50 Hz LA‐ICP‐MS spot analysis applied to U‐Pb dating of zircon and other u‐bearing minerals. Geostandards and Geoanalytical Research, 43, 39–60. https://doi.org/10.1111/ggr.12257
    [Google Scholar]
  17. Chew, D., O’Sullivan, G., Caracciolo, L., Mark, C., & Tyrrell, S. (2020). Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U‐Pb provenance analysis. Earth‐Science Reviews, 202, 1–27. https://doi.org/10.1016/j.earscirev.2020.103093
    [Google Scholar]
  18. Chew, D. M., Petrus, J. A., & Kamber, B. S. (2014). U‐Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006
    [Google Scholar]
  19. Chew, D. M., & Stillman, C. J. (2009). Late Caledonian orogeny and magmatism. In C. H.Holland, & I. S.Sanders (Eds.), The Geology of Ireland (pp. 143–173). Edinburgh: Dunedin Academic Press.
    [Google Scholar]
  20. Chew, D. M., & Strachan, R. A. (2014). The laurentian caledonides of Scotland and Ireland. Geological Society, London, Special Publications, 390, 45–91. https://doi.org/10.1144/SP390.16
    [Google Scholar]
  21. Chew, D. M., Sylvester, P. J., & Tubrett, M. N. (2011). U‐Pb and Th‐Pb dating of apatite by LA‐ICPMS. Chemical Geology, 280, 200–216. https://doi.org/10.1016/j.chemgeo.2010.11.010
    [Google Scholar]
  22. Clements, B., Sevastjanova, I., Hall, R., Belousova, E. A., Griffin, W. L., & Pearson, N. (2012). Detrital zircon U‐Pb age and Hf‐isotope perspective on sediment provenance and tectonic models in SE Asia. In E. T.Rasbury, S. R.Hemming, & N. R.Riggs (Eds.), Mineralogical and geochemical approaches to provenance (pp. 37–61). Boulder, CO: Geological Society of America. https://doi.org/10.1130/2012.2487(03).
    [Google Scholar]
  23. Collinson, J. D., Martinsen, O. J., Bakken, B., & Kloster, A. (1991). Early fill of the Western Irish Namurian Basin: A complex relationship between turbidites and deltas. Basin Research, 3, 223–242. https://doi.org/10.1111/j.1365‐2117.1991.tb00131.x
    [Google Scholar]
  24. Croker, P. F. (1995). The Clare Basin: A geological and geophysical outline. Geological Society, London, Special Publications, 93, 327–339. https://doi.org/10.1144/gsl.sp.1995.093.01.25
    [Google Scholar]
  25. D’Lemos, R. S., Strachan, R. A., & Topley, C. G. (1990). The Cadomian orogeny in the North Armorican Massif: A brief review. Geological Society, London, Special Publications, 51, 3–12. https://doi.org/10.1144/gsl.sp.1990.051.01.01
    [Google Scholar]
  26. Davies, S., & Elliott, T. (1996). Spectral gamma ray characterization of high resolution sequence stratigraphy: Examples from Upper Carboniferous fluvio‐deltaic systems, County Clare, Ireland. Geological Society, London, Special Publications, 104, 25–35. https://doi.org/10.1144/GSL.SP.1996.104.01.03
    [Google Scholar]
  27. Davies, S. J., Guion, P. D., & Gutteridge, P. (2012). Carboniferous sedimentation and volcanism on the Laurussian margin. In N. H.Woodcock, & R. A.Strachan (Eds.), Geological History of Britain and Ireland (pp. 231–273). Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781118274064.ch14.
    [Google Scholar]
  28. Derham, J. M., & Feely, M. (1988). A K‐feldspar breccia from the Mo–Cu stock work deposit in the Galway Granite, west of Ireland. Journal of the Geological Society, 145, 661–667. https://doi.org/10.1144/gsjgs.145.4.0661
    [Google Scholar]
  29. Di Giulio, A., Ronchi, A., Sanfilippo, A., Balgord, E. A., Carrapa, B., & Ramos, V. A. (2017). Cretaceous evolution of the Andean margin between 36°S and 40°S latitude through a multi‐proxy provenance analysis of Neuquén Basin strata (Argentina). Basin Research, 29, 284–304. https://doi.org/10.1111/bre.12176
    [Google Scholar]
  30. Dickinson, W. R. (1988). Provenance and sediment dispersal in relation to paleotectonics and paleogeography of sedimentary basins. In K. L.Kleinspehn, & C.Paola (Eds.), New perspectives in basin analysis (pp. 3–25). New York: Springer.
    [Google Scholar]
  31. Dickinson, W. R., Lawton, T. F., & Gehrels, G. E. (2009). Recycling detrital zircons: A case study from the Cretaceous Bisbee Group of southern Arizona. Geology, 37, 503–506. https://doi.org/10.1130/g25646a.1
    [Google Scholar]
  32. Elliott, T., Pulham, A. J., & Davies, S. J. (2000). Sedimentology, sequence stratigraphy and spectral gamma ray expression of turbidite, slope, and deltaic depositional systems in an Upper Carboniferous basin‐fill succession, western Ireland. In J. R.Graham, & A.Ryan (Eds.), IAS Dublin fieldtrip guidebook (pp. 1‐40). Ireland: IAS.
    [Google Scholar]
  33. Ennis, M., Meere, P. A., Timmerman, M. J., & Sudo, M. (2015). Post‐Acadian sediment recycling in the Devonian Old Red Sandstone of Southern Ireland. Gondwana Research, 28, 1415–1433. https://doi.org/10.1016/j.gr.2014.10.007
    [Google Scholar]
  34. Fairey, B. J., Kerrison, A., Meere, P. A., Mulchrone, K. F., Hofmann, M., Gärtner, A., … Chew, D. (2018). The provenance of the Devonian Old Red Sandstone of the Dingle Peninsula, SW Ireland; the earliest record of Laurentian and peri‐Gondwanan sediment mixing in Ireland. Journal of the Geological Society, 175, 411–424. https://doi.org/10.1144/jgs2017‐099
    [Google Scholar]
  35. Fedo, C. M., Keith, N. S., & Rainbird, R. H. (2003). Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53, 277–303. https://doi.org/10.2113/0530277
    [Google Scholar]
  36. Fitzgerald, E., Feely, M., Johnston, J. D., Clayton, G., Fitzgerald, L. J., & Sevastopulo, G. D. (1994). The Variscan thermal history of west Clare, Ireland. Geological Magazine, 131, 545–558. https://doi.org/10.1017/S0016756800012152
    [Google Scholar]
  37. Flowerdew, M. J., Fleming, E. J., Morton, A. C., Frei, D., Chew, D. M., & Daly, J. S. (2019). Assessing mineral fertility and bias in sedimentary provenance studies: Examples from the Barents Shelf. Geological Society, London, Special Publications, 484, https://doi.org/10.1144/sp484.11
    [Google Scholar]
  38. Franklin, J., Tyrrell, S., Morton, A., Frei, D., & Mark, C. (2019). Triassic sand supply to the Slyne Basin, offshore western Ireland – new insights from a multi‐proxy provenance approach. Journal of the Geological Society, 176, 1120–1135. https://doi.org/10.1144/jgs2019‐085
    [Google Scholar]
  39. Gagnevin, D., Tyrrell, S., Morton, A. C., Leather, J., Lee, N., Bordas‐Le Floch, N., … Lukaye, J. (2017). Sand supply to the Lake Albert Basin (Uganda) during the Miocene‐Pliocene: A multiproxy provenance approach. Geochemistry, Geophysics, Geosystems, 18, 2133–2148. https://doi.org/10.1002/2016GC006650
    [Google Scholar]
  40. Garzanti, E., Dinis, P., Vermeesch, P., Andò, S., Hahn, A., Huvi, J., … Vezzoli, G. (2018). Dynamic uplift, recycling, and climate control on the petrology of passive‐margin sand (Angola). Sedimentary Geology, 375, 86–104. https://doi.org/10.1016/j.sedgeo.2017.12.009
    [Google Scholar]
  41. Garzanti, E., Vermeesch, P., Vezzoli, G., Andò, S., Botti, E., Limonta, M., … Yaya, N. K. (2019). Congo River sand and the equatorial quartz factory. Earth‐Science Reviews, 197, 1–23. https://doi.org/10.1016/j.earscirev.2019
    [Google Scholar]
  42. Ghani, A. A., & Atherton, M. P. (2017). The chemical character of the Late Caledonian Donegal Granites, Ireland, with comments on their genesis. Transactions of the Royal Society of Edinburgh: Earth Sciences, 97, 437–454. https://doi.org/10.1017/S0263593300001553
    [Google Scholar]
  43. Gower, C. F. (1996). The evolution of the Grenville Province in eastern Labrador, Canada. Geological Society, London, Special Publications, 112, 197–218. https://doi.org/10.1144/gsl.sp.1996.112.01.11
    [Google Scholar]
  44. Graham, J. R. (2016). The shannon basin: structural setting and evolution. In J. L.Best, & P. B.Wignall (Eds.), A Field Guide to the Carboniferous Sediments of the Shannon Basin, Western Ireland (pp. 16–34): Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781119257141.ch2.
    [Google Scholar]
  45. Hallsworth, C. R., Morton, A. C., Claoue‐Long, J., & Fanning, C. M. (2000). Carboniferous sand provenance in the Pennine Basin, UK: Constraints from heavy mineral and detrital zircon age data. Sedimentary Geology, 137, 147–185. https://doi.org/10.1016/s0037‐0738(00)00153‐6
    [Google Scholar]
  46. Haszeldine, R. S. (1988). Crustal lineaments in the British Isles: Their relationship to Carboniferous Basins. In B. M.Besly, & G.Kelling (Eds.), Sedimentation in a synorogenic basin complex: The upper carboniferous of Northwest Europe (pp. 53–68). Glasgow: Blackie.
    [Google Scholar]
  47. Haughton, P. D. W., Todd, S. P., & Morton, A. C. (1991). Sedimentary provenance studies. Geological Society, London, Special Publications, 57, 1–11. https://doi.org/10.1144/gsl.sp.1991.057.01.01
    [Google Scholar]
  48. Henrichs, I. A., O'Sullivan, G., Chew, D. M., Mark, C., Babechuk, M. G., McKenna, C., & Emo, R. (2018). The trace element and U‐Pb systematics of metamorphic apatite. Chemical Geology, 483, 218–238. https://doi.org/10.1016/j.chemgeo.2017.12.031
    [Google Scholar]
  49. Hodson, F. (1953). The beds above the Carboniferous Limestone in North‐West County Clare, Eire. Quarterly Journal of the Geological Society, 109, 259–283. https://doi.org/10.1144/GSL.JGS.1953.109.01‐04.11
    [Google Scholar]
  50. Hodson, F., & Lewarne, G. C. (1961). A mid‐Carboniferous (Namurian) Basin in parts of the counties of Limerick and Clare, Ireland. Quarterly Journal of the Geological Society, 117, 307–333. https://doi.org/10.1144/gsjgs.117.1.0307
    [Google Scholar]
  51. Hubert, J. F. (1962). A zircon‐tourmaline‐rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. Journal of Sedimentary Research, 32, 440–450. https://doi.org/10.1306/74d70ce5‐2b21‐11d7‐8648000102c1865d
    [Google Scholar]
  52. Hurst, A., & Morton, A. (2014). Provenance models: The role of sandstone mineral–chemical stratigraphy. Geological Society, London, Special Publications, 386, 7–26. https://doi.org/10.1144/sp386.11
    [Google Scholar]
  53. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54, 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  54. Johnson, S. P., Kirkland, C. L., Evans, N. J., McDonald, B. J., & Cutten, H. N. (2018). The complexity of sediment recycling as revealed by common Pb isotopes in K‐feldspar. Geoscience Frontiers, 9, 1515–1527. https://doi.org/10.1016/j.gsf.2018.03.009
    [Google Scholar]
  55. Johnsson, M. J., Stallard, R. F., & Meade, R. H. (1988). First‐cycle quartz arenites in the Orinoco river basin, Venezuela and Colombia. The Journal of Geology, 96, 263–277. https://doi.org/10.1086/629219
    [Google Scholar]
  56. Kendall, R. S. (2017). The old red sandstone of Britain and Ireland — a review. Proceedings of the Geologists' Association, 128, 409–421. https://doi.org/10.1016/j.pgeola.2017.05.002
    [Google Scholar]
  57. Kennedy, A. K., Wotzlaw, J.‐F., Schaltegger, U., Crowley, J. L., & Schmitz, M. (2014). Eocene zircon reference material for microanalysis of U‐Th‐Pb isotopes and trace elements. The Canadian Mineralogist, 52, 409–421. https://doi.org/10.3749/canmin.52.3.409
    [Google Scholar]
  58. King, L. H., Fader, G. B., Poole, W. H., & Wanless, R. K. (1985). Geological setting and age of the flemish cap granodiorite, East of the Grand Banks of Newfoundland. Canadian Journal of Earth Sciences, 22, 1286–1298. https://doi.org/10.1139/e85‐133
    [Google Scholar]
  59. Konstantinou, A., Wirth, K. R., Vervoort, J. D., Malone, D. H., Davidson, C., & Craddock, J. P. (2014). Provenance of quartz arenites of the early paleozoic midcontinent region, USA. The Journal of Geology, 122, 201–216. https://doi.org/10.1086/675327
    [Google Scholar]
  60. Lancaster, P. J., Daly, J. S., Storey, C. D., & Morton, A. C. (2017). Interrogating the provenance of large river systems: Multi‐proxy in situ analyses in the Millstone Grit, Yorkshire. Journal of the Geological Society, 174, 75–87. https://doi.org/10.1144/jgs2016‐069
    [Google Scholar]
  61. Linnemann, U., Gerdes, A., Drost, K., & Buschmann, B. (2007). The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA‐ICP‐MS U‐Pb zircon dating and analysis of plate‐tectonic setting (Saxo‐Thuringian zone, Northeastern Bohemian Massif, Germany). In U.Linnemann, R. D.Nance, P.Kraft, & G.Zulauf (Eds.), The evolution of the Rheic Ocean: from avalonian‐cadomian active margin to alleghenian‐variscan collision (Vol. 423, pp. 61–96). Boulder, CO: Geological Society of America. https://doi.org/10.1130/2007.2423(03).
    [Google Scholar]
  62. Ludwig, K. R. (2012). User’s manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Special Publication No., 5. p. 75.
  63. Mallard, L. D., & Rogers, J. J. W. (1997). Relationship of Avalonian and Cadomian terranes to Grenville and Pan‐African events. Journal of Geodynamics, 23, 197–221. https://doi.org/10.1016/S0264‐3707(96)00049‐X
    [Google Scholar]
  64. Mange, M. A., & Maurer, H. F. W. (1992). Heavy minerals in colour. London: Chapman and Hall.
    [Google Scholar]
  65. Mark, C., Cogné, N., & Chew, D. (2016). Tracking exhumation and drainage divide migration of the Western Alps: A test of the apatite U‐Pb thermochronometer as a detrital provenance tool. GSA Bulletin, 128, 1439–1460. https://doi.org/10.1130/b31351.1
    [Google Scholar]
  66. Martinsen, O. J., & Collinson, J. D. (2002). The Western Irish Namurian Basin reassessed ‐ a discussion. Basin Research, 14, 523–542. https://doi.org/10.1046/j.1365‐2117.2002.00191.x
    [Google Scholar]
  67. Martinsen, O. J., Lien, T., Walker, R. G., & Collinson, J. D. (2003). Facies and sequential organisation of a mudstone‐dominated slope and basin floor succession: The Gull Island Formation, Shannon Basin, Western Ireland. Marine and Petroleum Geology, 20, 789–807. https://doi.org/10.1016/j.marpetgeo.2002.10.001
    [Google Scholar]
  68. Martinsen, O. J., Pulham, A. J., Elliott, T., Haughton, P., Pierce, C., Lacchia, A. R., … Sevastopulo, G. D. (2017). Deep‐water clastic systems in the Upper Carboniferous (Upper Mississippian‐Lower Pennsylvanian) Shannon Basin, western Ireland. AAPG Bulletin, 101, 433–439. https://doi.org/10.1306/021417dig17099
    [Google Scholar]
  69. Matte, P. (2001). The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova, 13, 122–128. https://doi.org/10.1046/j.1365‐3121.2001.00327.x
    [Google Scholar]
  70. McAteer, C. A., Daly, J. S., Flowerdew, M. J., Whitehouse, M. J., & Monaghan, N. M. (2014). Sedimentary provenance, age and possible correlation of the Iona Group SW Scotland. Scottish Journal of Geology, 50, 143–158. https://doi.org/10.1144/sjg2013‐019
    [Google Scholar]
  71. McDowell, F. W., McIntosh, W. C., & Farley, K. A. (2005). A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission‐track dating standard. Chemical Geology, 214, 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002
    [Google Scholar]
  72. Moecher, D. P., Kelly, E. A., Hietpas, J., & Samson, S. D. (2019). Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis. GSA Bulletin, 131, 1115–1132. https://doi.org/10.1130/b31947.1
    [Google Scholar]
  73. Moecher, D. P., & Samson, S. D. (2006). Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247, 252–266. https://doi.org/10.1016/j.epsl.2006.04.035
    [Google Scholar]
  74. Morton, A. C. (1984). Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19, 287–308. https://doi.org/10.1180/claymin.1984.019.3.04
    [Google Scholar]
  75. Morton, A. C. (2012). Value of heavy minerals in sediments and sedimentary rocks for provenance, transport history and stratigraphic correlation. In P. J.Sylvester (Ed.), Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks (Vol. 42, pp. 133–165). Canada: Mineralogical Association of Canada.
    [Google Scholar]
  76. Morton, A. C., & Hallsworth, C. (1994). Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90, 241–256. https://doi.org/10.1016/0037‐0738(94)90041‐8
    [Google Scholar]
  77. Morton, A. C., & Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29. https://doi.org/10.1016/s0037‐0738(98)00118‐3
    [Google Scholar]
  78. Morton, A. C., & Hallsworth, C. (2007). Stability of detrital heavy minerals during burial diagenesis. In M. A.Mange, & D. T.Wright (Eds.), Heavy minerals in use, developments in sedimentology, (Vol. 58, 215–245). Amsterdam: Elsevier. https://doi.org/10.1016/S0070‐4571(07)58007‐6.
    [Google Scholar]
  79. Morton, A. C., Hallsworth, C., Kunka, J., Laws, E., Payne, S., & Walder, D. (2010). Heavy‐Mineral Stratigraphy of the Clair Group (Devonian– Carboniferous) in the Clair Field, West of Shetland, U.K. In K. T.Ratcliffe, & B. A.Zaitlin (Eds.), Application of modern stratigraphic techniques: theory and case histories (Vol. 94, pp. 183–199). Tulsa, OK: SEPM Society for Sedimentary Geology. https://doi.org/10.2110/sepmsp.094.183.
    [Google Scholar]
  80. Morton, A. C., Hounslow, M. W., & Frei, D. (2013). Heavy‐mineral, mineral‐chemical and zircon‐age constraints on the provenance of Triassic sandstones from the Devon coast, southern Britain. Geologos, 19, 67–85. https://doi.org/10.2478/logos‐2013‐0005
    [Google Scholar]
  81. Morton, A. C., Knox, R. W. O., & Hallsworth, C. (2002). Correlation of reservoir sandstones using quantitative heavy mineral analysis. Petroleum Geoscience, 8, 251–262. https://doi.org/10.1144/petgeo.8.3.251
    [Google Scholar]
  82. Morton, A. C., Waters, C., Fanning, M., Chisholm, I., & Brettle, M. (2015). Origin of Carboniferous sandstones fringing the northern margin of the Wales‐Brabant Massif: Insights from detrital zircon ages. Geological Journal, 50, 553–574. https://doi.org/10.1002/gj.2572
    [Google Scholar]
  83. Murphy, J. B., Nance, R. D., Gabler, L. B., Martell, A., & Archibald, D. A. (2019). Age, Geochemistry and origin of the ardara appinite plutons, Northwest Donegal, Ireland. Geoscience Canada, 46, 31–48. https://doi.org/10.12789/geocanj.2019.46.144
    [Google Scholar]
  84. Nance, R. D., Murphy, J. B., Strachan, R. A., Keppie, J. D., Gutiérrez‐Alonso, G., Fernández‐Suárez, J., … Pisarevsky, S. A. (2008). Neoproterozoic‐early Palaeozoic tectonostratigraphy and palaeogeography of the peri‐Gondwanan terranes: Amazonian v. West African connections. Geological Society, London, Special Publications, 297, 345–383. https://doi.org/10.1144/sp297.17
    [Google Scholar]
  85. Nance, R. D., Neace, E. R., Braid, J. A., Murphy, J. B., Dupuis, N., & Shail, R. K. (2015). Does the meguma terrane extend into SW england?. Geoscience Canada, 42(1), 61–76. https://journals.lib.unb.ca/index.php/GC/article/view/21276.
    [Google Scholar]
  86. O’Sullivan, G. J., Chew, D. M., & Samson, S. D. (2016). Detecting magma‐poor orogens in the detrital record. Geology, 44, 871–874. https://doi.org/10.1130/G38245.1
    [Google Scholar]
  87. O'Sullivan, G. J., Chew, D. M., Kenny, G., Henrichs, I. A., & Mulligan, D. (2019). Collated apatite trace element data (ppm) from the literature. Retrieved fromhttps://doi.pangaea.de/10.1594/PANGAEA.906570
  88. O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., & Mulligan, D. (2020). The trace element composition of apatite and its application to detrital provenance studies. Earth‐Science Reviews, 201, 1–20. https://doi.org/10.1016/j.earscirev.2019.103044
    [Google Scholar]
  89. O'Sullivan, G. J., Chew, D. M., Morton, A. C., Mark, C., & Henrichs, I. A. (2018). An integrated apatite geochronology and geochemistry tool for sedimentary provenance analysis. Geochemistry, Geophysics, Geosystems, 19, 1309–1326. https://doi.org/10.1002/2017gc007343
    [Google Scholar]
  90. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508–2518. https://doi.org/10.1039/C1JA10172B
    [Google Scholar]
  91. Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., & Chenery, S. P. (1997). A Compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21, 115–144. https://doi.org/10.1111/j.1751‐908X.1997.tb00538.x
    [Google Scholar]
  92. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: a novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36, 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  93. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972a). Petrographic Classification and Glossary. In F. J.Pettijohn, P. E.Potter & R.Siever (Eds.), Sand and Sandstone (pp. 149–174). New York, NY: Springer. https://doi.org/10.1007/978‐1‐4615‐9974‐6_5.
    [Google Scholar]
  94. Pettijohn, F. J., Potter, P. E., & Siever, R. (1972b). Production and Provenance of Sand. In F. J.Pettijohn, P. E.Potter, & R.Siever (Eds.), Sand and Sandstone (pp. 294–326). New York, NY: Springer. https://doi.org/10.1007/978‐1‐4615‐9974‐6_8.
    [Google Scholar]
  95. Pointon, M. A., Cliff, R. A., & Chew, D. M. (2012). The provenance of Western Irish Namurian Basin sedimentary strata inferred using detrital zircon U‐Pb LA‐ICP‐MS geochronology. Geological Journal, 47, 77–98. https://doi.org/10.1002/gj.1335
    [Google Scholar]
  96. Pulham, A. J. (1989). Controls on internal structure and architecture of sandstone bodies within Upper Carboniferous fluvial‐dominated deltas, County Clare, western Ireland. Geological Society of America Special Publication, 41, 179–203. https://doi.org/10.1144/GSL.SP.1989.041.01.14
    [Google Scholar]
  97. Pyles, D. R. (2008). Multiscale stratigraphic analysis of a structurally confined submarine fan: Carboniferous Ross Sandstone, Ireland. AAPG Bulletin, 92, 557–587. https://doi.org/10.1306/01110807042
    [Google Scholar]
  98. Pyles, D. R., & Strachan, L. J. (2016). Architecture of a distributive submarine fan. In J. L.Best, & P. B.Wignall (Eds.), A field guide to the carboniferous sediments of the Shannon Basin, Western Ireland (pp. 112–173). Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781119257141.ch7.
    [Google Scholar]
  99. Rider, M. H. (1974). The Namurian of West County Clare. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, 74, 125–142. Retrieved from: www.jstor.org/stable/20518942
    [Google Scholar]
  100. Rivers, T. (1997). Lithotectonic elements of the Grenville Province: Review and tectonic implications. Precambrian Research, 86, 117–154. https://doi.org/10.1016/S0301‐9268(97)00038‐7
    [Google Scholar]
  101. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  102. Schoene, B., & Bowring, S. A. (2006). U‐Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contributions to Mineralogy and Petrology, 151, 615–630. https://doi.org/10.1007/s00410‐006‐0077‐4
    [Google Scholar]
  103. Sha, L.‐K., & Chappell, B. W. (1999). Apatite chemical composition, determined by electron microprobe and laser‐ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica Et Cosmochimica Acta, 63, 3861–3881. https://doi.org/10.1016/S0016‐7037(99)00210‐0
    [Google Scholar]
  104. Shelford, P. H. (1967). The Namurian and Upper Viséan of the Limerick Volcanic Basin, Eire. Proceedings of the Geologists' Association, 78, 121–136. https://doi.org/10.1016/S0016‐7878(67)80038‐5
    [Google Scholar]
  105. Shulaker, D. Z., Grove, M., Hourigan, J. K., Van Buer, N., Sharman, G., Howard, K., … Barth, A. P. (2019). Detrital K‐feldspar Pb isotopic evaluation of extraregional sediment transported through an Eocene tectonic breach of southern California's Cretaceous batholith. Earth and Planetary Science Letters, 508, 4–17. https://doi.org/10.1016/j.epsl.2018.11.040
    [Google Scholar]
  106. Sláma, J., & Kosler, J. (2012). Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry Geophysics Geosystems, 13, 1–17. https://doi.org/10.1029/2012gc004106
    [Google Scholar]
  107. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., … Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  108. Spencer, C. J., Cawood, P. A., Hawkesworth, C. J., Prave, A. R., Roberts, N. M. W., Horstwood, M. S. A., & Whitehouse, M. J. (2015). Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 6, 357–372. https://doi.org/10.1016/j.gsf.2014.12.001
    [Google Scholar]
  109. Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26, 207–221. https://doi.org/10.1016/0012‐821X(75)90088‐6
    [Google Scholar]
  110. Stirling, E. J. (2003). Architecture of fluvio‐deltaic sandbodies: The Namurian of Co., Clare, Ireland, as an analogue for the Plio‐Pleistocene of the Nile. Delta. (PhD), University of Leeds. Retrieved from http://etheses.whiterose.ac.uk/id/eprint/1398
  111. Strogen, P. (1988). The Carboniferous lithostratigraphy of Southeast County Limerick, Ireland, and the origin of the Shannon Trough. Geological Journal, 23, 121–137. https://doi.org/10.1002/gj.3350230202
    [Google Scholar]
  112. Thomson, S. N., Gehrels, G. E., Ruiz, J., & Buchwaldt, R. (2012). Routine low‐damage apatite U‐Pb dating using laser ablation–multicollector–ICPMS. Geochemistry, Geophysics, Geosystems, 13, 1–23. https://doi.org/10.1029/2011GC003928
    [Google Scholar]
  113. Todd, S. P. (2014). Structure of the Dingle Peninsula, SW Ireland: Evidence for the nature and timing of Caledonian, Acadian and Variscan tectonics. Geological Magazine, 152, 242–268. https://doi.org/10.1017/S0016756814000260
    [Google Scholar]
  114. Tyrrell, S., Barry, A., Sun, K., Chew, D. M., Blowick, A., Franklin, J., …Shannon, P. M.(2018). Sources, sand provenance and supply to North Atlantic margin basins during the Early Cretaceous. Paper presented at the Conjugate Margins Conference. Dalhousie University. Nova Scotia, Canada: Halifax.
  115. Tyrrell, S., Haughton, P. D. W., Daly, J. S., Kokfelt, T. F., & Gagnevin, D. (2006). The use of the common Pb isotope composition of detrital K‐feldspar grains as a provenance tool and its application to upper Carboniferous paleodrainage, Northern England. Journal of Sedimentary Research, 76, 324–345. https://doi.org/10.2110/jsr.2006.023
    [Google Scholar]
  116. Tyrrell, S., Leleu, S., Souders, A. K., Haughton, P. D. W., & Daly, J. S. (2009). K‐feldspar sand‐grain provenance in the Triassic, west of Shetland: Distinguishing first‐cycle and recycled sediment sources?Geological Journal, 44, 692–710. https://doi.org/10.1002/gj.1185
    [Google Scholar]
  117. Tyrrell, S., Souders, A. K., Haughton, P. D. W., Daly, J. S., & Shannon, P. M. (2010). Sedimentology, sandstone provenance and palaeodrainage on the eastern Rockall Basin margin: Evidence from the Pb isotopic composition of detrital K‐feldspar. Geological Society, London, Petroleum Geology Conference Series, 7, 937–952. https://doi.org/10.1144/0070937
    [Google Scholar]
  118. Van Staal, C. R., Dewey, J. F., Niocaill, C. M., & McKerrow, W. S. (1998). The Cambrian‐Silurian tectonic evolution of the northern Appalachians and British Caledonides: History of a complex, west and southwest Pacific‐type segment of Iapetus. Geological Society, London, Special Publications, 143, 197–242. https://doi.org/10.1144/gsl.sp.1998.143.01.17
    [Google Scholar]
  119. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224, 441–451. https://doi.org/10.1016/j.epsl.2004.05.037
    [Google Scholar]
  120. Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    [Google Scholar]
  121. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  122. Waldron, J. W. F., Schofield, D. I., Dufrane, S. A., Floyd, J. D., Crowley, Q. G., Simonetti, A., … Pothier, H. D. (2014). Ganderia‐Laurentia collision in the Caledonides of Great Britain and Ireland. Journal of the Geological Society, 171, 555–569. https://doi.org/10.1144/jgs2013‐131
    [Google Scholar]
  123. Weaver, B. L., & Tarney, J. (1981). Lewisian gneiss geochemistry and Archaean crustal development models. Earth and Planetary Science Letters, 55, 171–180. https://doi.org/10.1016/0012‐821X(81)90096‐0
    [Google Scholar]
  124. Wells, M., Morton, A., & Frei, D. (2017). Provenance of Lower Cretaceous clastic reservoirs in the Middle East. Journal of the Geological Society, 174, 1048–1061. https://doi.org/10.1144/jgs2017‐013
    [Google Scholar]
  125. Weltje, G. J., & von Eynatten, H. (2004). Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171, 1–11. https://doi.org/10.1016/j.sedgeo.2004.05.007
    [Google Scholar]
  126. Whitehouse, M. J., Claesson, S., Sunde, T., & Vestin, J. (1997). Ion microprobe U‐Pb zircon geochronology and correlation of Archaean gneisses from the Lewisian Complex of Gruinard Bay, northwestern Scotland. Geochimica Et Cosmochimica Acta, 61, 4429–4438. https://doi.org/10.1016/S0016‐7037(97)00251‐2
    [Google Scholar]
  127. Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., … Spiegel, W. (1995). Three Natural Zircon Standards for U‐Th‐Pb, Lu‐Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19, 1–23. https://doi.org/10.1111/j.1751‐908X.1995.tb00147.x
    [Google Scholar]
  128. Wignall, P. B., & Best, J. L. (2000). The Western Irish Namurian Basin reassessed. Basin Research, 12, 59–78. https://doi.org/10.1046/j.1365‐2117.2000.00113.x
    [Google Scholar]
  129. Wignall, P. B., & Best, J. L. (2002). Reply to: The Western Irish Namurian Basin reassessed ‐ a discussion by O.J. Martinsen and J.D. Collinson, Basin Research (2002), 14, 531–542.
  130. Wignall, P. B., & Best, J. L. (2016). Basin Models. In J. L.Best, & P. B.Wignall (Eds.), A Field Guide to the Carboniferous Sediments of the Shannon Basin, Western Ireland, (pp. 35–47). Hoboken, NJ: Wiley‐Blackwell. https://doi.org/10.1002/9781119257141.ch3.
    [Google Scholar]
  131. Wignall, P. B., Best, J. L., Peakall, J., & Ross, J. (2016). The Tullig and Kilkee Cyclothems of Northern County Clare. In J. L.Best, & P. B.Wignall (Eds.), A Field Guide to the Carboniferous Sediments of the Shannon Basin, Western Ireland (pp. 329–349). Hoboken, NJ: Wiley‐Blackwell.https://doi.org/10.1002/9781119257141.ch10.
    [Google Scholar]
  132. Zimmermann, S., Mark, C., Chew, D., & Voice, P. J. (2018). Maximising data and precision from detrital zircon U‐Pb analysis by LA‐ICPMS: The use of core‐rim ages and the single‐analysis concordia age. Sedimentary Geology, 375, 5–13. https://doi.org/10.1016/j.sedgeo.2017.12.020
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12469
Loading
/content/journals/10.1111/bre.12469
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error