1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

This study suggests that the Bohai Bay Basin is a composite extensional‐transtensional basin and that the counter‐clockwise rotation in the direction of Pacific Plate subduction drove the clockwise rotation of the basin velocity field.

, Abstract

A well‐constrained plate deformation model may lead to an improved understanding of sedimentary basin formation and the connection between subduction history and over‐riding plate deformation. Building quantitative models of basin kinematics and deformation remains challenging often due to the lack of comprehensive constraints. The Bohai Bay Basin (BBB) is an important manifestation of the destruction of the North China Craton, and records the plate kinematic history of East Asia during the Cenozoic. Although a number of interpretations of the formation of the BBB have been proposed, few quantitative basin reconstruction models have been built to test and refine previous ideas. Here, we developed a quantitative deformation reconstruction of the BBB constrained with balanced cross‐sections and structural, stratigraphic and depositional age data. Our reconstruction suggests that the basin formation process was composed of three main stages: Paleocene‐early Eocene (65–42 Ma) extension initiation, middle Eocene‐early Oligocene (42–32.8 Ma) extension climax and post‐Oligocene (32.8–0 Ma) post‐extensional subsidence. The deformation of the BBB is spatially heterogeneous, and its velocity directions rotated clockwise during the basin formation process. The reconstruction supports the interpretation that the BBB formed via strike‐slip faulting and orthogonal extension and that the basin is classified as a composite extensional‐transtensional basin. We argue that the clockwise rotation of the basin velocity field was driven by the counter‐clockwise rotation in the direction of Pacific Plate subduction. The kinematics of the BBB imply that the Pacific Plate may have been sufficiently coupled to the over‐riding East Asian Plate during the critical period of Pacific Plate reorganization. The new reconstruction provides a quantitative basis for studies of deformation processes not only in the vicinity of the BBB, but also more broadly throughout East Asia.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12470
2021-01-22
2021-03-07
Loading full text...

Full text loading...

References

  1. Allen, M. B., Macdonald, D. I. M., Zhao, X., Vincent, S. J., & Brouet‐Menzies, C. (1997). Early Cenozoic two‐phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14, 951–972. https://doi.org/10.1016/S0264‐8172(97)00027‐5
    [Google Scholar]
  2. Allen, M. B., Macdonald, D. I. M., Zhao, X., Vincent, S. J., & Brouet‐Menzies, C. (1998). Transtensional deformation in the evolution of the Bohai Basin, northern China. In R. E.Holdsworth, R. A.Strachan, & J. F.Dewey (Eds.), Continental transpressional and transtensional tectonics (Vol. 135, pp. 215–229). London, UK: Geological Society of London, Special Publications.
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (3rd ed.). Chichester, UK: Wiley‐Blackwell.
    [Google Scholar]
  4. Bower, D. J., Gurnis, M., & Flament, N. (2015). Assimilating lithosphere and slab history in 4‐D Earth models. Physics of the Earth and Planetary Interiors, 238, 8–22. https://doi.org/10.1016/j.pepi.2014.10.013
    [Google Scholar]
  5. Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A., Turner, M., … Baru, C. (2011). Next‐generation plate‐tectonic reconstructions using GPlates. In G.Keller & C.Baru (Eds.), Geoinformatics: Cyberinfrastructure for the solid earth sciences (pp. 95–114). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  6. Chen, W., & Nábelek, J. (1988). Seismogenic strike‐slip faulting and the development of the North China Basin. Tectonics, 7, 975–989. https://doi.org/10.1029/TC007i005p00975
    [Google Scholar]
  7. Cheon, Y., Ha, S., Lee, S., & Son, M. (2020). Tectonic evolution of the Cretaceous Gyeongsang Back‐arc Basin, SE Korea: Transition from sinistral transtension to strike‐slip kinematics. Gondwana Research, 83, 16–35. https://doi.org/10.1016/j.gr.2020.01.012
    [Google Scholar]
  8. Dong, M., Qi, J., & Yang, Q. (2012). Tectonic subsidence characteristics of Huanghua depression in Bohai Bay Basin in Cenozoic. Scientia Geologica Sinica, 47, 762–775. https://doi.org/10.3969/j.issn.0563‐5020.2012.03.014
    [Google Scholar]
  9. Dong, M., Qi, J., Yang, Q., & Yuan, F. (2013). Characteristics of extension amounts and their temporal and spatial distribution of the Cenozoic of Huanghua Depression in Bohai Bay Basin. Journal of Palaeogeography, 15, 327–338. https://doi.org/10.7605/gdlxb.2013.03.028
    [Google Scholar]
  10. Gion, A. M., Williams, S. E., & Müller, R. D. (2017). A reconstruction of the Eurekan Orogeny incorporating deformation constraints. Tectonics, 36, 304–320. https://doi.org/10.1002/2015tc004094
    [Google Scholar]
  11. Gordon, R. G. (1998). The plate tectonic approximation: Plate nonrigidity, diffuse plate boundaries, and global plate reconstructions. Annual Review of Earth and Planetary Sciences, 26, 615–642. https://doi.org/10.1146/annurev.earth.26.1.615
    [Google Scholar]
  12. Gui, B., He, D., Yan, F., & Zhang, W. (2012). 3D geometry and kinematics of Daxing Fault: Its constraints on the origin of Langgu Depression, Bohaiwan Gulf Basin, China. Earth Science Frontiers, 19, 86–99.
    [Google Scholar]
  13. Gurnis, M., Turner, M., Zahirovic, S., DiCaprio, L., Spasojevic, S., Müller, R. D., … Bower, D. J. (2012). Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences, 38, 35–42. https://doi.org/10.1016/j.cageo.2011.04.014
    [Google Scholar]
  14. Gurnis, M., Yang, T., Cannon, J., Turner, M., Williams, S., Flament, N., & Müller, R. D. (2018). Global tectonic reconstructions with continuously deforming and evolving rigid plates. Computers & Geosciences, 116, 32–41. https://doi.org/10.1016/j.cageo.2018.04.007
    [Google Scholar]
  15. He, D., Cui, Y., Shan, S., Xiao, Y., Zhang, Y., & Zhang, C. (2018). Characteristics of geologic framework of buried‐hill in Jizhong depression, Bohai Bay Basin. Chinese Journal of Geology, 53, 1–24. https://doi.org/10.12017/dzkx.2018.001
    [Google Scholar]
  16. He, L., & Wang, J. (2004). Tectono‐thermal modelling of sedimentary basins with episodic extension and inversion, a case history of the Jiyang Basin, North China. Basin Research, 16, 587–599. https://doi.org/10.1111/j.1365‐2117.2004.00245.x
    [Google Scholar]
  17. Hou, G., Qian, X., & Song, X. (1998). The origin of the Bohai Bay Basin. Actacentiarum Naturalum Universitis Pekinesis, 34, 503–509. https://doi.org/10.13209/j.0479‐8023.1998.033
    [Google Scholar]
  18. Hou, X. (2007). The analysis of Mesozoic‐Cenozoic basin evolution in the east area of Linqing Depression (Master's thesis). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  19. Hou, X. (2010). The development characteristics of structures inversion in Jiyang Depression and its relationship with the evolution of superimposed basin (Doctoral dissertation). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  20. Hsiao, L., Graham, S. A., & Tilander, N. (2004). Seismic reflection imaging of a major strike‐slip fault zone in a rift system: Paleogene structure and evolution of the Tan‐Lu fault system, Liaodong Bay, Bohai, offshore China. AAPG Bulletin, 88, 71–97. https://doi.org/10.1306/09090302019
    [Google Scholar]
  21. Huang, C., Wang, H., Zhang, H., Wu, J., & Liu, Y. (2018). Oligocene shallow‐water lacustrine deltas of the Baxian sag of Bohai Bay Basin, eastern China: Depositional response during rift‐to‐thermal tectonic subsidence transition. AAPG Bulletin, 102, 2389–2408. https://doi.org/10.1306/04251816530
    [Google Scholar]
  22. Huang, L., Liu, C., & Kusky, T. M. (2015). Cenozoic evolution of the Tan–Lu Fault Zone (East China)—Constraints from seismic data. Gondwana Research, 28, 1079–1095. https://doi.org/10.1016/j.gr.2014.09.005
    [Google Scholar]
  23. Hwang, B.‐H., Lee, J.‐D., Yang, K., & McWilliams, M. (2007). Cenozoic strike‐slip displacement along the Yangsan fault, southeast Korean Peninsula. International Geology Review, 49, 768–775. https://doi.org/10.2747/0020‐6814.49.8.768
    [Google Scholar]
  24. Ingersoll, R. V. (2011). Tectonics of sedimentary basins, with revised nomenclature. In C. J.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (1st ed., pp. 3–43). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  25. Jarvis, G. T., & McKenzie, D. P. (1980). Sedimentary basin formation with finite extension rates. Earth and Planetary Science Letters, 48, 42–52. https://doi.org/10.1016/0012‐821x(80)90168‐5
    [Google Scholar]
  26. Jolivet, L., Tamaki, K., & Fournier, M. (1994). Japan Sea, opening history and mechanism: A synthesis. Journal of Geophysical Research: Solid Earth, 99, 22237–22259. https://doi.org/10.1029/93jb03463
    [Google Scholar]
  27. Karner, G. D., & Driscoll, N. W. (1999). Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: Insights from quantitative basin modelling. Geological Society, London, Special Publications, 153, 11–40. https://doi.org/10.1144/gsl.sp.1999.153.01.02
    [Google Scholar]
  28. Kreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15, 3849–3889. https://doi.org/10.1002/2014gc005407
    [Google Scholar]
  29. Kreemer, C., Holt, W. E., & Haines, A. J. (2003). An integrated global model of present‐day plate motions and plate boundary deformation. Geophysical Journal International, 154, 8–34. https://doi.org/10.1046/j.1365‐246X.2003.01917.x
    [Google Scholar]
  30. Lallemand, S., & Jolivet, L. (1986). Japan sea: A pull‐apart basin?Earth and Planetary Science Letters, 76, 375–389. https://doi.org/10.1016/0012‐821x(86)90088‐9
    [Google Scholar]
  31. Li, D. (1980). Geology and structural characteristics of Bohai Bay, China. Acta Petrolei Sinica, 1, 6–20. https://doi.org/10.7623/syxb198001002
    [Google Scholar]
  32. Li, J. (2011). The structural evolution of Linqing and the effect on its Neopaleozoic (Master's thesis). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  33. Li, Q. (2014). Cenozoic tectonic evolution of Bohai Bay Basin and its implications on the Pacific Plate subduction (Master's thesis). China University of Geosciences (Beijing), Beijing.
    [Google Scholar]
  34. Li, S., Zhao, G., Dai, L., Zhou, L., Liu, X., Suo, Y., & Santosh, M. (2012). Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton. Journal of Asian Earth Sciences, 47, 80–93. https://doi.org/10.1016/j.jseaes.2011.06.011
    [Google Scholar]
  35. Liang, H., Shen, S., Xiangting, L., Wenji, C., & Daming, L. (1992). The age of the volcanic rocks and their geological time in Liaohe depression. Acta Petrolei Sinica, 13, 35–41. https://doi.org/10.7623/syxb199202007
    [Google Scholar]
  36. Liu, H. (2015). Relationships between Cenozoic extension and strike‐slip of Raoyang Sag in Jizhong Depression (Master's thesis). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  37. Liu, S., Gurnis, M., Ma, P., & Zhang, B. (2017). Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth‐Science Reviews, 175, 114–142. https://doi.org/10.1016/j.earscirev.2017.10.012
    [Google Scholar]
  38. Liu, S., & Nummedal, D. (2004). Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component. Geology, 32, 397. https://doi.org/10.1130/g20318.1
    [Google Scholar]
  39. Liu, S., Nummedal, D., & Gurnis, M. (2014). Dynamic versus flexural controls of Late Cretaceous Western Interior Basin, USA. Earth and Planetary Science Letters, 389, 221–229. https://doi.org/10.1016/j.epsl.2014.01.006
    [Google Scholar]
  40. Liu, S., Nummedal, D., Yin, P., & Luo, H. (2005). Linkage of Sevier thrusting episodes and Late Cretaceous foreland basin megasequences across southern Wyoming (USA). Basin Research, 17, 487–506. https://doi.org/10.1111/j.1365‐2117.2005.00277.x
    [Google Scholar]
  41. Lu, K., Qi, J., Dai, J., Yang, Q., & Tong, H. (1997). Tectonic model of Cenozoic Petroliferous Basin, Bohai Bay Province. Beijing, China: Geological Publishing House.
    [Google Scholar]
  42. Ma, P., Liu, S., Gurnis, M., & Zhang, B. (2019). Slab horizontal subduction and slab tearing beneath East Asia. Geophysical Research Letters, 46(10), 5161–5169. https://doi.org/10.1029/2018gl081703
    [Google Scholar]
  43. Mao, L. (2014). Characteristics of rifting interfered by magmatic diapirism, an example from Paleogene Jizhong Rift of Bohai Bay Basin, East China (Doctoral dissertation). Zhejiang University, Hangzhou.
    [Google Scholar]
  44. Mckenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth & Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  45. McQuarrie, N., & Wernicke, B. P. (2005). An animated tectonic reconstruction of southwestern North America since 36 Ma. Geosphere, 1, 147. https://doi.org/10.1130/ges00016.1
    [Google Scholar]
  46. Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., … Zahirovic, S. (2018). GPlates: Building a virtual earth through deep time. Geochemistry, Geophysics, Geosystems, 19, 2243–2261. https://doi.org/10.1029/2018gc007584
    [Google Scholar]
  47. Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., … Cannon, J. (2016). Ocean basin evolution and global‐scale plate reorganization events since Pangea breakup. Annual Review of Earth and Planetary Sciences, 44, 107–138. https://doi.org/10.1146/annurev‐earth‐060115‐012211
    [Google Scholar]
  48. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., … Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018tc005462
    [Google Scholar]
  49. Qi, J., & Yang, Q. (2010). Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China. Marine and Petroleum Geology, 27, 757–771. https://doi.org/10.1016/j.marpetgeo.2009.08.012
    [Google Scholar]
  50. Qiu, N., Zuo, Y., Zhou, X., & Li, C. (2010). Geothermal Regime of the Bohai Offshore Area, Bohai Bay Basin, North China. Energy Exploration & Exploitation, 28, 327–350. https://doi.org/10.1260/0144‐5987.28.5.327
    [Google Scholar]
  51. Ren, F., Liu, Z., Qiu, L., Han, L., & Zhou, L. (2008). Space‐time discrepancy of depressional evolution in the Bohai Bay Basin during Cenozoic. Chinese Journal of Geology, 43, 546–557. https://doi.org/10.3321/j.issn:0563‐5020.2008.03.009
    [Google Scholar]
  52. Ren, J., Tamaki, K., Li, S., & Zhang, J. (2002). Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344, 175–205. https://doi.org/10.1016/s0040‐1951(01)00271‐2
    [Google Scholar]
  53. Replumaz, A., & Tapponnier, P. (2003). Reconstruction of the deformed collision zone Between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research: Solid Earth, 108. https://doi.org/10.1029/2001jb000661
    [Google Scholar]
  54. Seton, M., Flament, N., Whittaker, J., Müller, R. D., Gurnis, M., & Bower, D. J. (2015). Ridge subduction sparked reorganization of the Pacific plate‐mantle system 60–50 million years ago. Geophysical Research Letters, 42, 1732–1740. https://doi.org/10.1002/2015gl063057
    [Google Scholar]
  55. Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., … Chandler, M. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth‐Science Reviews, 113, 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    [Google Scholar]
  56. Sharp, W. D., & Clague, D. A. (2006). 50‐Ma initiation of Hawaiian‐Emperor bend records major change in Pacific plate motion. Science, 313, 1281–1284. https://doi.org/10.1126/science.1128489
    [Google Scholar]
  57. Shi, B., Wu, Z., Wang, J., Zhou, Y., & Dai, Q. (1999). A study on the geological characteristics and geodynamic origin of Dongying movement, Bohai Bay Basin. Experimental Petroleum Geology, 21, 196–200. https://doi.org/10.3969/j.issn.1001‐6112.1999.03.002
    [Google Scholar]
  58. Shinn, Y. J., Chough, S. K., & Hwang, I. G. (2010). Structural development and tectonic evolution of Gunsan Basin (Cretaceous–Tertiary) in the central Yellow Sea. Marine and Petroleum Geology, 27, 500–514. https://doi.org/10.1016/j.marpetgeo.2009.11.001
    [Google Scholar]
  59. Spasojevic, S., & Gurnis, M. (2012). Sea level and vertical motion of continents from dynamic earth models since the Late Cretaceous. AAPG Bulletin, 96, 2037–2064. https://doi.org/10.1306/03261211121
    [Google Scholar]
  60. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41, 1–13. https://doi.org/10.1016/0012‐821x(78)90036‐5
    [Google Scholar]
  61. Sun, Y. (2008). Cenozoic structural characteristics and its control to migration and accumulation of hydrocarbon in Bozhong depression (Doctoral dissertation). Daqing Petroleum Institute, Daqing.
    [Google Scholar]
  62. Suo, Y. H., Li, S. Z., Zhao, S. J., Somerville, I. D., Yu, S., Dai, L. M., … Wang, P. C. (2015). Continental margin basins in East Asia: Tectonic implications of the Meso‐Cenozoic East China Sea pull‐apart basins. Geological Journal, 50, 139–156. https://doi.org/10.1002/gj.2535
    [Google Scholar]
  63. Tang, L., Wan, G., Zhou, X., Jin, W., & Yu, Y. (2008). Cenozoic geotectonic evolution of the Bohai Basin. Geological Journal of China Universities, 14, 191–198. https://doi.org/10.16108/j.issn1006‐7493.2008.02.001
    [Google Scholar]
  64. Tarduno, J. A., Duncan, R. A., Scholl, D. W., Cottrell, R. D., Steinberger, B., Thordarson, T., … Carvallo, C. (2003). The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 301, 1064–1069. https://doi.org/10.1126/science.1086442
    [Google Scholar]
  65. Tian, Z., Han, P., & Xu, K. (1992). The Mesozoic‐Cenozoic East China rift system. Tectonophysics, 208, 341–363. https://doi.org/10.1016/0040‐1951(92)90354‐9
    [Google Scholar]
  66. Watts, A. B., & Ryan, W. B. F. (1976). Flexure of the lithosphere and continental margin basins. Developments in Geotectonics, 12, 25–44.
    [Google Scholar]
  67. White, N. (1994). An inverse method for determining lithospheric strain rate variation on geological timescales. Earth & Planetary Science Letters, 122, 351–371. https://doi.org/10.1016/0012‐821X(94)90008‐6
    [Google Scholar]
  68. Whittaker, J. M., Müller, R. D., Leitchenkov, G., Stagg, H., Sdrolias, M., Gaina, C., & Goncharov, A. (2007). Major Australian‐Antarctic plate reorganization at Hawaiian‐Emperor bend time. Science, 318, 83–86. https://doi.org/10.1126/science.1143769
    [Google Scholar]
  69. Wu, J. E., McClay, K., Whitehouse, P., & Dooley, T. (2009). 4D analogue modelling of transtensional pull‐apart basins. Marine and Petroleum Geology, 26, 1608–1623. https://doi.org/10.1016/j.marpetgeo.2008.06.007
    [Google Scholar]
  70. Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth, 121, 4670–4741. https://doi.org/10.1002/2016jb012923
    [Google Scholar]
  71. Wu, J.‐T.‐J., & Wu, J. (2019). Izanagi‐Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin. Geology, 47, 953–957. https://doi.org/10.1130/g46778.1
    [Google Scholar]
  72. Xin, Y. (2015). Discussion on the coupling relationship between shallow structure and deep processes in the Bohai Cenozoic basin (Master's thesis). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  73. Xu, H., Wang, X.‐W., Yan, D.‐P., & Qiu, L. (2018). Subsidence transition during the post‐rift stage of the Dongpu Sag, Bohai Bay Basin, NE China: A new geodynamic model. Journal of Asian Earth Sciences, 158, 186–199. https://doi.org/10.1016/j.jseaes.2018.03.001
    [Google Scholar]
  74. Xu, J., Gao, Z., Sun, J., & Song, C. (2001). A preliminary study of the coupling relationship between basin and mountain in extensional environments ‐ A case study of the Bohai Bay Basin and Taihang Mountains. Acta Geologica Sinica, 75, 165–174.
    [Google Scholar]
  75. Yang, C. (1984). Geological structures and their activity in the Handan and Tangyin grabens. Seismology and Geology, 6, 59–66.
    [Google Scholar]
  76. Yang, T., Gurnis, M., & Zahirovic, S. (2016). Mantle‐induced subsidence and compression in SE Asia since the early Miocene. Geophysical Research Letters, 43, 1901–1909. https://doi.org/10.1002/2016gl068050
    [Google Scholar]
  77. Yao, Y., Liang, H., Cai, Z., Guan, X., Zhao, Z., Cheng, Z., … Yang, S. (1994). Tertiary in petroliferous regions of China (IV): The Bohai Gulf Basin. Beijing, China: Petroleum Industry Press.
    [Google Scholar]
  78. Ye, H., Shedlock, K. M., Hellinger, S. J., & Sclater, J. G. (1985). The North China Basin: An example of a Cenozoic rifted intraplate basin. Tectonics, 4, 153–169. https://doi.org/10.1029/TC004i002p00153
    [Google Scholar]
  79. Zhan, R. (2013). Studies of tectonic evolution and formation mechanism in the Qingdong sag during Cenozoic (Doctoral dissertation). Hefei University of Technology, Hefei.
    [Google Scholar]
  80. Zhang, J., Wu, Z., Li, W., Xiao, Y., & Qi, J. (2017). Cenozoic tectonic characteristics and evolution of Liaodong Bay depression. Marine Geology Frontiers, 33, 9–17. https://doi.org/10.16028/j.1009‐2722.2017.11002
    [Google Scholar]
  81. Zhang, Y., Dong, S., & Shi, W. (2003). Cretaceous deformation history of the middle Tan‐Lu fault zone in Shandong Province, eastern China. Tectonophysics, 363, 243–258. https://doi.org/10.1016/s0040‐1951(03)00039‐8
    [Google Scholar]
  82. Zhao, L. (2015). The Interplay between Extension and Strike‐slip Faulting in Western Shandong Rise‐Jiyang Depression since Late Mesozoic (Doctoral dissertation). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  83. Zhong, S., McNamara, A., Tan, E., Moresi, L., & Gurnis, M. (2008). A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9. https://doi.org/10.1029/2008gc002048
    [Google Scholar]
  84. Zhong, S., Zuber, M. T., Moresi, L., & Gurnis, M. (2000). Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research: Solid Earth, 105, 11063–11082. https://doi.org/10.1029/2000jb900003
    [Google Scholar]
  85. Zhou, H. (2010). The evolution of Yingkou‐Weifang Fault Zone and its control on tectonic framework of adjacent basins (Master's thesis). China University of Petroleum (East China), Qingdao.
    [Google Scholar]
  86. Zhu, G., Hu, W., Song, L., & Liu, B. (2015). Quaternary activity along the Tan‐Lu fault zone in the Bohai Bay, East China: Evidence from seismic profiles. Journal of Asian Earth Sciences, 114, 5–17. https://doi.org/10.1016/j.jseaes.2015.03.030
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12470
Loading
/content/journals/10.1111/bre.12470
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error