1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Multiscale simulation of fluvio‐deltaic stratigraphy was used to quantify the elements of the geometry and architectural arrangement of sub‐seismic‐scale fluvial‐to‐shelf sedimentary segments. We conducted numerical experiments of fluvio‐deltaic system evolution by simulating the accommodation‐to‐sediment‐supply (A/S) cycles of varying wavelength and amplitude with the objective to produce synthetic 3‐D stratigraphic records. Post‐processing routines were developed in order to investigate delta lobe architecture in relation to channel‐network evolution throughout A/S cycles, estimate net sediment accumulation rates in 3‐D space, and extract chronostratigraphically constrained lithosomes (or chronosomes) to quantify large‐scale connectivity, that is, the spatial distribution of high net‐to‐gross lithologies. Chronosomes formed under the conditions of channel‐belt aggradation are separated by laterally continuous abandonment surfaces associated with major avulsions and delta‐lobe switches. Chronosomes corresponding to periods in which sea level drops below the inherited shelf break, that is, the youngest portions of the late falling stage systems tract (FSST), form in the virtual absence of major avulsions, owing to the incision in their upstream parts, and thus display purely degradational architecture. Detailed investigation of chronosomes within the late FSST showed that their spatial continuity may be disrupted by higher‐frequency A/S cycles to produce “stranded” sand‐rich bodies encased in shales. Chronosomes formed during early and late falling stage (FSST) demonstrate the highest large‐scale connectivity in their proximal and distal areas, respectively. Lower‐amplitude base level changes, representative of greenhouse periods during which the shelf break is not exposed, increase the magnitude of delta‐lobe switching and favour the development of system‐wide abandonment surfaces, whose expression in real‐world stratigraphy is likely to reflect the intertwined effects of high‐frequency allogenic forcing and differential subsidence.

,

In this article, we used a process‐based forward stratigraphic model to simulate accommodation‐to‐supply (A/S) cycles of varying wavelength and amplitude. Post‐processing of synthetic stratigraphy allows to extract chronostratigraphically constrained lithosomes (or chronosomes). Large‐scale connectivity represents the spatio‐temporal continuity of high‐net to gross fluvio‐deltaic chronosomes. The timing and location of major avulsions and the magnitude of delta‐lobe switches are captured throughout the simulated A/S cycles.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12471
2021-01-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12471.html?itemId=/content/journals/10.1111/bre.12471&mimeType=html&fmt=ahah

References

  1. Allen, G., Lang, S., Musakti, O., & Chirinos, A. (1996). Application of sequence stratigraphy to continental successions. In Implications for Mesozoic cratonic interior basins of Eastern Australia. Mesozoic Geology of the Eastern Australian Plate Conference, Brisbane, Australia, Extended Abstracts, 22–26.
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (version 3rd ed., 632 pp.). Chichester, UK: Wiley‐Blackwell.
    [Google Scholar]
  3. Barrell, J. (1917). Rhythms and the measurement of geologic time. Geological Society of America Bulletin, 28, 745–904.
    [Google Scholar]
  4. Bhattacharya, J. P. (2011). Practical problems in the application of the sequence stratigraphic method and key surfaces: Integrating observations from ancient fluvial–deltaic wedges with Quaternary and modelling studies. Sedimentology, 58, 120–169. https://doi.org/10.1111/j.1365‐3091.2010.01205.x
    [Google Scholar]
  5. Blum, M. D., & Aslan, A. (2006). Signatures of climate vs. sea‐ level change within incised valley‐fill successions: Quaternary examples from the Texas Gulf Coast. Sedimentary Geology, 190, 177–211. https://doi.org/10.1016/j.sedgeo.2006.05.024
    [Google Scholar]
  6. Blum, M. D., & Hattier‐Womack, J. (2009). Climate change, sea‐level change, and fluvial sediment supply to deepwater systems. In B.Kneller, O. J.Martinsen, & B.McCaffrey (Eds.), External controls on deep water depositional systems: Climate, sea‐level, and sediment flux. SEPM Special Publication. 92, 15–39.
    [Google Scholar]
  7. Blum, M. D., Martin, B. J., Milliken, K., & Garvin, M. (2013). Paleovalley systems: Insights from quaternary analogs and experiments. Earth‐Science Reviews, 116, 128–169. https://doi.org/10.1016/j.earscirev.2012.09.003
    [Google Scholar]
  8. Burgess, P. M. (2012). A brief review of developments in stratigraphic forward modelling 2000–2009. In D. G.Roberts, & A. W.Bally (Eds.), Regional geology and tectonics: Principles of geologic analysis (pp. 378–404). Amsterdam: Elsevier.
    [Google Scholar]
  9. Burgess, P. M. (2016). The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension. Geology, 44, 335–336.
    [Google Scholar]
  10. Burgess, P. M., Allen, P. A., & Steel, R. J. (2016). Introduction to the future of sequence stratigraphy: Evolution or revolution?Journal of the Geological Society, 173, 801–802. https://doi.org/10.1144/jgs2016‐078
    [Google Scholar]
  11. Burgess, P. M., Lammers, H. M., Van Oosterhout, C., & Granjeon, D. (2006). Multivariate sequence stratigraphy: Tackling complexity and uncertainty with stratigraphic forward modeling, multiple scenarios and conditional frequency maps. AAPG Bulletin, 90, 1883–1901.
    [Google Scholar]
  12. Burgess, P. M., & Prince, G. D. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27, 352–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  13. Carvajal, C., & Steel, R. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–668. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  14. Catuneanu, O. (2020). Sequence stratigraphy in the context of the ‘modeling revolution’. Marine and Petroleum Geology, 116, 104309. https://doi.org/10.1016/j.marpetgeo.2020.104309
    [Google Scholar]
  15. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  16. Catuneanu, O., Galloway, W. E., Kendall, C. G., St, C., Miall, A. D., Posamentier, H. W., … Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletter on Stratigraphy, 44, 173–245. https://doi.org/10.1127/0078‐0421/2011/0011
    [Google Scholar]
  17. Charvin, K., Gallagher, K. L., Hampson, G., & Labourdette, R. (2009). A Bayesian approach to inverse modelling of stratigraphy, part I: Method. Basin Research, 21, 5–25.
    [Google Scholar]
  18. Cross, T. A. (1990). Quantitative dynamic stratigraphy (625 p.). Upper Saddle River, NJ: Prentice Hall.
    [Google Scholar]
  19. Cross, T., & Lessenger, M. (1999). Construction and application of stratigraphic inverse model. In: J. W.Harbaugh et al. (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Special Publication, 62, 69–83.
    [Google Scholar]
  20. Dalman, R. A. F., & Weltje, G. J. (2008). Sub‐grid parameterisation of fluvio‐deltaic processes and architecture in a basin‐scale stratigraphic model. Computers & Geosciences, 34, 1370–1380. https://doi.org/10.1016/j.cageo.2008.02.005
    [Google Scholar]
  21. Dalman, R. A. F., & Weltje, G. J. (2012). SimClast: An aggregated forward stratigraphic model of continental shelves. Computers & Geosciences, 38, 115–126. https://doi.org/10.1016/j.cageo.2011.05.014
    [Google Scholar]
  22. Dalman, R. A. F., Weltje, G. J., & Karamitopoulos, P. (2015). High‐resolution sequence stratigraphy of fluvio–deltaic systems: Prospects of system‐wide chronostratigraphic correlation. Earth and Planetary Science Letters, 412, 10–17. https://doi.org/10.1016/j.epsl.2014.12.030
    [Google Scholar]
  23. Embry, A. F. (1995). Sequence boundaries and sequence hierarchies: problems and proposals. In R. J.Steel, V. L.Felt, E. P.Johannessen, & C.Mathieu (Eds.), Sequence stratigraphy on the Northwest European Margin. Norwegian Petroleum Society Special Publication5, 1–11.
    [Google Scholar]
  24. Emery, D., & Myers, K. J. (1996). Sequence stratigraphy (297 p.). Oxford, UK: Blackwell.
    [Google Scholar]
  25. Falivene, O., Frascati, A., Gesbert, S., Pickens, J., Hsu, Y., & Rovira, A. (2014). Automatic calibration of stratigraphic forward models for predicting reservoir presence in exploration. AAPG Bulletin, 98, 1811–1835.
    [Google Scholar]
  26. Feynman, R. P. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21, 467–488. https://doi.org/10.1007/BF02650179
    [Google Scholar]
  27. Fielding, C. R. (2010). Planform and facies variability in asymmetric deltas: Facies analysis and depositional architecture of the Turonian Ferron sandstone in the Western Henry mountains, south‐central Utah, USA. Journal of Sedimentary Research, 80, 455–479. https://doi.org/10.2110/jsr.2010.047
    [Google Scholar]
  28. Fielding, C. R. (2015). Anatomy of falling‐stage deltas in the Turonian Ferron sandstone of the western Henry mountains syncline, Utah: Growth faults, slope failures and mass transport complexes. Sedimentology, 62, 1–26. https://doi.org/10.1111/sed.12136
    [Google Scholar]
  29. Frazier, D. E. (1974). Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf basin, Austin, Texas, Bureau of Economic Geology, Geologic Circular 74‐1, 28 p.
  30. Galloway, W. E. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In M. L.Broussard (Ed.), Deltas, models for exploration (pp. 87–98). Houston, TX: Houston Geological Society.
    [Google Scholar]
  31. Galloway, W. E. (1989). Genetic stratigraphic sequences in basin analysis. I. Architecture and genesis of flooding‐surface bounded depositional units. AAPG Bulletin, 73, 125–142.
    [Google Scholar]
  32. Gong, C., Steel, R. J., Wang, Y., Lin, C., & Olariu, C. (2016). Shelf‐margin architecture variability and its role in sediment‐budget partitioning into deep‐water areas. Earth‐Science Reviews, 154, 72–101. https://doi.org/10.1016/j.earscirev.2015.12.003
    [Google Scholar]
  33. Granjeon, D. (2014). 3D forward modelling of the impact of sediment transport and base level cycles on continental margins and incised valleys. International Association Sedimentology Special Publication, 46, 453–472.
    [Google Scholar]
  34. Granjeon, D., & Joseph, P. (1999). Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modelling. In J. W.Harbaugh, W. L.Watney, E.Rankey, R. L.Slingerland, R.Golstein, & E. K.Franseen (Eds.), Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations. SEPM Special Publication, 62, 197–210.
    [Google Scholar]
  35. Griffiths, C. M. (1996). A stratigraphy for the 21st Century. First Break, 14, 383–389. https://doi.org/10.3997/1365‐2397.1996020
    [Google Scholar]
  36. Griffiths, C. M., & Nordlund, U. (1993). Chronosome and quantitative stratigraphy. Geoinformatics, 4, 327–336.
    [Google Scholar]
  37. Hajek, E. A., & Wolinsky, M. A. (2012). Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data. Sedimentary Geology, 257–260, 1–30. https://doi.org/10.1016/j.sedgeo.2011.09.005
    [Google Scholar]
  38. Hampson, G. J. (2016). Towards a sequence stratigraphic solution set for autogenic processes and allogenic controls: Upper Cretaceous strata, Book Cliffs, Utah, USA. Journal of the Geological Society, 173, 817–836. https://doi.org/10.1144/jgs2015‐136
    [Google Scholar]
  39. Harris, A. D., Covault, J. A., Baumgardner, S., Sun, T., & Granjeon, D. (2020). Numerical modeling of icehouse and greenhouse sea‐level changes on a continental margin: Sea‐level modulation of deltaic avulsion processes. Marine and Petroleum Geology, 111, 807–814. https://doi.org/10.1016/j.marpetgeo.2019.08.055
    [Google Scholar]
  40. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483. https://doi.org/10.1111/j.1365‐2117.2009.00425.x
    [Google Scholar]
  41. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences: description of variable depositional‐dip scenarios. Journal of Sedimentary Research, 66, 1670–1688.
    [Google Scholar]
  42. Holbrook, J., & Bhattacharya, J. P. (2012). Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity. Earth‐Science Reviews, 113, 271–302. https://doi.org/10.1016/j.earscirev.2012.03.006
    [Google Scholar]
  43. Holbrook, J. M., Scott, R. W., & Oboh‐Ikuenobe, F. E. (2006). Base‐level buffers and buttresses: A model for upstream verses downstream control on preservation of fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76, 162–174.
    [Google Scholar]
  44. Hunt, D., & Tucker, M. E. (1992). Stranded parasequences and the forced regressive wedge systems tract: Deposition during base‐level fall. Sedimentary Geology, 81, 1–9. https://doi.org/10.1016/0037‐0738(92)90052‐S
    [Google Scholar]
  45. Imhof, M., & Sharma, A. K. (2006). Quantitative seismostratigraphic inversion of a prograding delta from seismic data. Marine and Petroleum Geology, 23, 735–744.
    [Google Scholar]
  46. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes: An integrated approach. SEPM Special Publication. 42, 47–69.
    [Google Scholar]
  47. Karamitopoulos, P., Weltje, G. J., & Dalman, R. A. F. (2014). Allogenic controls on autogenic variability in fluvio‐deltaic systems: Inferences from analysis of synthetic stratigraphy. Basin Research, 26, 767–779. https://doi.org/10.1111/bre.12065
    [Google Scholar]
  48. Karssenberg, D. J., & Törnqvist, T. E., & Bridge, J. S. (2001). Conditioning a process‐based model of sedimentary architecture to well data. Journal of Sedimentary Research, 71, 868–879.
    [Google Scholar]
  49. Karssenberg, D. J., De Vries, M., & Bridge, J. S. (2007). Conditioning a process‐based fluvial‐stratigraphy model to well data by inverse estimation of model inputs using a genetic algorithm. AAPG Search and Discovery Article #90063. Long Beach, CA: AAPG Annual Convention.
    [Google Scholar]
  50. Li, W., Bhattacharya, J. P., & Zhu, Y. (2011). Architecture of a forced regressive systems tract in a Turonian Ferron “Notom Delta”, southern Utah, U.S.A. Marine and Petroleum Geology, 28, 1517–1529.
    [Google Scholar]
  51. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44, 315–318. https://doi.org/10.1130/G37613.1
    [Google Scholar]
  52. Martin, J., Paola, C., Abreu, V., Neal, J., & Sheets, B. (2009). Sequence stratigraphy of experimental strata under known conditions of differential subsidence and variable base level. AAPG Bulletin, 93, 503–533. https://doi.org/10.1306/12110808057
    [Google Scholar]
  53. Martinez, P. A., & Harbaugh, J. W. (1993). Simulating nearshore environments. Oxford, UK: Pergamon Press.
    [Google Scholar]
  54. Martinius, A. W., Elfenbein, C., & Keogh, K. J. (2014). Applying accommodation versus sediment supply ratio concepts to stratigraphic analysis and zonation of a fluvial reservoir. International Association of Sedimentologists, Special Publication, 46, 101–126.
    [Google Scholar]
  55. Martinsen, O. J., Ryseth, A., Helland‐Hansen, W., Flesche, H., Torkildsen, G., & Idil, S. (1999). Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, USA. Sedimentology, 46, 235–259. https://doi.org/10.1046/j.1365‐3091.1999.00208.x
    [Google Scholar]
  56. Matthews, R. K. (1974). Dynamic stratigraphy (370 p.). Upper Saddle River, NJ: Prentice Hall.
    [Google Scholar]
  57. Meijer, X. D. (2002). Modelling the drainage evolution of a river‐shelf system forced by Quaternary glacio‐eustasy. Basin Research, 14, 361–377. https://doi.org/10.1046/j.1365‐2117.2002.00187.x
    [Google Scholar]
  58. Miall, A. D. (2010). The geology of stratigraphic sequences, 2nd edn (316 p.). Berlin: Springer‐Verlag.
    [Google Scholar]
  59. Miall, A. D. (2014). Updating uniformitarianism: stratigraphy as just a set of ‘frozen accidents’. In D. G.Smith, R. J.Bailey, P. M.Burgess, & A. J.Fraser (Eds.), Strata and time: Probing the gaps in our understanding (Vol. 404, pp. 11–36). London, UK: Geological Society, Special Publications.
    [Google Scholar]
  60. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  61. Jr. Mitchum , R. M., Vail, P. R., & Thompson, S., III. (1977). Seismic stratigraphy and global changes of sea level, Part 2, The depositional sequence as a basic unit for stratigraphic analysis. In C. E.Payton (Ed.), Seismic stratigraphy—applications to hydrocarbon exploration. American Association of Petroleum Geologists Memoir. 26, 53–62).
    [Google Scholar]
  62. Muto, T., & Steel, R. J. (1997). Principles of regression and transgression: The nature of the interplay between accommodation and sediment supply. Journal of Sedimentary Research, 67, 994–1000. https://doi.org/10.1306/D42686A8‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  63. Muto, T., & Steel, R. J. (2002). Role of autoretreat and A/S changes in the understanding of deltaic shoreline trajectory: A semi‐quantitative approach. Basin Research, 14, 303–318. https://doi.org/10.1046/j.1365‐2117.2002.00179.x
    [Google Scholar]
  64. Muto, T., & Steel, R. J. (2004). Autogenic response of fluvial deltas to steady sea‐level fall: Implications from flume‐tank experiments. Geology, 32, 401–404. https://doi.org/10.1130/G20269.1
    [Google Scholar]
  65. Muto, T., Steel, R. J., & Burgess, P. M. (2016). Contributions to sequence stratigraphy from analogue and numerical experiments. Journal of the Geological Society, 173, 837–844. https://doi.org/10.1144/jgs2015‐127
    [Google Scholar]
  66. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  67. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47, 121–178.
    [Google Scholar]
  68. Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large‐scale dynamics of grain size variation in alluvial basins, 1: Theory. Basin Research, 4, 73–90. https://doi.org/10.1111/j.1365‐2117.1992.tb00145.x
    [Google Scholar]
  69. Paola, C., Straub, K. M., Mohrig, D. C., & Reinhardt, L. (2009). The “unreasonable effectiveness” of stratigraphic and geomorphic experiments. Earth Science Reviews, 97, 1–43. https://doi.org/10.1016/j.earscirev.2009.05.003
    [Google Scholar]
  70. Payton, C. E. (1977). Seismic stratigraphy—Applications to the exploration of sedimentary basins. AAPG Memoir, 26, 516 p.
    [Google Scholar]
  71. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K. M., Drexler, T. M., & Trincardi, F. (2017). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45, 327–330. https://doi.org/10.1130/G38848.1
    [Google Scholar]
  72. Pellegrini, C., Patruno, S., Helland‐Hansen, W., Steel, R. J., & Trincardi, F. (2020). Clinoforms and clinothems: Fundamental elements of basin infill. Basin Research, 32, 187–205. https://doi.org/10.1111/bre.12446
    [Google Scholar]
  73. Plint, A. G., & Nummedal, D. (2000). The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. In D.Hunt & R. L.Gawthorpe (Eds.), Sedimentary response to forced regression (Vol. 172, pp. 1–17). London, UK: Geological Society, Special Publications.
    [Google Scholar]
  74. Plotnick, R. (1986). A fractal model for the distribution of stratigraphic hiatuses. Journal of Geology, 94, 885–890. https://doi.org/10.1086/629094
    [Google Scholar]
  75. Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy‐concepts and applications. Soc. Econ. Paleo. and Mineral. (SEPM) Concepts in Sedimentology and Paleontology, 7, 210 p.
    [Google Scholar]
  76. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastic deposition. I. Conceptual framework. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea level changes—An integrated approach. SEPM Special Publication. 42, 110–124.
    [Google Scholar]
  77. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  78. Posamentier, H. W., & Vail, P. R. (1988). Eustatic controls on clastic deposition. II. Sequence and systems tract models. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea level changes—An integrated approach. SEPM Special Publication. 42, 125–154.
    [Google Scholar]
  79. Ridente, D. (2016). Releasing the sequence stratigraphy paradigm: Overview and perspectives. Journal of the Geological Society, 173, 845–853. https://doi.org/10.1144/jgs2015‐140
    [Google Scholar]
  80. Ritchie, B. D., Gawthorpe, R. L., & Hardy, S. (2004a). Three‐dimensional numerical modelling of deltaic depositional sequences 1: Influence of the rate and magnitude of sea‐level change. Journal of Sedimentary Research, 74, 203–220.
    [Google Scholar]
  81. Ritchie, B. D., Gawthorpe, R. L., & Hardy, S. (2004b). Three‐dimensional numerical modelling of deltaic depositional sequences 2: Influences of local controls. Journal of Sedimentary Research, 74, 221–238.
    [Google Scholar]
  82. Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology, 89, 569–584. https://doi.org/10.1086/628623
    [Google Scholar]
  83. Sadler, P. M., & Strauss, D. J. (1990). Estimation of completeness of stratigraphical sections using empirical data and theoretical models. Journal of the Geological Society, 147, 471–485. https://doi.org/10.1144/gsjgs.147.3.0471
    [Google Scholar]
  84. Schlager, W. (1993). Accommodation and supply—A dual control on stratigraphic sequences. Sedimentary Geology, 86, 111–136. https://doi.org/10.1016/0037‐0738(93)90136‐S
    [Google Scholar]
  85. Schultz, E. H. (1982). The chronosome and supersome: Terms proposed for low‐rank chronostratigraphic units. Bulletin of Canadian Petroleum Geology, 30, 29–33.
    [Google Scholar]
  86. Shanley, K. W., & McCabe, P. J. (1993). Alluvial architecture in a sequence stratigraphic framework: A case history from the Upper Cretaceous of southern Utah, USA. In S. S.Flint & I. D.Bryant (Eds.), The geological modelling of hydrocarbon reservoirs and outcrop analogues. International Association of Sedimentologists, Special Publication. 15, 21–56.
    [Google Scholar]
  87. Sheets, B., Hickson, T. A., & Paola, C. (2002). Assembling the stratigraphic record: Depositional patterns and time‐scales in an experimental alluvial basin. Basin Research, 14, 287–301. https://doi.org/10.1046/j.1365‐2117.2002.00185.x
    [Google Scholar]
  88. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: a basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387.
    [Google Scholar]
  89. Steel, R. J., Olariu, C., Zhang, J., & Chen, S. (2019). What is the topset of a shelf‐margin prism?Basin Research, 32, 263–278. https://doi.org/10.1111/bre.12394
    [Google Scholar]
  90. Strong, N., & Paola, C. (2008). Valleys that never were: Time surfaces versus stratigraphic surfaces. Journal of Sedimentary Research, 78, 579–593. https://doi.org/10.2110/jsr.2008.059
    [Google Scholar]
  91. Sweet, M. L., & Blum, M. D. (2016). Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deep water. Journal of Sedimentary Research, 86, 1147–1162. https://doi.org/10.2110/jsr.2016.64
    [Google Scholar]
  92. Swift, D. J. P., & Thorne, J. A. (1991). Sedimentation on continental margins, I: a general model for shelf sedimentation. In D. J. P.Swift, G. F.Oertel, R. W.Tillman, & J. A.Thorne (Eds.), Shelf sand and sandstone bodies. International Association of Sedimentologists, Special Publication. 14, 3–31.
    [Google Scholar]
  93. Tetzlaff, D. M., & Harbaugh, J. W. (1989). Simulating clastic sedimentation: Computer methods in the geosciences (p. 202). New York, NY: Van Nostrand Reinhold.
    [Google Scholar]
  94. Thorne, J. A., & Swift, D. J. P. (1991). Sedimentation on continental margins, II: application of the regime concept. In D. J. P.Swift, G. F.Oertel, R. W.Tillman, & J. A.Thorne (Eds.), Shelf sand and sandstone bodies: geometry, facies and sequence stratigraphy. lnternational Association of Sedimentologists, Special Publication. 14, 33–58.
    [Google Scholar]
  95. Tipper, J. C. (2000). Patterns of stratigraphic cyclicity. Journal of Sedimentary Research, 70, 1262–1279. https://doi.org/10.1306/031700701262
    [Google Scholar]
  96. Tipper, J. C. (2015). The importance of doing nothing: stasis in sedimentation systems and its stratigraphic effects. In D. G.Smith, R. J.Bailey, P. M.Burgess, & A. J.Fraser (Eds.), Strata and time: Probing the gaps in our understanding (Vol. 404, pp. 105–122). London, UK: Geological Society, Special Publications.
    [Google Scholar]
  97. Tipper, J. C. (2016). Measured rates of sedimentation: What exactly are we estimating, and why?Sedimentary Geology, 339, 151–171. https://doi.org/10.1016/j.sedgeo.2016.04.003
    [Google Scholar]
  98. Vail, P. R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy, Part 1: seismic stratigraphy interpretation procedure. In: A.W.Bally (Eds.), Atlas of Seismic Stratigraphy. Am. Assoc. Pet. Geol. Stud. Geol., 27, 1–10.
    [Google Scholar]
  99. Vail, P. R., Mitchum, R. M., & Thompson, S., III. (1977). Seismic stratigraphy and global changes of sea level; Part 4, Global cycles of relative changes of sea level. In C. E.Payton (Ed.), Seismic stratigraphy; applications to hydrocarbon exploration. AAPG Memoir. 26, 83–97.
    [Google Scholar]
  100. Von Neumann, J. (1966). Theory of self reproducing automata (418 p.). University of Illinois Press.
    [Google Scholar]
  101. Weltje, G. J., & Roberson, S. (2012). Numerical methods for integrating particle‐size frequency distributions. Computers & Geosciences, 44, 156–167. https://doi.org/10.1016/j.cageo.2011.09.020
    [Google Scholar]
  102. Wijns, C., Poulet, T., Boschetti, F., Dyt, C., & Griffiths, C. M. (2004). Interactive inverse methodology applied to stratigraphic forward modelling. In: A.Curtis & R.Wood (Eds.), Geological prior information: Informing science and engineering. Geological Society of London Special Publications, 239, 147–155.
    [Google Scholar]
  103. Wolfram, S. (2002). A new kind of science (1197 p.). Champaign, IL: Wolfram Media.
    [Google Scholar]
  104. Wright, V. P., & Marriott, S. B. (1993). The sequence stratigraphy of fluvial depositional systems: The role of floodplain sediment storage. Sedimentary Geology, 86, 203–210. https://doi.org/10.1016/0037‐0738(93)90022‐W
    [Google Scholar]
  105. Zhang, J., Burgess, P. M., Granjeon, D., & Steel, R. (2019). Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31, 274–289. https://doi.org/10.1111/bre.12320
    [Google Scholar]
  106. Zhu, Y., Bhattacharya, J. P., Li, W., Lapen, T. J., Jicha, B. R., & Singer, B. S. (2012). Milankovitch‐scale sequence stratigraphy and stepped forced regressions of the Turonian Ferron Notom Deltaic Complex, South‐central Utah, U.S.A. Journal of Sedimentary Research, 82, 723–746. https://doi.org/10.2110/jsr.2012.63
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12471
Loading
/content/journals/10.1111/bre.12471
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error