1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

A transition from supradetachment to rift basin signature is recorded in the ~1,500 m thick succession of continental to shallow marine conglomerates, mixed carbonate‐siliciclastic shallow marine sediments and carbonate ramp deposits preserved in the Bandar Jissah Basin, located southeast of Muscat in the Sultanate of Oman. During deposition, isostatically‐driven uplift rotated the underlying Banurama Detachment and basin fill ~45° before both were cut by the steep Wadi Kabir Fault as the basin progressed to a rift‐style bathymetry that controlled sedimentary facies belts and growth packages. The upper Paleocene to lower Eocene Jafnayn Formation was deposited in a supradetachment basin controlled by the Banurama Detachment. Alluvial fan conglomerates sourced from the Semail Ophiolite and the Saih Hatat window overlie the ophiolitic substrate and display sedimentary transport directions parallel to tectonic transport in the Banurama Detachment. The continental strata grade into braidplain, mouth bar, shoreface and carbonate ramp deposits. Subsequent detachment‐related folding of the basin during deposition of the Eocene Rusayl and lower Seeb formations marks the early transition towards a rift‐style basin setting. The folding, which caused drainage diversion and is affiliated with sedimentary growth packages, coincided with uplift‐isostasy as the Banurama Detachment was abandoned and the steeper Marina, Yiti Beach and Wadi Kabir faults were activated. The upper Seeb Formation records the late transition to rift‐style basin phase, with fault‐controlled sedimentary growth packages and facies distributions. A predominance of carbonates over siliciclastic sediments resulted from increasing near‐fault accommodation, complemented by reduced sedimentary input from upland catchments. Hence, facies distributions in the Bandar Jissah Basin reflect the progression from detachment to rift‐style tectonics, adding to the understanding of post‐orogenic extensional basin systems.

,

The Bandar Jissah Basin in Oman evolved from a supradetachment basin to a rift basin system. Lower basin fill dominated by high‐energy continental deposits controlled by the Banurama detachment. Younger faults dissected the upper‐plate rocks, cutting the rotated detachment and basin fill. Carbonate‐dominated upper basin fill controlled by steep rift‐style faulting.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12484
2021-01-22
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12484.html?itemId=/content/journals/10.1111/bre.12484&mimeType=html&fmt=ahah

References

  1. Abbasi, I. A., Salad Hersi, O., & Al‐Harthy, A. (2014). Late Cretaceous conglomerates of the Qahlah formation, north Oman. Geological Society, London, Special Publications, 392(1), 325–341. https://doi.org/10.1144/SP392.17
    [Google Scholar]
  2. Ali, M. Y., & Watts, A. B. (2009). Subsidence history, gravity anomalies and flexure of the United Arab Emirates (UAE) foreland basin. GeoArabia, 14(2), 17–44.
    [Google Scholar]
  3. Asti, R., Faccenna, C., Rossetti, F., Malusà, M. G., Gliozzi, E., Faranda, C., … Cosentino, D. (2019). The Gediz supradetachment system (SW Turkey): Magmatism, tectonics, and sedimentation during crustal extension. Tectonics, 38(4), 1414–1440. https://doi.org/10.1029/2018TC005181
    [Google Scholar]
  4. Asti, R., Malusà, M. G., & Faccenna, C. (2018). Supradetachment basin evolution unravelled by detrital apatite fission track analysis: The Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 30(3), 502–521. https://doi.org/10.1111/bre.12262
    [Google Scholar]
  5. Beavington‐Penney, S. J., Wright, V. P., & Racey, A. (2006). The Middle Eocene Seeb Formation of Oman: An investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. Journal of Sedimentary Research, 76(10), 1137–1161. https://doi.org/10.2110/jsr.2006.109
    [Google Scholar]
  6. Bhattacharya, J. P. (2006). Deltas. In H. W.Posamentier, & R. G.Walker (Eds.), Facies models revisited (pp. 237–292). Tulsa, OK: SEPM Speci. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.06.84.0237
    [Google Scholar]
  7. Braathen, A., Bælum, K., Maher, H.Jr, & Buckley, S. J. (2011). Growth of extensional faults and folds during deposition of an evaporite‐dominated half‐graben basin; the Carboniferous Billefjorden Trough, Svalbard. Norsk Geologisk Tidsskrift, 91(3), 137–161.
    [Google Scholar]
  8. Braathen, A., & Osmundsen, P. T. (2020). Extensional tectonics rooted in orogenic collapse: Long‐lived disintegration of the Semail Ophiolite, Oman. Geology, 48(3), 258–262. https://doi.org/10.1130/G47077.1
    [Google Scholar]
  9. Braathen, A., Osmundsen, P. T., & Gabrielsen, R. H. (2004). Dynamic development of fault rocks in a crustal‐scale detachment: An example from western Norway. Tectonics, 23(4), 1–21. https://doi.org/10.1029/2003TC001558
    [Google Scholar]
  10. Braathen, A., Osmundsen, P. T., Nordgulen, Ø., Roberts, D., & Meyer, G. B. (2002). Orogen‐parallel extension of the Caledonides in northern central Norway: An Overview. Norwegian Journal of Geology, 82, 225–241. https://doi.org/10.1130/0091‐7613(2000)28
    [Google Scholar]
  11. Brun, J.‐P., Sokoutis, D., Tirel, C., Gueydan, F., Van Den Driessche, J., & Beslier, M.‐O. (2018). Crustal versus mantle core complexes. Tectonophysics, 746, 22–45. https://doi.org/10.1016/j.tecto.2017.09.017
    [Google Scholar]
  12. Clifton, H. E. (2006). A reexamination of facies models for clastic shorelines. SEPM Special Publications, 84, 293–338.
    [Google Scholar]
  13. Clifton, H. E., Hunter, R. E., & Phillips, R. L. (1971). Depositional structures and processes in the non‐barred high‐energy nearshore. Journal of Sedimentary Petrology, 41(3), 651–670. https://doi.org/10.1306/74D7231A‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  14. Cooper, D. J. W., Ali, M. Y., & Searle, M. P. (2014). Structure of the northern Oman Mountains from the Semail Ophiolite to the Foreland Basin. Geological Society, London, Special Publications, 392, 129–153. https://doi.org/10.1144/sp392.7
    [Google Scholar]
  15. Cross, N. E., & Bosence, D. W. J. (2008). ‘Tectono‐sedimentary models for rift‐basin carbonate systems’. Controls on carbonate platform and reef development (Vol. 89, pp. 83–105). Tulsa, OK: SEPM Special Publication. https://doi.org/10.2110/pec.08.89.0083
    [Google Scholar]
  16. Cross, N. E., Purser, B. H., & Bosence, D. J. W. (1998). ‘The tectono‐sedimentary evolution of a rift margin carbonate platform: Abu Shaar, Gulf of Suez, Egypt’, in. In B. H.Purser, & D. J. W.Bosence (Eds.), Sedimentation and tectonics in rift basins red sea:‐ gulf of Aden. Dordrecht: Springer. https://doi.org/10.1007/978‐94‐011‐4930‐3_16
    [Google Scholar]
  17. Denizot, M., & Massieux, M. (1965). Observations sur le genre Distichoplax (algues Mélobésiées). Bulletin de la Societe Geologique de France, 7, 387–391.
    [Google Scholar]
  18. Dietrich, W. O. (1927). Die geologisch‐stratigraphischen Ergebnisse der Routenaufnahmen durch Ostpersien‐Sven Hedin. Eine Routenaufnahmen durch Ostpersien, 2, 447–464.
    [Google Scholar]
  19. Dill, H. G., Wehner, H., Kus, J., Botz, R., Berner, Z., Stüben, D., & Al‐Sayigh, A. (2007). The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential. International Journal of Coal Geology, 72(2), 89–123. https://doi.org/10.1016/j.coal.2006.12.012
    [Google Scholar]
  20. Dorobek, S. L. (2008). Syn‐rift carbonate platform sedimentation. SEPM Special Publications, 89, 57–81.
    [Google Scholar]
  21. Dunham, R. J. (1962). ‘Classification of carbonate rocks according to depositional texture’. In W. E.Ham (Ed.). Classification of carbonate rocks (pp. 108–121). Tulsa, OK: American Association of Petroleum Geologists, Memoir 1.
    [Google Scholar]
  22. Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19(4), 730–781.
    [Google Scholar]
  23. Fedo, C. M., & Miller, J. M. G. (1992). Evolution of a Miocene half‐graben basin, Colorado River extensional corridor, southeastern California. Geological Society of America Bulletin, 104(4), 481–493. https://doi.org/10.1130/0016‐7606(1992)104<0481:EOAMHG>2.3.CO;2
    [Google Scholar]
  24. Fillmore, R. P., Walker, J. D., Bartley, J. M., & Glazner, A. F. (1994). Development of three genetically related basins associated with detachment‐style faulting: Predicted characteristics and an example from the central Mojave Desert, California. Geology, 22(12), 1087–1090. https://doi.org/10.1130/0091‐7613(1994)022<1087:DOTGRB>2.3.CO;2
    [Google Scholar]
  25. Fournier, M., Lepvrier, C., Razin, P., & Jolivet, L. (2006). Late Cretaceous to Paleogene post‐obduction extension and subsequent Neogene compression in the Oman Mountains. GeoArabia, 11(4), 17–40.
    [Google Scholar]
  26. Friedman, G. M. (1988). Case histories of coexisting reefs and terrigenous sediments: The Gulf of Elat (Red Sea), Java Sea, and Neogene basin of the Negev, Israel. Developments in Sedimentology, 42, 77–97.
    [Google Scholar]
  27. Friedmann, S. J., & Burbank, D. W. (1995). Rift basins and supradetachment basin: Intracontinental extensional end members. Basin Research, 7(2), 109–127. https://doi.org/10.1111/j.1365‐2117.1995.tb00099.x
    [Google Scholar]
  28. Gawthorpe, R. L., Fraser, A. J., & Collier, R. E. L. (1994). Sequence stratigraphy in active extensional basins: Implications for the interpretation of ancient basin‐fills. Marine and Petroleum Geology, 11(6), 642–658. https://doi.org/10.1016/0264‐8172(94)90021‐3
    [Google Scholar]
  29. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12(3–4), 195–218. https://doi.org/10.1111/j.1365‐2117.2000.00121.x
    [Google Scholar]
  30. Glennie, K. W., Boeuf, M. G. A., Hughes Clarke, M. W., Moody‐Stuart, M., Pilaar, W. F. H., & Reinhardt, B. M. (1973). Late Cretaceous nappes in Oman Mountains and their geologic evolution. AAPG Bulletin, 57(1), 5–27. Retrieved from http://archives.datapages.com/data/bulletns/1971‐73/images/pg/00570001/0000/00050.pdf (Accessed: 22 November 2018).
    [Google Scholar]
  31. Glennie, K. W., Boeuf, M. G. A., Hughes Clarke, M. W., Moody‐Stuart, M., Pilaar, W. F. H., & Reinhardt, B. M. (1974). Geology of the Oman mountains. Verhandelingen Koninklijk Nederlands Geologisch Mijnbouwkundidg Genootschap, 31, 423.
    [Google Scholar]
  32. Gray, D. R., Kohn, B. P., Gregory, R. T., & Raza, A. (2006). Cenozoic exhumation history of the Oman margin of Arabia based on low‐T thermochronology. Geochimica et Cosmochimica Acta, 70(18), A213. https://doi.org/10.1016/j.gca.2006.06.428
    [Google Scholar]
  33. Grohmann, C. H., & Campanha, G. A. (2010). OpenStereo: Open source, cross‐platform software for structural geology analysis. In AGU Fall Meeting Abstracts.
    [Google Scholar]
  34. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26(7), 595–598. https://doi.org/10.1130/0091‐7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  35. Hansman, R. J., Ring, U., Thomson, S. N., den Brok, B., & Stübner, K. (2017). Late Eocene Uplift of the Al Hajar Mountains, Oman, supported by stratigraphy and low‐temperature thermochronology. Tectonics, 36(12), 3081–3109. https://doi.org/10.1002/2017TC004672
    [Google Scholar]
  36. Haynes, J. R., Racey, A., & Whittaker, J. E. (2010). ‘A revision of the Early Palaeogene nummulitids (Foraminifera) from northern Oman, with implications for their classification’. In J. E.Whittaker & M. B.Hart (Eds.), Micropaleontology, Sedimentary environments and Stratigraphy (pp. 29–89). London: Geological Society of London.The Microp. https://doi.org/10.1144/TMS004.4
    [Google Scholar]
  37. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: Seismic case study from the Lofoten margin, Norway. Basin Research, 29(4), 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  38. Holmes, A. E., & Christie‐Blick, N. (1993). ‘Origin of sedimentary cycles in mixed carbonate‐Siliciclastic systems: An example from the Canning Basin, Western Australia: Chapter 7’, AAPG Memoirs, 57 (pp. 181–212).
    [Google Scholar]
  39. Jolivet, L., Goffé, B., Bousquet, R., Oberhänsli, R., & Michard, A. (1998). Detachments in high‐pressure mountain belts, Tethyan examples. Earth and Planetary Science Letters, 160(1–2), 31–47. https://doi.org/10.1016/S0012‐821X(98)00079‐X
    [Google Scholar]
  40. Kapp, P., Taylor, M., Stockli, D., & Ding, L. (2008). Development of active low‐angle normal fault systems during orogenic collapse: Insight from Tibet. Geology, 36(1), 7–10. https://doi.org/10.1130/G24054A.1
    [Google Scholar]
  41. Le Métour, J., Béchennec, F., Roger, J., & Wyns, R. (1992). Geological map of Muscat, with explanatory notes, sheet NF 40–04, scale 1: 250,000. Sultanate of Oman: Ministry of Petroleum and Minerals, Directorate General of Minerals.
    [Google Scholar]
  42. Lippard, S. J. (1983). Cretaceous high pressure metamorphism in NE Oman and its relationship to subducted and ophiolite nappe emplacement. Journal of the Geological Society, 140(1), 97–104. https://doi.org/10.1144/gsjgs.140.1.0097
    [Google Scholar]
  43. Lippard, S. J., Shelton, A. W., & Gass, I. G. (1986). The ophiolite of northern Oman. Geological Society, London, Memoirs, 11, 178. Published for the Geological Society by Blackwell Scientific Publications. Retrieved from https://books.google.no/books/about/The_Ophiolite_of_Northern_Oman.html?id=PCkcAQAAIAAJ&redir_esc=y (Accessed 22 November, 2018).
    [Google Scholar]
  44. Lister, G. S., & Davis, G. A. (1989). The origin of metamorphic core complexes and detaehment faults formed during Tertiary eontinental margins. Geology, 14(1), 246–250. Retrieved from http://d.wanfangdata.com.cn/NSTLQK_10.1130‐0091‐7613(1986)14‐246‐DFATEO‐2.0.CO%5Cn2.aspx%5Cnpapers3://publication/uuid/F517183C‐D20A‐4974‐A72B‐6868A7557C69
    [Google Scholar]
  45. Manatschal, G. (2004). New models for evolution of magma‐poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, 93(3), 432–466. https://doi.org/10.1007/s00531‐004‐0394‐7
    [Google Scholar]
  46. Mann, A., Hanna, S. S., Nolan, S. C., Mann, A., & Hanna, S. S. (1990). The post‐Campanian tectonic evolution of the central Oman Mountains: Tertiary extension of the eastern Arabian Margin. The Geology and Tectonics of the Oman Region, 49(1), 549–563. https://doi.org/10.1144/gsl.sp.1992.049.01.33
    [Google Scholar]
  47. Massari, F., & Neri, C. (1997). Sedimentary geology the infill of a supradetachment (?) basin: The continental to shallow‐marine Upper Permian succession in the Dolomites and Carnia (Italy). Sedimentary Geology, 110, 181–221. https://doi.org/10.1016/S0037‐0738(96)00084‐X
    [Google Scholar]
  48. Mattern, F., & Bernecker, M. (2018). A shallow marine clinoform system in limestones (Paleocene/Eocene Jafnayn Formation, Oman): Geometry, microfacies, environment and processes. Carbonates and Evaporites, 34(1), 101–113. https://doi.org/10.1007/s13146‐018‐0444‐z
    [Google Scholar]
  49. Mattern, F., & Scharf, A. (2018). Postobductional extension along and within the Frontal Range of the eastern Oman Mountains. Journal of Asian Earth Sciences, 154, 369–385. https://doi.org/10.1016/j.jseaes.2017.12.031
    [Google Scholar]
  50. Mount, V. S., Crawford, R. I. S., & Bergman, S. C. (1998). Regional structural style of the central and southern Oman Mountains: Jebel Akhdar, Saih Hatat, and the northern Ghaba Basin. GeoArabia, 3(4), 475–490.
    [Google Scholar]
  51. Nolan, S. C., Skelton, P. W., Clissold, B. P., & Smewing, J. D. (1990). Maastrichian to early tertiary stratigraphy and paleogeography of the central and northern Oman Mountains. The Geology and Tectonics of the Oman Region, 49(49), 495–512. https://doi.org/10.1144/GSL.SP.1992.049.01.31
    [Google Scholar]
  52. Oner, Z., & Dilek, Y. (2011). Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. GSA Bulletin, 123(11), 2115–2141. https://doi.org/10.1130/B30468.1
    [Google Scholar]
  53. Osmundsen, P. T., & Andersen, T. B. (2001). The middle Devonian basins of western Norway: Sedimentary response to large‐scale transtensional tectonics?Tectonophysics, 332(1–2), 51–68. https://doi.org/10.1016/S0040‐1951(00)00249‐3
    [Google Scholar]
  54. Osmundsen, P. T., Bakke, B., Svendby, A. K., & Andersen, T. B. (2000). Architecture of the Middle Devonian Kvamshesten Group, western Norway: Sedimentary response to deformation above a ramp‐flat extensional fault. Geological Society, London, Special Publications, 180(1), 503–535. https://doi.org/10.1144/gsl.sp.2000.180.01.27
    [Google Scholar]
  55. Osmundsen, P. T., & Péron‐Pinvidic, G. (2018). Crustal‐scale fault interaction at rifted margins and the formation of domain‐bounding breakaway complexes: Insights from offshore Norway. Tectonics, 37(3), 935–964. https://doi.org/10.1002/2017TC004792
    [Google Scholar]
  56. Özcan, E., Abbasi, İ. A., Drobne, K., Govindan, A., Jovane, L., & Boukhalfa, K. (2016). Early Eocene orthophragminids and alveolinids from the Jafnayn Formation, N Oman: Significance of Nemkovella stockari Less & Özcan, 2007 in Tethys. Geodinamica Acta, 28(3), 160–184. https://doi.org/10.1080/09853111.2015.1107437
    [Google Scholar]
  57. Paerl, H. W., Pinckney, J. L., & Steppe, T. F. (2000). Cyanobacterial‐bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2(1), 11–26. https://doi.org/10.1046/j.1462‐2920.2000.00071.x
    [Google Scholar]
  58. Patruno, S., Hampson, G. J., & Jackson, C. A. L. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  59. Pia, J. (1934). Kalkalgen aus dem Eozän der Felsen von Hrièovské Podhradie in Waagtal. Véstnik du Service Géologique de la République Tchécoslovaque, 10, 14–18.
    [Google Scholar]
  60. Platt, J. P., Behr, W. M., & Cooper, F. J. (2015). Metamorphic core complexes: Windows into the mechanics and rheology of the crust. Journal of the Geological Society, 172(1), 9–27. https://doi.org/10.1144/jgs2014‐036
    [Google Scholar]
  61. Racey, A. (1995). Lithostratigraphy and larger foraminiferal (nummulitid) biostratigraphy of the tertiary of northern Oman. Micropaleontology, 41, 1–123. https://doi.org/10.2307/1485849
    [Google Scholar]
  62. Rattey, R. P., & Hayward, A. B. (1993). Sequence stratigraphy of a failed rift system: The Middle Jurassic to Early Cretaceous basin evolution of the Central and Northern North Sea. Geological Society, London, Petroleum Geology Conference Series, 4(1), 215–249. https://doi.org/10.1144/0040215
    [Google Scholar]
  63. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift basin successions. AAPG Bulletin, 82(1), 110–146. https://doi.org/10.1306/1D9BC3A9‐172D‐11D7‐8645000102C1865D
    [Google Scholar]
  64. Ricateau, R., & Riche, P. H. (1980). Geology of the Musandam peninsula (Sultanate of Oman) and its surroundings. Journal of Petroleum Geology, 3(2), 139–152. https://doi.org/10.1306/BF9AB5C2‐0EB6‐11D7‐8643000102C1865D
    [Google Scholar]
  65. Roberts, H. H., & Murray, S. P. (1988). Gulfs of the Northern Red Sea: Depositional settings of abrupt siliciclastic‐carbonate transitions. Developments in Sedimentology, 42, 99–142. https://doi.org/10.1016/S0070‐4571(08)70166‐3
    [Google Scholar]
  66. Rollinson, H. R., Searle, M. P., Abbasi, I. A., Al‐Lazki, A. I., & Al Kindi, M. H. (2014). Tectonic evolution of the Oman Mountains: An introduction. Geological Society, London, Special Publications, 392(1), 1–7. https://doi.org/10.1144/SP392.1
    [Google Scholar]
  67. Saddiqi, O., Michard, A., Goffe, B., Poupeau, G., & Oberhänsli, R. (2006). Fission‐track thermochronology of the Oman Mountains continental windows, and current problems of tectonic interpretation. Bulletin de la Société Géologique de France, 177(3), 127–134. https://doi.org/10.2113/gssgfbull.177.3.127
    [Google Scholar]
  68. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. AAPG Bulletin, 79(11), 1661–1678. https://doi.org/10.1306/7834DE4A‐1721‐11D7‐8645000102C1865D
    [Google Scholar]
  69. Searle, M. P. (2007). Structural geometry, style and timing of deformation in the Hawasina Window, Al Jabal al Akhdar and Saih Hatat culminations, Oman Mountains. GeoArabia, 12(2), 99–130.
    [Google Scholar]
  70. Searle, M. P., & Ali, M. Y. (2009). Structural and tectonic evolution of the Jabal Sumeini – Al Ain – Buraimi region, northern Oman and eastern United Arab Emirates. GeoArabia, 14(1), 115–142.
    [Google Scholar]
  71. Searle, M. P., Warren, C. J., Waters, D. J., & Parrish, R. R. (2004). Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains. Journal of Structural Geology, 26(3), 451–473. https://doi.org/10.1016/j.jsg.2003.08.005
    [Google Scholar]
  72. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990. https://doi.org/10.1111/bre.12353
    [Google Scholar]
  73. Sharp, I. R., Gawthorpe, R. L., Underhill, J. R., & Gupta, S. (2000). Fault‐propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez rift, Sinai, Egypt. Bulletin of the Geological Society of America, 112(12), 1877–1899. https://doi.org/10.1130/0016‐7606(2000)112<1877:FPFIES>2.0.CO;2
    [Google Scholar]
  74. Smyrak‐Sikora, A., Johannessen, E. P., Olaussen, S., Sandal, G., & Braathen, A. (2019). Sedimentary architecture during carboniferous rift initiation – The arid Billefjorden Trough, Svalbard. Journal of the Geological Society, 176(2), 225–252. https://doi.org/10.1144/jgs2018‐100
    [Google Scholar]
  75. Spalletti, L. A., Franzese, J. R., Matheos, S. D., & Schwarz, E. (2000). Sequence stratigraphy of a tidally dominated carbonate–siliciclastic ramp; the Tithonian‐Early Berriasian of the Southern Neuquén Basin, Argentina. Journal of the Geological Society, 157(2), 433–446. https://doi.org/10.1144/jgs.157.2.433
    [Google Scholar]
  76. Stein, R. S., & Barrientos, S. E. (1985). Planar high‐angle faulting in the Basin and Range: Geodetic analysis of the 1983 Borah Peak, Idaho, Earthquake. Journal of Geophysical Research, 90(B13), 355–366. https://doi.org/10.1029/JB090iB13p11355
    [Google Scholar]
  77. Sutra, E., Manatschal, G., Mohn, G., & Unternehr, P. (2013). Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems, 14(8), 2575–2597. https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  78. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  79. Thrana, C., & Talbot, M. R. (2006). High‐frequency carbonate‐siliciclastic cycles in the Miocene of the Lorca Basin (Western Mediterranean, SE Spain). Geologica Acta, 4(3), 343–354. https://doi.org/10.1344/105.000000348
    [Google Scholar]
  80. van Hinsbergen, D. J. J., & Meulenkamp, J. E. (2006). Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Research, 18(1), 103–124. https://doi.org/10.1111/j.1365‐2117.2005.00282.x
    [Google Scholar]
  81. Vetti, V. V., & Fossen, H. (2012). Origin of contrasting Devonian supradetachment basin types in the Scandinavian Caledonides. Geology, 40(6), 571–574. https://doi.org/10.1130/G32512.1
    [Google Scholar]
  82. Warren, C. J., & Miller, J. M. L. (2007). Structural and stratigraphic controls on the origin and tectonic history of a subducted continental margin, Oman. Journal of Structural Geology, 29(3), 541–558. https://doi.org/10.1016/j.jsg.2006.10.006
    [Google Scholar]
  83. Wessels, R. J. F. (2012). Post‐obduction evolution of the Wadi Kabir syncline area and northern Saih Hatat, Oman, Msc Thesis. Utrecht University.
    [Google Scholar]
  84. White, R. S., & Ross, D. A. (1979). Tectonics of the western Gulf of Oman. Journal of Geophysical Research, 84(B7), 3479–3489. https://doi.org/10.1029/JB084iB07p03479
    [Google Scholar]
  85. Würsten, F., Flisch, M., Michalski, I., Le Métour, J., Mercolli, I., Matthäus, U., & Peters, T. (1991). The uplift history of the Precambrian crystalline basement of the Jabal J'alan (Sur Area). Ophiolite Genesis and Evolution of the Oceanic Lithosphere, 5(1989), 613–626.
    [Google Scholar]
  86. Zavala, C., Arcuri, M., Di Meglio, M., Diaz, H. G., & Contreras, C. (2011). A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. AAPG Special Volumes, 31–51. https://doi.org/10.1306/13271349St613438
    [Google Scholar]
/content/journals/10.1111/bre.12484
Loading
/content/journals/10.1111/bre.12484
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): carbonates; extensional tectonics; rift basins; supradetachment basin

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error