1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Mixed siliciclastic‐carbonate deep‐marine systems (mixed systems) are less documented in the geological record than pure siliciclastic systems. The similarities and differences between these systems are, therefore, poorly understood. A well‐exposed Late Cretaceous mixed system on the northern side of the Eastern Greater Caucasus, Azerbaijan, provides an opportunity to study the interaction between contemporaneous siliciclastic and carbonate deep‐marine deposition. Facies analysis reveals a Cenomanian–early Turonian siliciclastic submarine channel complex that abruptly transitions into a Mid Turonian–Maastrichtian mixed lobe‐dominated succession. The channels are entrenched in lows on the palaeo‐seafloor but are absent 10 km towards the west where an Early Cretaceous submarine landslide complex acted as a topographic barrier to deposition. By the Campanian, this topography was largely healed allowing extensive deposition of the mixed lobe‐dominated succession. Evidence for irregular bathymetry is recorded by opposing palaeoflow indicators and frequent submarine landslides. The overall sequence is interpreted to represent the abrupt transition from Cenomanian–early Turonian siliciclastic progradation to c. Mid Turonian retrogradation, followed by a gradual return to progradation in the Santonian–Maastrichtian. The siliciclastic systems periodically punctuate a more widely extensive calcareous system from the Mid Turonian onwards, resulting in a mixed deep‐marine system. Mixed lobes differ from their siliciclastic counterparts in that they contain both siliciclastic and calcareous depositional elements making determining distal and proximal environments challenging using conventional terminology and complicate palaeogeographic interpretations. Modulation and remobilisation also occur between the two contemporaneous systems making stacking patterns difficult to decipher. The results provide insight into the behaviour of multiple contemporaneous deep‐marine fans, an aspect that is challenging to decipher in non‐mixed systems. The study area is comparable in terms of facies, architectures and the presence of widespread instability to offshore The Gambia, NW Africa, and could form a suitable analogue for mixed deep‐marine systems observed elsewhere.

,

We use qualitative and quantitative sedimentology to document the evolution of a mixed siliciclastic‐carbonate deep‐marine system throughout the Cretaceous in the Eastern Central Graben, Azerbaijan. The system evolves from siliciclastic channel dominated to mixed lobe dominated, and interacts with mass failure topography throughout development. The interaction between the two contemporaneous systems make lobe stacking patterns difficult to decipher.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12488
2021-01-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12488.html?itemId=/content/journals/10.1111/bre.12488&mimeType=html&fmt=ahah

References

  1. Adamia, S. A., Zakariadze, G. S., Chkhotua, T., Sadradze, N., Tsereteli, N., Chabukiani, A., & Gventsadze, A. (2011). Geology of the Caucasus: A review. Turkish Journal of Earth Sciences, 20, 489–544.
    [Google Scholar]
  2. Ahmad, R., & Afzal, J. (2012). Sequence stratigraphy of the mixed carbonate‐siliciclastic system of the eocene Nisai formation, Pishin Basin. Distribution of source rocks and reservoir facies. Retrieved from http://www.searchanddiscovery.com/pdfz/documents/2012/10406ahmad/ndx_ahmad.pdf.html
    [Google Scholar]
  3. Alexander, J. (2008). Bedforms in froude‐supercritical flow. Marine and river dune dynamics. Retrieved from https://ueaeprints.uea.ac.uk/id/eprint/27459/
    [Google Scholar]
  4. Alizadeh, A., Guliyev, I. S., Kadirov, F. A., & Eppelbaum, L. V. (2016). Geosciences of Azerbaijan (p. 237). Cham, Switzerland: Springer.
    [Google Scholar]
  5. Al‐Mashaikie, S. Z. A. K., & Mohammed, Y. A. (2017). Anatomy of carbonate breccias, turbidite facies and depositional systems of Gercus Formation, in Donkan Area, Northern Iraq. Iraqi Geological Journal, 50(1), 90–103.
    [Google Scholar]
  6. Araya, T., & Masuda, F. (2001). Sedimentary structures of antidunes: An overview. Journal of the Sedimentological Society of Japan, 53, 1–15. https://doi.org/10.4096/jssj1995.53.1
    [Google Scholar]
  7. Armitage, D. A., Romans, B. W., Covault, J. A., & Graham, S. A. (2009). The influence of mass‐transport‐deposit surface topography on the evolution of turbidite architecture: The Sierra Contreras, Tres Pasos Formation (Cretaceous), southern Chile. Journal of Sedimentary Research, 79(5), 287–301. https://doi.org/10.2110/jsr.2009.035
    [Google Scholar]
  8. Baas, J., Best, J., & Peakall, J. (2016). Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society, 173(1), 12–45. https://doi.org/10.1144/jgs2015‐024
    [Google Scholar]
  9. Baas, J. H., Best, J. L., Peakall, J., & Wang, M. (2009). A phase diagram for turbulent, transitional and laminar clay suspension flows. Journal of Sedimentary Research, 79, 162–183. https://doi.org/10.2110/jsr.2009.025
    [Google Scholar]
  10. Baraboshkin, E. Y., Alekseev, A. S., & Kopaevich, L. F. (2003). Cretaceous palaeogeography of the North‐Eastern Peri‐Tethys. Palaeogeography Palaeoclimatology Palaeoecology, 196, 177–208. https://doi.org/10.1016/S0031‐0182(03)00318‐3
    [Google Scholar]
  11. Barker, S. P., Haughton, P. D. W., McCaffrey, W. D., Archer, S. G., & Hakes, B. (2008). Development of rheological heterogeneity in clay‐rich high‐density turbidity currents: Aptian Britannia Sandstone Member, UK continental shelf. Journal of Sedimentary Research, 78, 45–68. https://doi.org/10.2110/jsr.2008.014
    [Google Scholar]
  12. Barrier, E., Vrielynck, B., Bergerat, F., Brunet, M.‐F., Mosar, J., Poisson, A., & Sosson, M. (2008). Paleotectonic maps of the Middle East – Tectono‐sedimentary‐palinplastic maps from Late Norian to Pliocene. Retrieved from https://www.worldcat.org/title/palaeotectonic‐maps‐of‐the‐middle‐east‐tectono‐sedimentary‐palinspastic‐maps‐from‐late‐norian‐to‐pliocene/oclc/784218423
    [Google Scholar]
  13. Basilici, G., Vieira De Luca, P. H., & Poiré, D. G. (2012). Hummocky cross‐stratification‐like structures and combined‐flow ripples in the Punta Negra Formation (Lower‐Middle Devonian, Argentine Precordillera): A turbiditic deep‐marine or storm‐dominated prodelta inner‐shelf systems?Sedimentary Geology, 267–268, 73–92.
    [Google Scholar]
  14. Bell, D., Kane, I., Pontén, A., Flint, S., Hodgson, D., & Barrett, B. (2018). Spatial variability in depositional reservoir quality of deep‐marine channel‐fill and lobe deposits. Marine and Petroleum Geology, 98, 97–115.
    [Google Scholar]
  15. Bell, D., Stevenson, C. J., Kane, I. A., Hodgson, D. M., & Poyatos‐Moré, M. (2018). Topographic controls on the development of contemporaneous but contrasting basin‐floor depositional architectures. Journal of Sedimentary Research, 88(10), 1166–1189. https://doi.org/10.2110/jsr.2018.58
    [Google Scholar]
  16. Blair, T. C., & McPherson, J. G. (1999). Grain‐size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research, 69(1), 6–19. https://doi.org/10.2110/jsr.69.6
    [Google Scholar]
  17. Bochud, M. (2011). Tectonics of the Eastern Greater Caucasus in Azerbaijan (Doctoral Dissertation) (p. 202). University of Freiburg.
    [Google Scholar]
  18. Boulesteix, K., Poyatos‐More, M., Flint, S. S., Hodgson, D. M., & Taylor, K. G. (2020). Sedimentary facies and stratigraphic architecture of deep‐water mudstones beyond the basin‐floor fan sandstone pinchout. Journal of Sedimentary Research, in press.
    [Google Scholar]
  19. Boulesteix, K., Poyatos‐More, M., Flint, S. S., Taylor, K. G., Hodgson, D. M., & Hasiotis, S. T. (2019). Transport and deposition of mud in deep‐marine environments: Processes and stratigraphic implications. Sedimentology, 66(7), 2894–2925.
    [Google Scholar]
  20. Braga, J., Martin, J., & Wood, J. (2001). Submarine lobes and feeder channels of redeposited, temperate carbonate and mixed siliciclastic‐carbonate platform deposits (Vera Basin, Almeria, southern Spain). Sedimentology, 48(1), 99–116. https://doi.org/10.1046/j.1365‐3091.2001.00353.x
    [Google Scholar]
  21. Bragina, L. G., & Bragin, N. Y. (2015). New data on Albian‐Coniacian radiolarians from the Kelevudag section (northeastern Azerbaijan). Stratigraphy and Geological Correlation, 23(1), 45–56. https://doi.org/10.1134/S0869593815010050
    [Google Scholar]
  22. Brunet, M.‐F., Korotaev, M. V., Ershov, A. V., & Nikishin, A. M. (2003). The South Caspian Basin: A review of its evolution from subsidence modelling. Sedimentary Geology, 156(1–4), 119–148. https://doi.org/10.1016/S0037‐0738(02)00285‐3
    [Google Scholar]
  23. Burbank, D. W., Vergés, J., Munoz, A., & Bentham, P. (1992). Coeval hindward‐ and forward‐imbricating thrusting in the south‐central Pyrenees, Spain: Timing and rates of shortening and deposition. Geological Society of America Bulletin, 104, 3–17. https://doi.org/10.1130/0016‐7606(1992)104<0003:CHAFIT>2.3.CO;2
    [Google Scholar]
  24. Casson, M., Calvès, G., Huuse, M., Sayers, B., & Redfern, J., , (2020). Cretaceous continental margin evolution revealed using quantitative seismic geomorphology, offshore northwest Africa. Basin Research, https://doi.org/10.1111/bre.12455
    [Google Scholar]
  25. Chiarella, D., & Longhitano, S. G. (2012). Distinguishing depositional environments in shallow‐water mixed, bio‐siliciclastic deposits on the basis of the degree of heterolithic segregation (Gelasian, Southern Italy). Journal of Sedimentary Research, 82, 969–990. https://doi.org/10.2110/jsr.2012.78
    [Google Scholar]
  26. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2017). Types of mixing and heterogeneities in siliciclastic‐carbonate sediments. Marine and Petroleum Geology, 88, 617–627. https://doi.org/10.1016/j.marpetgeo.2017.09.010
    [Google Scholar]
  27. Chiarella, D., Longhitano, S. G., & Tropeano, M. (2019). Different stacking patterns along an active fold‐and‐thrust belt‐Acerenza Bay, Southern Appennines (Italy). Geology, 47(2), 139–142.
    [Google Scholar]
  28. Chiarella, D., Moretti, M., Longhitano, S. G., & Muto, F. (2016). Deformed cross‐stratified deposits in the Early Pleistocene tidally‐dominated Catanzaro strait fill succession, Calabrian Arc (Southern Italy): Triggering mechanisms and environmental significance. Sedimentary Geology, 344, 277–289. https://doi.org/10.1016/j.sedgeo.2016.05.003
    [Google Scholar]
  29. Clift, P., & Gaedicke, C. (2002). Accelerated mass flux to the Arabian Sea during the middle to late Miocene. Geology, 30, 207–210. https://doi.org/10.1130/0091‐7613(2002)030<0207:AMFTTA>2.0.CO;2
    [Google Scholar]
  30. Crevello, P. D., & Schlager, W. (1980). Carbonate debris sheets and turbidites, Exuma Sound, Bahamas. Journal of Sedimentary Research, 50(4), 1121–1147.
    [Google Scholar]
  31. D'Argenio, B., Ferreri, V., Raspini, A., Amodio, S., & Buonocunto, F. (1999). Cyclostratigraphy of a carbonate platform as a tool for high‐precision correlation. Tectonophysics, 315(1–4), 357–384. https://doi.org/10.1016/S0040‐1951(99)00290‐5
    [Google Scholar]
  32. de Blasio, F. V., Engvik, L. E., & Elverhøi, A. (2006). Sliding of outrunner blocks from submarine landslides. Geophysical Research Letters, 33(6). https://doi.org/10.1029/2005GL025165
    [Google Scholar]
  33. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration‐aggradation history and 3‐D seismic geomorphology of submarine channels in the Pleistocene Benin‐major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24(6–9), 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    [Google Scholar]
  34. Dickie, J., & Hein, F. (1995). Conglomeratic fan deltas and submarine fans of the Jurassic Laberge Group, Whitehorse Trough, Yukon Territory, Canada: Fore‐arc sedimentation and unroofing of a volcanic island arc complex. Sedimentary Geology, 98(1–4), 263–292. https://doi.org/10.1016/0037‐0738(95)00036‐8
    [Google Scholar]
  35. Ditty, P. S., Harmon, C. J., Pilkey, O. H., Ball, M. M., & Richardson, E. S. (1977). Mixed terrigenous—Carbonate sedimentation in the Hispaniola—Caicos turbidite basin. Marine Geology, 24(1), 1–20. https://doi.org/10.1016/0025‐3227(77)90012‐3
    [Google Scholar]
  36. Dorsey, R. J., & Kidwell, S. M. (1999). Mixed carbonate‐siliciclastic sedimentation on a tectonically active margin: Example from the Pliocene of Baja California Sur, Mexico. Geology, 27(10), 935–938. https://doi.org/10.1130/0091‐7613(1999)027<0935:MCSSOA>2.3.CO;2
    [Google Scholar]
  37. Dunbar, G. B., & Dickens, G. R. (2003). Late quaternary shedding of shallow‐marine carbonate along a tropical mixed siliciclastic–carbonate shelf: Great Barrier Reef, Australia. Sedimentology, 50(6), 1061–1077. https://doi.org/10.1046/j.1365‐3091.2003.00593.x
    [Google Scholar]
  38. Dunham, R. J. (1962). Classification of carbonate Rocks according to depositional texture. American Association of Petroleum Geologists Memoir, 108–121.
    [Google Scholar]
  39. Egan, S. S., Mosar, J., Brunet, M. F., & Kangarli, T. (2009). Subsidence and uplift mechanisms within the South Caspian Basin: Insights from the onshore and offshore Azerbaijan region. Geological Society, London, Special Publications, 312(1), 219–240. https://doi.org/10.1144/SP312.11
    [Google Scholar]
  40. Ferguson, R. A., Kane, I. A., Eggenhuisen, J. T., Pohl, F., Tilston, M., Spychala, Y. T., & Brunt, R. L. (2020). Entangled external and internal controls on submarine fan evolution: An experimental perspective. The Depositional Record, https://doi.org/10.1002/dep2.109
    [Google Scholar]
  41. Fildani, A., Clark, J., Covault, J. A., Power, B., Romans, B. W., & Aiello, I. W. (2018). Muddy sand and sandy mud on the distal Mississippi fan: Implications for lobe depositional processes. Geosphere, 14(3), 1051–1066. https://doi.org/10.1130/GES01580.1
    [Google Scholar]
  42. Fildani, A., McKay, M. P., Stockli, D., Clark, J., Dykstra, M. L., Stockli, L., & Hessler, A. M. (2016). The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep‐sea fan. Geology, 44, 479–482. https://doi.org/10.1130/G37657.1
    [Google Scholar]
  43. Fisher, R. V. (1971). Features of coarse‐grained, high concentration fluids and their deposits. Journal of Sedimentary Petrology, 41, 916–927. https://doi.org/10.1306/74D723B5‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  44. Fonnesu, M., Felletti, F., Haughton, P. D., Patacci, M., & McCaffrey, W. D. (2018). Hybrid event bed character and distribution linked to turbidite system sub‐environments: The North Apennine Gottero Sandstone (north‐west Italy). Sedimentology, 65(1), 151–190. https://doi.org/10.1111/sed.12376
    [Google Scholar]
  45. Francis, J., Daniell, J., Droxler, A., Dickens, G., Bentley, S., Peterson, L., … Beaufort, L. (2008). Deep water geomorphology of the mixed siliciclastic‐carbonate system, Gulf of Papua. Journal of Geophysical Research: Earth Surface, 113(1). https://doi.org/10.1029/2007JF000851
    [Google Scholar]
  46. Francis, J. M., Dunbar, G. B., Dickens, G. R., Sutherland, I. A., & Droxler, A. W. (2007). Siliciclastic sediment across the north Queensland margin (Australia): A Holocene perspective on reciprocal versus coeval deposition in tropical mixed siliciclastic‐carbonate systems. Journal of Sedimentary Research, 77(7), 572–586. https://doi.org/10.2110/jsr.2007.057
    [Google Scholar]
  47. Fuhrmann, A., Kane, I. A., Clare, M. A., Ferguson, R. A., Schomacker, E., Bonamini, E., & Contreras, F. A. (2020). Hybrid turbidite‐drift channel complexes: An integrated multiscale model. Geology, 48(6), 562–568.
    [Google Scholar]
  48. Garcia‐Garcia, F., Soria, J. M., Viseras, C., & Fernandez, J. (2009). High‐frequency rhythmicity in a mixed siliciclastic‐carbonate shelf (Late Miocene, Guadix Basin, Spain): A model of interplay between climatic oscillations, subsidence and sediment dispersal. Journal of Sedimentary Research, 79, 302–315. https://doi.org/10.2110/jsr.2009.028
    [Google Scholar]
  49. Gavrilov, Y. O. (2018). Architecture of the Southern Marginal Zone of the Upper Jurassic‐Valanginian Carbonate Platform of the Northeastern Caucasus (Dagestan, Shakhdag Massif). Lithology and Mineral Resources, 53(6), 460–472. https://doi.org/10.1134/S0024490218060032
    [Google Scholar]
  50. Gawthorpe, R. L. (1986). Sedimentation during carbonate ramp‐to‐slope evolution in a tectonically active area: Bowland Basin (Dinantian), northern England. Sedimentology, 33(2), 185–206. https://doi.org/10.1111/j.1365‐3091.1986.tb00531.x
    [Google Scholar]
  51. Goldhammer, R. K., Dunn, P. A., & Hardie, L. A. (1990). Depositional cycles, composite sea level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing ‐ Examples from platform carbonates of the Alpine Triassic. Geological Society of America Bulletin, 102, 535–562.
    [Google Scholar]
  52. Golonka, J. (2004). Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1–4), 235–273.
    [Google Scholar]
  53. Gómez‐Pérez, I., Morton, A. C., Kelly, S. R. A., & Stewart, J. C. (2005). Integrated Mesozoic sediment dispersal patterns from Azerbaijan and Kazakstan: Implications for the Central Caspian Basin, CASP, Central Caspian Project. Innovative and Independent Geological Research in Sedimentary Basins, 16, 68.
    [Google Scholar]
  54. Grant, R., Underhill, J., Hernández‐Casado, J., Barker, S., & Jamieson, R. (2019). Upper Permian Zechstein Supergroup carbonate‐evaporite platform palaeomorphology in the UK Southern North Sea. Marine and Petroleum Geology, 100, 484–518. https://doi.org/10.1016/j.marpetgeo.2017.11.029
    [Google Scholar]
  55. Grundvåg, S.‐A., Johannessen, E. P., Helland‐Hansen, W., & Plink‐Björklund, P. (2014). Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology, 61(2), 535–569. https://doi.org/10.1111/sed.12067
    [Google Scholar]
  56. Haq, B. U. (2014). Cretaceous eustacy revisited. Global and Planetary Change, 113, 44–58.
    [Google Scholar]
  57. Harms, J., Southard, J., Spearing, D., & Walker, R. (1975). Depositional environments as interpreted from primary sedimentary and stratigraphic sequences. SEPM.
    [Google Scholar]
  58. Haughton, P. D. W., Davis, C., McCaffrey, W., & Barker, S. (2009). Hybrid sediment gravity flow deposits ‐ Classification, origin and significance. Marine and Petroleum Geology, 26, 1900–1918. https://doi.org/10.1016/j.marpetgeo.2009.02.012
    [Google Scholar]
  59. Hessler, A. M., & Fildani, A. (2019). Deep‐sea fans: Tapping into Earth's changing landscapes. Journal of Sedimentary Research, 89(11), 1171–1179. https://doi.org/10.2110/jsr.2019.64
    [Google Scholar]
  60. Hodgson, D. M., di Celma, C. N., Brunt, R. L., & Flint, S. S. (2011). Submarine slope degradation and aggradation and the stratigraphic evolution of channel‐levee systems. Journal of the Geological Society, 168(3), 625–628. https://doi.org/10.1144/0016‐76492010‐177
    [Google Scholar]
  61. Hodgson, D. M., Kane, I. A., Flint, S. S., Brunt, R. L., & Ortiz‐Karpf, A. (2016). Time‐transgressive confinement on the slope and the progradation of basin‐floor fans: Implications for the sequence stratigraphy of deep‐water deposits. Journal of Sedimentary Research, 86(1), 73–86. https://doi.org/10.2110/jsr.2016.3
    [Google Scholar]
  62. Hu, X., Jansa, L., Wang, C., Sarti, M., Bak, K., Wagreich, M., … Sotak, J. (2005). Upper Cretaceous oceanic red beds (CORBs) in the Tethys: Occurrences, lithofacies, age, and environments. Cretaceous Research, 26(1), 3–20. https://doi.org/10.1016/j.cretres.2004.11.011
    [Google Scholar]
  63. Hubbard, S. M., Covault, J. A., Fildani, A., & Romans, B. W. (2014). Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep‐sea processes from outcrop. Geological Society of America Bulletin, 126, 857–871. https://doi.org/10.1130/B30996.1
    [Google Scholar]
  64. Hunter, R. E., & Clifton, E. H. (1982). Cyclic deposits and hummocky cross‐stratification of probable storm origin in Upper Cretaceous rocks of the Cape Sebastian area, southwestern Oregon. Journal of Sedimentary Research, 52(1), 127–143.
    [Google Scholar]
  65. Imbrie, J., & Buchanan, H. (1960). Sedimentary structures in modern carbonate sands of the Bahamas. Special Publications of SEPM, 12, 149.
    [Google Scholar]
  66. Inverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35, 245–296. https://doi.org/10.1029/97RG00426
    [Google Scholar]
  67. Inverson, R. M., Logan, M., Lahusen, R. G., & Berti, M. (2010). The perfect debris flow? Aggregated results from 28 largescale experiments. Journal of Geophysical Research: Earth Surface, 115, 1–29.
    [Google Scholar]
  68. Jobe, Z. R., Lowe, D. R., & Morris, W. R. (2012). Climbing‐ripple successions in turbidite systems: Depositional environments, sedimentation and accumulation times. Sedimentology, 59, 867–898.
    [Google Scholar]
  69. Jobe, Z. R., Sylvester, Z., Howes, N., Pirmez, C., Parker, A., Cantelli, A., … Prather, B. (2017). High‐resolution, millennial‐scale patterns of bed compensation on a sand‐rich intraslope submarine fan, western Niger Delta slope. Geological Society of America Bulletin, 129, 23–37. https://doi.org/10.1130/B31440.1
    [Google Scholar]
  70. Kane, I. A., Dykstra, M. L., Kneller, B. C., Tremblay, S., & McCaffrey, W. D. (2009). Architecture of coarse‐grained channel‐levée system: The Rosario Formation, Baja California, Mexico. Sedimentology, 56(7), 2207–2234.
    [Google Scholar]
  71. Kane, I. A., & Hodgson, D. M. (2011). Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa. Marine and Petroleum Geology, 28, 807–823. https://doi.org/10.1016/j.marpetgeo.2010.05.009
    [Google Scholar]
  72. Kane, I. A., McCaffrey, W. D., & Martinsen, O. J. (2009). Allogenic vs. autogenic controls on megaflute formation. Journal of Sedimentary Research, 9, 643–651. https://doi.org/10.2110/jsr.2009.072
    [Google Scholar]
  73. Kane, I. A., McCaffrey, W. D., & Peakall, J. (2008). Controls on sinuosity evolution within submarine channels. Geology, 36(4), 287–290. https://doi.org/10.1130/G24588A.1
    [Google Scholar]
  74. Kane, I. A., & Pontén, A. S. M. (2012). Submarine transitional flow deposits in the Paleogene Gulf of Mexico. Geology, 40, 1119–1122. https://doi.org/10.1130/G33410.1
    [Google Scholar]
  75. Kane, I. A., Pontén, A. S., Vangdal, B., Eggenhuisen, J. T., Hodgson, D. M., & Spychala, Y. T. (2017). The stratigraphic record and processes of turbidity current transformation across deep‐marine lobes. Sedimentology, 64(5), 1236–1273. https://doi.org/10.1111/sed.12346
    [Google Scholar]
  76. Khain, V. E. (1952). Tectonic structure of Azerbaijan. In Proceedings of the Conference on Geological Problems of the Transcaucasian (pp. 162–175). Baku, Azerbaijan: Academy of Science (in Russian).
    [Google Scholar]
  77. Khain, V. E., & Shardanov, A. N. (1960). Geological map of the USSR, Caucasus series sheet K‐39‐XXV, scale 1:200,000. Moscow, Russia: Ministry of Geology and Mineral Protection USSR.
    [Google Scholar]
  78. Kilhams, B., Hartley, A., Huuse, M., & Davis, C. (2012). Characterizing the Paleocene turbidites of the North Sea: The Mey Sandstone Member, Lista formation, UK Central Graben. Petroleum Geoscience, 18(3), 337–354. https://doi.org/10.1144/1354‐079311‐054
    [Google Scholar]
  79. Kilhams, B., Hartley, A., Huuse, M., & Davis, C. (2015). Characterizing the Paleocene turbidites of the North Sea: Maureen formation, UK Central Graben. Geological Society Special Publication, 403, 43–62. https://doi.org/10.1144/SP403.1
    [Google Scholar]
  80. Knaust, D., Warchol, M., & Kane, I. A. (2014). Ichnodiversity and ichnoabundance: Revealing depositional trends in a confined turbidite system. Sedimentology, 61(7), 2218–2267. https://doi.org/10.1111/sed.12134
    [Google Scholar]
  81. Kneller, B., Bozetti, G., Callow, R., Dykstra, M., Hansen, L., Kane, I., … Thompson, P. (2020). Architecture, process, and environmental diversity in a late Cretaceous slope channel system. Journal of Sedimentary Research, 90, 1–26. https://doi.org/10.2110/jsr.2020.1
    [Google Scholar]
  82. Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and the deposition of thick massive sands. Sedimentology, 42, 607–616. https://doi.org/10.1111/j.1365‐3091.1995.tb00395.x
    [Google Scholar]
  83. Kneller, B., Edwards, D., McCaffrey, W., & Moore, R. (1991). Oblique reflection of turbidity currents. Geology, 19(3), 250–252. https://doi.org/10.1130/0091‐7613(1991)019<0250:OROTC>2.3.CO;2
    [Google Scholar]
  84. Kopaevich, L. F., Beniamovskii, V. N., & Bragina, L. G. (2015). Upper Albian‐Turonian foraminifers and radiolarians from the Kelevudag section, northeastern Azerbaijan. Stratigraphy and Geological Correlation, 23(6), 580–599. https://doi.org/10.1134/S0869593815050056
    [Google Scholar]
  85. Kopaevich, L. F., Bragin, N. Y., & Bragina, L. G. (2017). New data on the planktonic foraminifers from the Yunusdag Formation (Coniacian‐Santonian) in the Kelevudag section, northeastern Azerbaijan. Stratigraphy and Geological Correlation, 25(6), 627–637. https://doi.org/10.1134/S0869593817060053
    [Google Scholar]
  86. LaGasse, J., & Read, J. F. (2006). Updip sequence development on a wave‐ and current‐dominated, mixed carbonate‐siliciclastic continental shelf: Paleogene, North Carolina, eastern U.S.A. Sedimentary Geology, 184, 155–182. https://doi.org/10.1016/j.sedgeo.2005.10.004
    [Google Scholar]
  87. Li, P., Kneller, B. C., Thompson, P., Bozetti, G., & dos Santos, T. (2018). Architectural and facies organisation of slope channel fills: Upper Cretaceous Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 92, 632–649. https://doi.org/10.1016/j.marpetgeo.2017.11.026
    [Google Scholar]
  88. Longhitano, S. G. (2011). The record of tidal cycles in mixed silic‐bioclastic deposits: Examples from small Plio‐Pleistocene peripheral basins of the microtidal Central Mediteranean Sea. Sedimentology, 58, 691–719.
    [Google Scholar]
  89. Longhitano, S. G., Chiarella, D., di Stefano, A., Messina, C., Sabato, L., & Tropeano, M. (2012). Tidal signatures in Neogene to Quaternary mixed deposits of southern Italy straits and bays. Sedimentary Geology, 279, 74–96. https://doi.org/10.1016/j.sedgeo.2011.04.019
    [Google Scholar]
  90. Longhitano, S. G., Sabato, L., Tropeano, M., & Gallicchio, S. (2010). A mixed bio‐clastic siliciclastic flood‐tidal delta in a microtidal setting: Depositional architectures and hierarchical internal organization (Pliocene, southern apennine, Italy). Journal of Sedimentary Research, 80, 36–53. https://doi.org/10.2110/jsr.2010.004
    [Google Scholar]
  91. Lowe, D. R. (1982). Sediment gravity flows: Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52, 279–297.
    [Google Scholar]
  92. Maier, K. L., Gales, J. A., Paull, C. K., Rosenberger, K., Talling, P. J., Simmons, S. M., … Sumner, E. J. (2019). Linking direct measurements of turbidity currents to submarine canyon‐floor deposits. Frontiers in Earth Science, 7, 144. https://doi.org/10.3389/feart.2019.00144
    [Google Scholar]
  93. Marini, M., Milli, S., Ravnas, R., & Moscatelli, M. (2015). A comparative study of confined vs. semi‐confined turbidite lobes from the Lower Messinian Laga Basin (Central Apennines, Italy): Implications for assessment of reservoir architecture. Marine and Petroleum Geology, 63, 142–165. https://doi.org/10.1016/j.marpetgeo.2015.02.015
    [Google Scholar]
  94. Maynard, J. R., & Erratt, D. (2020). The Black Sea, a Tertiary basin: Observations and insights. Marine and Petroleum Geology, 118, 104462. https://doi.org/10.1016/j.marpetgeo.2020.104462
    [Google Scholar]
  95. McArthur, A., Kane, I., Bozetti, G., Hansen, L., & Kneller, B. (2019). Supercritical flows overspilling from bypass‐dominated submarine channels and the development of overbank bedforms. The Depositional Record, 6(1), 21–40. https://doi.org/10.1002/dep2.78
    [Google Scholar]
  96. McHargue, T. R., Hodgson, D. M., & Shelef, E. (2019). Architectural diversity of submarine lobes.
    [Google Scholar]
  97. McNeill, D. F., Cunningham, K. J., Guertin, L. A., & Anselmetti, F. S. (2004). Depositional themes of mixed carbonate‐siliciclastics in the south Florida Neogene: Application to ancient deposits. AAPG Memoir, 80, 23–43.
    [Google Scholar]
  98. Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., … van Sickel, W. (2003). Late Cretaceous chronology of large, rapid sea‐level changes: Glacioeustasy during the greenhouse world. Geology, 31(7), 585–588. https://doi.org/10.1130/0091‐7613(2003)031<0585:LCCOLR>2.0.CO;2
    [Google Scholar]
  99. Miller, R. P., & Heller, P. L. (1994). Depositional framework and controls on mixed carbonate‐siliciclastic gravity flows: Pennsylvanian‐Permian shelf to basin transect, south‐western Great Basin, USA. Sedimentology, 41(1), 1–20. https://doi.org/10.1111/j.1365‐3091.1994.tb01389.x
    [Google Scholar]
  100. Mitchell, S. F., Pickerill, R. K., & Stemann, T. A. (2001). The Port Morant Formation (Upper Pleistocene, Jamaica): High resolution sedimentology and paleoenvironmental analysis of a mixed carbonate clastic lagoonal succession. Sedimentary Geology, 144(3–4), 291–306. https://doi.org/10.1016/S0037‐0738(01)00101‐4
    [Google Scholar]
  101. Moretti, M., Tropeano, M., van Loon, A. J., Acquafredda, P., Baldacconi, R., Festa, V., … Scotti, R. (2016). Texture and composition of the Rosa Marina beach sands (Adriatic coast, southern Italy): A sedimentological/ecological approach. Geologos, 22, 87–103. https://doi.org/10.1515/logos‐2016‐0011
    [Google Scholar]
  102. Mosar, J., Kangarli, T., Bochud, M., Glasmacher, U. A., Rast, A., Brunet, M.‐F., & Sosson, M. (2010). Cenozoic‐Recent tectonics and uplift in the Greater Caucasus: a prespective from Azerbaijan. In M.Sosson, N.Kaymakci, R. A.Stephenson, F.Bergerat, & V.Starostenko (Eds.), Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform (Vol. 340, pp. 261–280). London, UK: Geological Society Special Publication.
    [Google Scholar]
  103. Moscardelli, L., Ochoa, J., Lunt, I., & Zahm, L. (2019). Mixed siliciclastic–carbonate systems and their impact for the development of deep‐marine turbidites in continental margins: A case study from the Late Jurassic to Early Cretaceous Shelburne subbasin in offshore Nova Scotia. AAPG Bulletin, 103(10), 2487–2520.
    [Google Scholar]
  104. Mount, J. F. (1984). Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 12, 432–435. https://doi.org/10.1130/0091‐7613(1984)12<432:MOSACS>2.0.CO;2
    [Google Scholar]
  105. Mueller, P., Patacci, M., & di Giulio, A. (2017). Hybrid event beds in the proximal to distal extensive lobe domain of the coarse‐grained and sand‐rich Bordighera turbidite system (NW Italy). Marine and Petroleum Geology, 86, 908–931. https://doi.org/10.1016/j.marpetgeo.2017.06.047
    [Google Scholar]
  106. Mulder, T., & Alexander, J. (2001). Abrupt change in slope causes variation in the deposit thickness of concentrated particle‐driven density currents. Marine Geology, 175(1–4), 221–235. https://doi.org/10.1016/S0025‐3227(01)00114‐1
    [Google Scholar]
  107. Mulder, T., Zaragosi, S., Razin, P., Grelaud, C., Lanfumey, V., & Bavoil, F. (2009). A new conceptual model for the deposition process of homogenite: Application to a cretaceous megaturbidite of the western Pyrenees (Basque region, SW France). Sedimentary Geology, 222(3–4), 263–273. https://doi.org/10.1016/j.sedgeo.2009.09.013
    [Google Scholar]
  108. Mutti, E. (1977). Distinctive thin‐bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South‐central Pyrenees, Spain). Sedimentology, 24, 107–131. https://doi.org/10.1111/j.1365‐3091.1977.tb00122.x
    [Google Scholar]
  109. Mutti, E. (1983). The Hecho Eocene submarine fan system, south‐central Pyrenees, Spain. Geo‐Marine Letters, 3(2–4), 199–202. https://doi.org/10.1007/BF02462468
    [Google Scholar]
  110. Mutti, E. (1992). Turbidite sandstones (p. 275). Parma, Italy: AGIP‐ Instituto di Geologia, Università di Parma.
    [Google Scholar]
  111. Nardin, T. R., Hein, F. J., Gorsline, D. S., & Edwards, B. D. (1979). A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems. SEPM Special Publications, 27, 61–73.
    [Google Scholar]
  112. Nemec, W., & Steel, R. J. (1984). Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass‐flow deposits (10; pp. 1–31). Retrieved from http://archives.datapages.com/data/cspg_sp/data/010/010001/1_cspgsp0100001.htm
    [Google Scholar]
  113. Nikishin, A. M., Cloetingh, S., Brunet, M.‐F., Stephenson, R. A., Bolotov, S. N., & Ershov, A. V. (1998). Scythian Platform, Caucasus and Black Sea region: Mesozoic‐Cenozoic tectonic history and dynamics. In S.Crasquin‐Soleau & É.Barrier (Eds.), Peri‐Tethys Memoir 3: Stratigraphy and evolution of Peri‐Tethyan platforms (Vol. 177, pp. 163–176). Paris, France: Mémoires du Muséum national d'Histoire naturelle.
    [Google Scholar]
  114. Nikishin, A. M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N., & Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology, 59, 656–670. https://doi.org/10.1016/j.marpetgeo.2014.08.018
    [Google Scholar]
  115. Nikishin, A. M., Pokay, A. I., Tüysüz, O., Demirer, A., Amelin, N., & Petrov, E. (2015). The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology, 59, 638–655. https://doi.org/10.1016/j.marpetgeo.2014.08.017
    [Google Scholar]
  116. Nikishin, A. M., Ziegler, P., Panov, D. I., Nazarevich, B. P., Brunet, M. F., Stephenson, R. A., … Tikhomrov, P. L. (2001). Mesozoic and Cainozoic evolution of the Scythian Platform ‐ Black Sea ‐ Caucasus domain. In P.Ziegler, W.Cavazza, A. H. F.Robertson, & S.Crasquin‐Soleau (Eds.), Peri‐Tethys Memoir 6 ‐ Peri‐Tethyan rift/wrench basins and passive margins (Vol. 186, pp. 295–346). Paris, France: Mémoires du Muséum national d'Histoire naturelle.
    [Google Scholar]
  117. Normark, W. R., Piper, D. J. W., & Hess, G. R. (1979). Distributary channels, sand lobes, and mesotopography of Navy submarine fan, California Borderland, with applications to ancient fan sediments. Sedimentology, 26(6), 749–774. https://doi.org/10.1111/j.1365‐3091.1979.tb00971.x
    [Google Scholar]
  118. Osleger, D. A., & Montañez, I. P. (1996). Cross‐platform architecture of a sequence boundary in mixed siliciclastic‐carbonate lithofacies, Middle Cambrian, southern Great Basin, USA. Sedimentology, 43(2), 197–217. https://doi.org/10.1046/j.1365‐3091.1996.d01‐13.x
    [Google Scholar]
  119. Patacci, M., Haughton, P. D., & McCaffrey, W. D. (2014). Rheological complexity in sediment gravity flows forced to decelerate against a confining slope, Braux, SE France. Journal of Sedimentary Research, 84, 270–277. https://doi.org/10.2110/jsr.2014.26
    [Google Scholar]
  120. Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., … Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature Communications, 9, 4114. https://doi.org/10.1038/s41467‐018‐06254‐6
    [Google Scholar]
  121. Peakall, J., McCaffrey, B., & Kneller, B. (2000). A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70, 434–448. https://doi.org/10.1306/2DC4091C‐0E47‐11D7‐8643000102C1865D
    [Google Scholar]
  122. Peakall, K., Kane, I. A., Masson, D. G., Keevil, G., McCaffrey, W., & Corney, R. (2012). Global (latitudinal) variation in submarine channel sinuosity. Geology, 40(1), 11–14. https://doi.org/10.1130/G32295.1
    [Google Scholar]
  123. Philip, H., Cisternas, A., Gvishiani, A., & Gorshkov, A. (1989). The Caucasus: An actual example of the initial stages of continental collision. Tectonophysics, 161, 1–21. https://doi.org/10.1016/0040‐1951(89)90297‐7
    [Google Scholar]
  124. Poprawski, Y., Basile, C., Agirrezabala, L., Jaillard, E., Gaudin, M., & Jacquin, T. (2014). Sedimentary and structural record of the Albian growth of the Bakio salt diapir (the Basque Country, northern Spain). Basin Research, 26(6), 746–766. https://doi.org/10.1111/bre.12062
    [Google Scholar]
  125. Poprawski, Y., Basile, C., Jailard, E., Gaudin, M., & Lopez, M. (2016). Halokinetic sequences in carbonate systems: An example from the Middle Albian Bakio Breccias Formation (Basque Country, Spain). Sedimentary Geology, 334, 34–52. https://doi.org/10.1016/j.sedgeo.2016.01.013
    [Google Scholar]
  126. Postma, G. (1984a). Slumps and their deposits in fan delta front and slope (sedimentation model, Spain). Geology, 12(1), 27–30. https://doi.org/10.1130/0091‐7613(1984)12<27:SATDIF>2.0.CO;2
    [Google Scholar]
  127. Postma, G. (1984b) Mass‐flow conglomerates in a submarine canyon: Abrioja fan‐delta, Pliocene, southeast Spain. In E. H.Koster & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates (Vol. 10, pp. 237–258). Calgary, Canada: Canadian Society of Petroleum Geologists Memoir.
    [Google Scholar]
  128. Postma, G., Hilgen, F. J., & Zachariasse, W. J. (1993). Precession‐punctuated growth of a late Miocene submarine‐fan lobe on Gavdos (Greece). Terra Nova, 5(5), 438–444. https://doi.org/10.1111/j.1365‐3121.1993.tb00281.x
    [Google Scholar]
  129. Postma, G., Nemec, W., & Kleinspehn, K. (1988). Large floating clasts in turbidites: A mechanism for their emplacement. Sedimentary Geology, 58(1), 47–61. https://doi.org/10.1016/0037‐0738(88)90005‐X
    [Google Scholar]
  130. Prélat, A., & Hodgson, D. M. (2013). The full range of turbidite bed thickness patterns in Submarine lobes: Controls and implications. Journal of the Geological Society, 170(1), 209–214. https://doi.org/10.1144/jgs2012‐056
    [Google Scholar]
  131. Prélat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56(7), 2132–2154. https://doi.org/10.1111/j.1365‐3091.2009.01073.x
    [Google Scholar]
  132. Puga‐Bernabéu, Á., Webster, J., Beaman, R., & Guilbaub, V. (2011). Morphology and controls on the evolution of a mixed carbonate‐siliciclastic submarine canyon system, Great Barrier Reef margin, north‐eastern Australia. Marine Geology, 289, 100–116. https://doi.org/10.1016/j.margeo.2011.09.013
    [Google Scholar]
  133. Puga‐Bernabéu, Á., Webster, J., Beaman, R., Reimer, P., & Renema, W. (2014). Filling the gap: A 60ky record of mixed carbonate‐siliciclastic turbidite deposition from the Great Barrier Reef. Marine and Petroleum Geology, 50, 40–50.
    [Google Scholar]
  134. Remacha, E., & Fernández, L. P. (2003). High‐resolution correlation patterns in the turbidite systems of the Hecho Group (South‐Central Pyrenees, Spain). Marine and Petroleum Geology, 20, 711–726. https://doi.org/10.1016/j.marpetgeo.2003.09.003
    [Google Scholar]
  135. Saintot, A., Brunet, M.‐F., Yakovlev, F., Sébrier, M., Stephenson, R., Ershov, A., … McCann, T. (2006). The Mesozoic‐Cenozoic tectonic evolution of the Greater Caucasus. Geological Society, London, Memoirs, 32(1), 277–289.
    [Google Scholar]
  136. Saintot, A., Stephenson, R. A., Stovba, S., Brunet, M. F., Yegorova, T., & Starostenko, V. (2006). The evolution of the southern margin of Eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian‐Early Palaeozoic to the Early Cretaceous. Geological Society, London, Memoirs, 32(1), 481–505. https://doi.org/10.1144/GSL.MEM.2006.032.01.30
    [Google Scholar]
  137. Saller, A. H., Barton, J. W., & Barton, R. E. (1989). Slope sedimentation associated with a vertically building shelf, Bone Spring Formation, Mescalero Escarpe field, southeastern New Mexico. In P. D.Crevello, J. J.Wilson, J. F.Sarg, & J. F.Read (Eds.), Controls on carbonate platform and basin development (pp. 275–288).Tulsa, OK: Society of Economic Paleontologists and Mineralogists.
    [Google Scholar]
  138. Saller, A. H., Noah, J. T., Ruzuar, A. P., & Schneider, R. (2004). Linked lowstand delta to basin‐floor fan deposition, offshore Indonesia: An analogue for deep‐water reservoir systems. AAPG Bulletin, 88(1), 21–46.
    [Google Scholar]
  139. Scott, E., Gelin, F., Jolley, S., Leenaarts, E., Sadler, S., & Elsinger, R. (2010). Sedimentological control of fluid flow in deep‐marine turbidite reservoirs: Pierce Field, UK Central North Sea. Geological Society Special Publication, 347, 113–132. https://doi.org/10.1144/SP347.9
    [Google Scholar]
  140. Shardanov, A. N. (1953). On the problem of effects of nappe tectonics in the South‐Eastern Caucasus. Doklady Academy of Science Azerbaijan, 9, 439–444 (in Russian).
    [Google Scholar]
  141. Sohn, Y. K. (2000). Depositional processes of submarine debris flows in the Miocene fan deltas, Pohang Basin, SE Korea with special reference to flow transformation. Journal of Sedimentary Research, 70, 491–503. https://doi.org/10.1306/2DC40922‐0E47‐11D7‐8643000102C1865D
    [Google Scholar]
  142. Sohn, Y., Choe, M., & Jo, H. (2002). Transition from debris flow to hyperconcentrated flow in a submarine channel (the Cretaceous Cerro Toro formation, southern Chile). Terra Nova, 14(5), 405–415. https://doi.org/10.1046/j.1365‐3121.2002.00440.x
    [Google Scholar]
  143. Sosson, M., Stephenson, R., Sheremet, Y., Rolland, Y., Adamia, S., Melkonian, R., … Mosar, J. (2016). The eastern Black Sea‐Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution. Comptes Rendus Geoscience, 348(1), 23–32. https://doi.org/10.1016/j.crte.2015.11.002
    [Google Scholar]
  144. Soutter, E. L., Kane, I. A., Fuhrmann, A., Cumberpatch, Z. A., & Huuse, M. (2019). The stratigraphic evolution of onlap in clastic deep‐marine systems: Autogenic modulation of allogenic signals. Journal of Sedimentary Research, 89(10), 890–917.
    [Google Scholar]
  145. Soutter, E. L., Kane, I. A., & Huuse, M. (2018). Giant submarine landslide triggered by Paleocene mantle plume activity in the North Atlantic. Geology, 46(6), 511–514. https://doi.org/10.1130/G40308.1
    [Google Scholar]
  146. Spychala, Y. T., Hodgson, D. M., Prélat, A., Kane, I. A., Flint, S. S., & Mountney, N. P. (2017). Frontal and lateral submarine lobe fringes: Comparing sedimentary facies, architecture and flow processes. Journal of Sedimentary Research, 87, 75–96. https://doi.org/10.2110/jsr.2017.2
    [Google Scholar]
  147. Spychala, Y. T., Hodgson, D. M., Stevenson, C. J., & Flint, S. S. (2017). Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns. Sedimentology, 64(2), 582–608. https://doi.org/10.1111/sed.12315
    [Google Scholar]
  148. Stevenson, C. J., Jackson, C.‐ A.‐L., Hodgson, D. M., Hubbard, S. M., & Eggenheisen, J. T. (2015). Deep‐marine sediment bypass. Journal of Sedimentary Research, 85, 1058–1081.
    [Google Scholar]
  149. Stow, D. A. V., & Mayall, M. (2000). Deep‐marine sedimentary systems: New models for the 21st Century. Marine and Petroleum Geology, 17, 125–135.
    [Google Scholar]
  150. Straub, K., Paola, C., Mohrig, D., Wolinsky, M., & George, T. (2009). Compensational stacking of channelized sedimentary deposits. Journal of Sedimentary Research, 79, 673–688. https://doi.org/10.2110/jsr.2009.070
    [Google Scholar]
  151. Surlyk, F. (1984). Fan‐delta to submarine fan conglomerates of the Volgian‐Valanginian Wollaston Forland Group, East Greenland. In E. H.Koster & R. J.Steel (Eds.), Sedimentology of gravels and conglomerates (Vol. 10, pp. 359–382). Calgary, Canada: Canadian Soc. of Petroleum Geologists, Memoir.
    [Google Scholar]
  152. Sylvester, Z., & Lowe, D. R. (2004). Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania. Sedimentology, 51, 945–972. https://doi.org/10.1111/j.1365‐3091.2004.00653.x
    [Google Scholar]
  153. Talling, P., Masson, D., Sumner, E., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  154. Tassy, A., Crouzy, E., Gorini, C., Rubino, J. L., Bouroullec, J. L., & Sapin, F. (2015). Egyptian Tethyan margin in the Mesozoic: Evolution of a mixed carbonate‐siliciclastic shelf edge (from Western Desert to Sinai). Marine and Petroleum Geology, 68, 565–581. https://doi.org/10.1016/j.marpetgeo.2015.10.011
    [Google Scholar]
  155. Tcherepanov, E. N., Droxler, A. W., Lapointe, P., Dickens, G. R., Bentley, S. J., Beaufort, L., … Opdyke, B. N. (2008). Neogene evolution of the mixed carbonate‐siliciclastic system in the Gulf of Papua, Papua New Guinea. Journal of Geophysical Research Earth Surface, 113(F1). https://doi.org/10.1029/2006JF000684
    [Google Scholar]
  156. Terlaky, V., Rocheleau, J., & Arnott, R. W. C. (2016). Stratal composition and stratigraphic organization of stratal elements in an ancient deep‐marine basin‐floor succession, Neoproterozoic Windermere Supergroup, British Columbia, Canada. Sedimentology, 63(1), 136–175. https://doi.org/10.1111/sed.12222
    [Google Scholar]
  157. Tinterri, R., Laporta, M., & Ogata, K. (2017). Asymmetrical cross‐current turbidite facies tract in a structurally‐confined mini‐basin (Priabonian–Rupelian, Ranzano Sandstone, northern Apennines, Italy). Sedimentary Geology, 352, 63–87. https://doi.org/10.1016/j.sedgeo.2016.12.005
    [Google Scholar]
  158. Tucker, M. E. (2003). Mixed clastic–carbonate cycles and sequences: Quaternary of Egypt and Carboniferous of England. Geologia Croatica, 56(1), 19–37.
    [Google Scholar]
  159. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrop: Concepts for high‐resolution correlation of facies (p. 55). Tulsa, OK: American Association of Petroleum Geologists Methods in Exploration Series.
    [Google Scholar]
  160. Vincent, S. J., Braham, W., Lavrishchev, V. A., Maynard, J. R., & Harland, M. (2016). The formation and inversion of the western Greater Caucasus Basin and the uplift of the western Greater Caucasus: Implications for the wider Black Sea region. Tectonics, 35, 2948–2962. https://doi.org/10.1002/2016TC004204
    [Google Scholar]
  161. Vincent, S. J., Guo, L., Flecker, R., Boudagher‐Fadel, M., Ellam, R., & Kandemir, R. (2018). Age constraints on intra‐formational unconformities in Upper Jurassic‐Lower Cretaceous carbonates in northeast Turkey; geodynamic and hydrocarbon implications. Marine and Petroleum Geology, 91, 639–657. https://doi.org/10.1016/j.marpetgeo.2018.01.011
    [Google Scholar]
  162. Vincent, S. J., Morton, A. C., Carter, A., Gibbs, S., & Barabadze, T. G. (2007). Oligocene uplift of the Western Greater Caucasus: An effect of initial Arabia‐Eurasia collision. Terra Nova, 19(2), 160–166. https://doi.org/10.1111/j.1365‐3121.2007.00731.x
    [Google Scholar]
  163. Wagreich, M., & Krenmayr, H. (2005). Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nierental Formation, Austria): Slope topography and clastic input as primary controlling factors. Cretaceous Research, 26(1), 57–64. https://doi.org/10.1016/j.cretres.2004.11.012
    [Google Scholar]
  164. Walker, W., Jobe, Z. R., Wood, L., & Sarg, R. (2019). Progradational Slope Architecture and Sediment Partitioning in the Outcropping Mixed Siliciclastic‐Carbonate Bone Spring Formation, Permian Basin, west Texas. Facies, 2(3), 5.
    [Google Scholar]
  165. Wang, C., Hu, X., Sarti, M., Scott, R., & Li, X. (2005). Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep‐sea environments. Cretaceous Research, 26(1), 21–32. https://doi.org/10.1016/j.cretres.2004.11.010
    [Google Scholar]
  166. Yose, L. A., & Heller, P. L. (1989). Sea‐level control of mixed‐carbonate‐siliciclastic, gravity‐flow deposition: Lower part of the Keeler Canyon Formation (Pennsylvanian), southeastern California. Geological Society of America Bulletin, 101(3), 427–439. https://doi.org/10.1130/0016‐7606(1989)101<0427:SLCOMC>2.3.CO;2
    [Google Scholar]
  167. Zeller, M., Verwer, K., Eberli, G. P., Massaferro, J. L., Schwarz, E., & Spalletti, L. (2015). Depositional controls on mixed carbonate–siliciclastic cycles and sequences on gently inclined shelf profiles. Sedimentology, 62(7), 2009–2037. https://doi.org/10.1111/sed.12215
    [Google Scholar]
  168. Zonenshain, L. P., & le Pichon, X. (1986). Deep basins of the black‐sea and Caspian Sea as Remnants of Mesozoic Back‐Arc basins. Tectonophysics, 123(1–4), 181–211. https://doi.org/10.1016/0040‐1951(86)90197‐6
    [Google Scholar]
  169. Zonneveld, J. P., Moslow, T. F., & Henderson, C. M. (1997). Lithofacies associations and depositional environments in a mixed siliciclastic‐carbonate coastal depositional system, upper Liard Formation, Triassic, northeastern British Columbia. Bulletin of Canadian Petroleum Geology, 45(4), 553–575.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12488
Loading
/content/journals/10.1111/bre.12488
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Azerbaijan; Caucasus; deep‐marine; mixed system; siliciclastic‐carbonate

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error