1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

Variability of dolomitizing fluid sources across the Western Canadian Sedimentary Basin, showing that basinal brines interacted with the Precambrian basement and immature basal clastic aquifers in the West Shale Basin and Peace River Arch area, and with basal carbonate aquifers in the East Shale Basin.

, Abstract

Dolomitization in the Western Canadian Sedimentary Basin has been extensively researched, producing vast geochemical datasets. This provides a unique opportunity to assess the regional sources and flux of dolomitizing fluids on a larger scale than previous studies. A meta‐analysis was conducted on stable isotope, strontium isotope (87Sr/86Sr), fluid inclusion and lithium‐rich formation water data published over 30 years, with new petrographic, X‐ray diffraction, stable isotope and rare‐earth element (REE+Y) data. The Middle to Upper Devonian Swan Hills Formation, Leduc Formation and Wabamun Group contain replacement dolomite (RD) cross‐cut by stylolites, suggesting replacement dolomitization occurred during shallow burial. Stable isotope, REE+Y and 87Sr/86Sr data indicate RD formed from Devonian seawater, then recrystallized during burial. Apart from the Wabamun Group of the Peace River Arch (PRA), saddle dolomite cement (SDC) is more δ18O depleted than RD, and cross‐cuts stylolites, suggesting precipitation during deep burial. SDC 87Sr/86Sr data indicate contributions from 87Sr‐rich basinal brines in the West Shale Basin (WSB) and PRA, and authigenic quartz/albite suggests basinal brines interacted with underlying clastic aquifers before ascending faults into carbonate strata. The absence of quartz/albite within dolomites of the East Shale Basin (ESB) suggests dolomitizing fluids only interacted with carbonate strata. We conclude that replacement dolomitization resulted from connate Devonian seawater circulating through aquifers and faults during shallow burial. SDC precipitated during deep burial from basinal brines sourced from basal carbonates (ESB) and clastic aquifers (WSB, PRA). Lithium‐rich formation waters suggest basinal brines originated as residual evapo‐concentrated Middle Devonian seawater that interacted with basal aquifers and ascended faults during the Antler and Laramide Orogenies. These results corroborate those of previous studies but are verified by new integrated analysis of multiple datasets. New insights emphasize the importance of basal aquifers and residual evapo‐concentrated seawater in dolomitization, which is potentially applicable to other regionally dolomitized basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12489
2021-01-22
2021-03-07
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12489.html?itemId=/content/journals/10.1111/bre.12489&mimeType=html&fmt=ahah

References

  1. Al‐Aasm, I. (2003). Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78, 9–15. https://doi.org/10.1016/S0375‐6742(03)00089‐X
    [Google Scholar]
  2. Al‐Aasm, I., & Raymus, S. (2007). Petrologic and geochemical evidence for refluxing brines in the Devonian Wabamun Group, West‐Central Alberta. In Proceedings of American Association of Petroleum Geologists Annual Meeting, p. 4.
  3. Amthor, J. E., Mountjoy, E. W., & Machel, H. G. (1993). Subsurface dolomites in Upper Devonian Leduc Formation buildups, central part of Rimbey‐Meadowbrook reef trend, Alberta, Canada. Bulletin of Canadian Petroleum Geology, 41(2), 164–185.
    [Google Scholar]
  4. Bachu, S. (1995). Synthesis and model of formation‐water flow, Alberta Basin, Canada. AAPG Bulletin, 79(8), 1159–1178. https://doi.org/10.1306/8d2b2209‐171e‐11d7‐8645000102c1865d
    [Google Scholar]
  5. Banner, J. L., Hanson, G. N., & Meyers, W. J. (1988). Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington‐Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. Journal of Sedimentary Research, 58(3), 415–432. https://doi.org/10.1306/212f8daa‐2b24‐11d7‐8648000102c1865d
    [Google Scholar]
  6. Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare‐earth elements in the Penge and Kuruman iron‐formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1–2), 37–55. https://doi.org/10.1016/0301‐9268(95)00087‐9
    [Google Scholar]
  7. Bottomley, D. J., Clark, I. D., Battye, N., & Kotzer, T. (2005). Geochemical and isotopic evidence for a genetic link between Canadian Shield brines, dolomitization in the Western Canada Sedimentary Basin, and Devonian calcium‐chloridic seawater. Canadian Journal of Earth Sciences, 42(11), 2059–2071. https://doi.org/10.1139/e05‐075
    [Google Scholar]
  8. Burwash, R. A., McGregor, C. R., & Wilson, J. (1994). Precambrian basement beneath the Western Canada Sedimentary Basin. Geological Atlas of the Western Canada Sedimentary Basin, 5, 49–56.
    [Google Scholar]
  9. Carpenter, S. J., & Lohmann, K. C. (1995). δ18O and δ13C values of modern brachiopod shells. Geochimica Et Cosmochimica Acta, 59(18), 3749–3764. https://doi.org/10.1016/0016‐7037(95)00291‐7
    [Google Scholar]
  10. Choquette, P. W., & Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2), 207–250. https://doi.org/10.1306/5D25C98B‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  11. Corlett, H., Schultz, R., Branscombe, P., Hauck, T., Haug, K., MacCormack, K., & Shipman, T. (2018). Subsurface faults inferred from reflection seismic, earthquakes, and sedimentological relationships: Implications for induced seismicity in Alberta, Canada. Marine and Petroleum Geology, 93, 135–144. https://doi.org/10.1016/j.marpetgeo.2018.03.008
    [Google Scholar]
  12. Creaney, S., Allan, J., Cole, K. S., Fowler, M. G., Brooks, P. W., Osadetz, K. G., … Riediger, C. L. (1994). Petroleum generation and migration in the Western Canada Sedimentary Basin. Geological Atlas of the Western Canada Sedimentary Basin, 31, 455–468.
    [Google Scholar]
  13. Davies, G. R., & Smith, L. B., (2006). Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11), 1641–1690. https://doi.org/10.1306/05220605164
    [Google Scholar]
  14. Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36(2), 491–505. https://doi.org/10.1306/74D714F6‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  15. Drivet, E. (1993). Diagenesis and reservoir characteristics of Upper Devonian Leduc dolostones, southern Rimbey‐Meadowbrook reef trend, central Alberta, (Doctoral dissertation). McGill University Libraries, Montreal, Canada.
    [Google Scholar]
  16. Drivet, E., & Mountjoy, E. W. (1997). Dolomitization of the Leduc Formation (Upper Devonian), southern Rimbey‐Meadowbrook reef trend, Alberta. Journal of Sedimentary Research, 67(3), 411–423. https://doi.org/10.1306/D4268586‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  17. Duggan, J. P., Mountjoy, E. W., & Stasiuk, L. D. (2001). Fault‐controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west‐central Alberta, Canada. Sedimentology, 48(2), 301–323. https://doi.org/10.1046/j.1365‐3091.2001.00364.x
    [Google Scholar]
  18. Eccles, D. R., & Berhane, H. (2011).Geological introduction to lithium‐rich formation water with emphasis on the Fox Creek area of west‐central Alberta (NTS 83F and 83K). Energy Resources Conservation Board, AER/AGS Open File Report, 10, 22.
  19. Eccles, D. R., & Jean, G. M. (2010).Lithium Groundwater and Formation Water Geochemical Data. Alberta Geological Survey, Digital Data DIG, 1.
  20. Edwards, D. J., & Brown, R. J. (1999). Understanding the influence of Precambrian crystalline basement on Upper Devonian carbonates in central Alberta from a geophysical perspective. Bulletin of Canadian Petroleum Geology, 47(4), 412–438.
    [Google Scholar]
  21. Flügel, E. (2013). Microfacies of carbonate rocks: Analysis, interpretation and application, New York, NY: Springer Science & Business Media.
    [Google Scholar]
  22. Gabellone, T., & Whitaker, F. (2016). Secular variations in seawater chemistry controlling dolomitization in shallow reflux systems: Insights from reactive transport modelling. Sedimentology, 63(5), 1233–1259. https://doi.org/10.1111/sed.12259
    [Google Scholar]
  23. Goldstein, R. H. (2001). Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55(1–4), 159–193. https://doi.org/10.1016/S0024‐4937(00)00044‐X
    [Google Scholar]
  24. Green, D. (1999). Dolomitization and burial diagenesis of the Devonian of west‐central Alberta deep basin, (Doctoral dissertation), McGill University, Montreal, Canada.
    [Google Scholar]
  25. Green, D. G., & Mountjoy, E. W. (2005). Fault and conduit controlled burial dolomitization of the Devonian west‐central Alberta Deep Basin. Bulletin of Canadian Petroleum Geology, 53(2), 101–129. https://doi.org/10.2113/53.2.101
    [Google Scholar]
  26. Halbertsma, H. L., Mossop, G. D., & Shetsen, I. (1994). Devonian Wabamun Group of the western Canada Sedimentary Basin. Geological Atlas of the Western Canada Sedimentary Basin, 4, 203–220.
    [Google Scholar]
  27. Haley, B. A., Klinkhammer, G. P., & McManus, J. (2004). Rare earth elements in pore waters of marine sediments. Geochimica Et Cosmochimica Acta, 68(6), 1265–1279. https://doi.org/10.1016/j.gca.2003.09.012
    [Google Scholar]
  28. Halim‐Dihardja, M. K., & Mountjoy, E. W. (1988).A stromatoporoid patch reef in the Upper Devonian Wabamun Group, Normandville Field, north‐central Alberta. CSPG Special Publications, Reef: Canada and Adjacent Areas – Memoir 13, 1988. 448–453.
  29. Hauck, T. E., Corlett, H. J., Grobe, M., Walton, E. L., & Sansjofre, P. (2018). Meteoric diagenesis and dedolomite fabrics in precursor primary dolomicrite in a mixed carbonate–evaporite system. Sedimentology, 65(6), 1827–1858. https://doi.org/10.1111/sed.12448
    [Google Scholar]
  30. Hauck, T. E., Panǎ, D., & DuFrane, S. A. (2017). Northern Laurentian provenance for Famennian clastics of the Jasper basin (Alberta, Canada): A Sm‐Nd and U‐Pb detrital zircon study. Geosphere, 13(4), 1149–1172. https://doi.org/10.1130/GES01453.1
    [Google Scholar]
  31. Henderson, C. M., & Barclay, J. E. (1994). Permian strata of the Western Canada Sedimentary Basin. Geological Atlas of the Western Canada Sedimentary Basin, 15, 251–258.
    [Google Scholar]
  32. Hoffman, P. F. (1987). Continental transform tectonics: Great Slave Lake shear zone (ca. 1.9 Ga), northwest Canada. Geology, 15(9), 785–788. https://doi.org/10.1130/0091‐7613(1987)15<785:cttgsl>2.0.co;2
    [Google Scholar]
  33. Hollis, C., Bastesen, E., Boyce, A., Corlett, H., Gawthorpe, R., Hirani, J., … Whitaker, F. (2017). Fault‐controlled dolomitization in a rift basin. Geology, 45(3), 219–222. https://doi.org/10.1130/G38s394.1
    [Google Scholar]
  34. Horita, J. (2014). Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochimica Et Cosmochimica Acta, 129, 111–124. https://doi.org/10.1016/j.gca.2013.12.027
    [Google Scholar]
  35. Huff, G. F. (2019).Origin and Li‐enrichment of selected oilfield brines in the Alberta Basin, Canada; Alberta Geological Survey/Alberta Energy Regulator, AER/AGS Open File Report 2019‐01, 29 p.
  36. Huff, G. F., & Grasby, S. (2016). Evolution of Li‐enriched oilfield brines in Devonian carbonates of the south‐central Alberta Basin, Canada. Bulletin of Canadian Petroleum Geology, 64(3), 438–448. https://doi.org/10.2113/gscpgbull.64.3.438
    [Google Scholar]
  37. Hurley, N. F., & Lohmann, K. C. (1989). Diagenesis of Devonian reefal carbonates in the Oscar Range, Canning Basin, Western Australia. Journal of Sedimentary Research, 59(1), 127–146. https://doi.org/10.1306/212F8F35‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  38. Jarvis, K. E., Gray, A. L., & McCurdy, E. (1989). Avoidance of spectral interference on europium in inductively coupled plasma mass spectrometry by sensitive measurement of the doubly charged ion. Journal of Analytical Atomic Spectrometry, 4(8), 743–747. https://doi.org/10.1039/JA9890400743
    [Google Scholar]
  39. Kaufman, J., Hanson, G. N., & Meyers, W. J. (1991). Dolomitization of the Devonian swan hills formation, Rosevear field, Alberta, Canada. Sedimentology, 38(1), 41–66. https://doi.org/10.1111/j.1365‐3091.1991.tb01854.x
    [Google Scholar]
  40. Kaufman, J., & Meyers, W. J. (1988).A backstepping platform reef, Swan Hills Formation, Rosevear field, central Alberta. CSPG Special Publications, Reef: Canada and Adjacent Areas – Memoir 13, 1988. 478–486.
  41. Kaufman, J., Meyers, W. J., & Hanson, G. N. (1990). Burial cementation in the Swan Hills Formation (Devonian), Rosevear Field, Alberta, Canada. Journal of Sedimentary Research, 60(6), 918–939. https://doi.org/10.1306/D426764A‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  42. Kuflevskiy, S. (2015). Dolomite recrystallization along the Rimbey‐Meadowbrook Reef Trend, Western Canada Sedimentary Basin, Alberta, Canada, (master’s thesis), University of Alberta, Edmonton, Canada. https://doi.org/10.7939/R3ZC7S58M
    [Google Scholar]
  43. Laflamme, A. K. (1990). Replacement dolomitization in the Upper Devonian Leduc and Swan Hills Formations, Caroline area, Alberta, Canada, (master’s thesis), McGill University, Montreal, Canada.
    [Google Scholar]
  44. Land, L. S. (1983). The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. SEPM Short Course 10, Stable Isotopes in Sedimentary Geology, pp. 4.1–4.22.
  45. Lemieux, S. (1999). Seismic reflection expression and tectonic significance of Late Cretaceous extensional faulting of the Western Canada Sedimentary Basin in southern Alberta. Bulletin of Canadian Petroleum Geology, 47(4), 375–390.
    [Google Scholar]
  46. Loucks, R. G. (1999). Paleocave carbonate reservoirs: Origins, burial‐depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin, 83(11), 1795–1834. https://doi.org/10.1306/E4FD426F‐1732‐11D7‐8645000102C1865D
    [Google Scholar]
  47. Lüders, V., Möller, P., & Dulski, P. (1993). REE fractionation in carbonates and fluorite. Monograph Series on Mineral Deposits, 30(9), 133–150.
    [Google Scholar]
  48. Lumsden, D. N. (1979). Discrepancy between thin‐section and X‐ray estimates of dolomite in limestone. Journal of Sedimentary Research, 49(2), 429–435. https://doi.org/10.1306/212F7761‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  49. Ma, F., Al‐Aasm, I., & Yang, J. (2006). Numerical modelling of hydrothermal fluid flow coupled with mass transport: An example from the Devonian Wabamun Group, northeast British Columbia, Canada. Journal of Geochemical Exploration, 89(1–3), 247–250. https://doi.org/10.1016/j.gexplo.2005.11.078
    [Google Scholar]
  50. Machel, H. G. (1997). Recrystallization versus neomorphism, and the concept of ‘significant recrystallization in dolomite research. Sedimentary Geology, 113(3–4), 161–168. https://doi.org/10.1016/S0037‐0738(97)00078‐X
    [Google Scholar]
  51. Machel, H. G. (2004). Concepts and models of dolomitization: A critical reappraisal. Geological Society, London, Special Publications, 235(1), 7–63. https://doi.org/10.1144/GSL.SP.2004.235.01.02
    [Google Scholar]
  52. Machel, H. G., & Anderson, J. H. (1989). Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. Journal of Sedimentary Research, 59(6), 891–911. https://doi.org/10.1306/212F90AC‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  53. Machel, H. G., & Burton, E. A. (1991).Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In C. E.Barker, & O. C.Kopp (Eds.), Luminescence microscopy and spectroscopy ‐ Qualitative and quantitative applications (pp. 37–57). Broken Arrow, OK: SEPM (Society for Sedimentary Geology) Short Course, No. 25.
    [Google Scholar]
  54. Machel, H. G., & Cavell, P. A. (1999). Low‐flux, tectonically‐induced squeegee fluid flow. Bulletin of Canadian Petroleum Geology, 47(4), 510–533.
    [Google Scholar]
  55. Machel, H. G., & Lonnee, J. (2002). Hydrothermal dolomite—A product of poor definition and imagination. Sedimentary Geology, 152(3–4), 163–171. https://doi.org/10.1016/S0037‐0738(02)00259‐2
    [Google Scholar]
  56. Machel, H. G., Mountjoy, E. W., Jones, G. D., & Rostron, B. J. (2002). Toward a sequence stratigraphic framework for the Frasnian of the Western Canada Basin. Bulletin of Canadian Petroleum Geology, 50(2), 332–338. https://doi.org/10.2113/50.2.332
    [Google Scholar]
  57. McCrae, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18(6), 849–857. https://doi.org/10.1063/1.1747785
    [Google Scholar]
  58. Michael, K., Machel, H. G., & Bachu, S. (2003). New insights into the origin and migration of brines in deep Devonian aquifers, Alberta, Canada. Journal of Geochemical Exploration, 80(2–3), 193–219. https://doi.org/10.1016/S0375‐6742(03)00191‐2
    [Google Scholar]
  59. Mountjoy, E. W., & Halim‐Dihardja, M. K. (1991). Multiple phase fracture and fault‐controlled burial dolomitization, Upper Devonian Wabamun Group, Alberta. Journal of Sedimentary Research, 61(4), 590–612. https://doi.org/10.1306/D426776C‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  60. Mountjoy, E. W., Machel, H. G., Green, D., Duggan, J., & Williams‐Jones, A. E. (1999). Devonian matrix dolomites and deep burial carbonate cements: a comparison between the Rimbey‐Meadowbrook reef trend and the deep basin of west‐central Alberta. Bulletin of Canadian Petroleum Geology, 47(4), 487–509.
    [Google Scholar]
  61. Mountjoy, E. W., Qing, H., & McNutt, R. H. (1992). Strontium isotopic composition of Devonian dolomites, Western Canada Sedimentary Basin: Significance of sources of dolomitizing fluids. Applied Geochemistry, 7(1), 59–75. https://doi.org/10.1016/0883‐2927(92)90015‐U
    [Google Scholar]
  62. Mountjoy, E., Whittaker, S., Williams‐Jones, A., Qing, H., Drivet, E., & Marquez, X. (1997).Variable Fluid and Heat Flow Regimes in Three Devonian Dolomite Conduit Systems Western Canada Sedimentary Basin: Isotopic and Fluid Inclusion Evidence/Constraints. Basin‐Wide Diagenetic Patterns: Integrated Petrologic, Geochemical and Hydrologic Considerations: SEPM Special Publication, 57. https://doi.org/10.2110/pec.97.57.0119
  63. Nelson, J., Paradis, S., Christensen, J., & Gabites, J. (2002). Canadian Cordilleran Mississippi Valley‐type deposits: A case for Devonian‐Mississippian back‐arc hydrothermal origin. Economic Geology, 97(5), 1013–1036. https://doi.org/10.2113/gsecongeo.97.5.1013
    [Google Scholar]
  64. Nothdurft, L. D., Webb, G. E., & Kamber, B. S. (2004). Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica Et Cosmochimica Acta, 68(2), 263–283. https://doi.org/10.1016/S0016‐7037(03)00422‐8
    [Google Scholar]
  65. Oldale, H. S., Munday, R. J., & Ma, K. (1994). Devonian Beaverhill Lake Group of the western Canada Sedimentary Basin. In G.Mossop & I.Shetsen (Eds.), Geological Atlas of the Western Canada Sedimentary Basin (Vol. 4). Calgary, AB: Canadian Society of Petroleum Geologists and Alberta Research Council.
    [Google Scholar]
  66. Packard, J. J., Al‐Aasm, I., Samson, I., Berger, Z., & Davies, J. (2001). A Devonian hydrothermal chert reservoir: The 225 bcf Parkland field, British Columbia, Canada. AAPG Bulletin, 85(1), 51–84. https://doi.org/10.1306/8626C75D‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  67. Packard, J. J., & Hills, D. (2001).The Importance of Early (Penecontemporaneous) Meteroic Diagenesis in the Development of Limestone Porosity in the “Platform” of the Devonian Swan Hills Formation. Abstracts (extended) of Technical Talks, Posters and Core Displays: The CSPG Annual convention, 2001,530–556.
  68. Pana, D., Waters, J., & Grobe, M. (2001). GIS compilation of structural elements in northern Alberta. Alberta Geological Survey. Earth Sciences Report, 1, 53.
    [Google Scholar]
  69. Phan, T. T., Hakala, J. A., Lopano, C. L., & Sharma, S. (2019). Rare earth elements and radiogenic strontium isotopes in carbonate minerals reveal diagenetic influence in shales and limestones in the Appalachian Basin. Chemical Geology, 509, 194–212. https://doi.org/10.1016/j.chemgeo.2019.01.018
    [Google Scholar]
  70. Popp, B. N., Anderson, T. F., & Sandberg, P. A. (1986). Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin, 97(10), 1262–1269. https://doi.org/10.1130/0016‐7606(1986)97<1262:BAIOOI>2.0.CO;2
    [Google Scholar]
  71. Potma, K., Weissenberger, J. A., Wong, P. K., & Gilhooly, M. G. (2001). Toward a sequence stratigraphic framework for the Frasnian of the Western Canada Basin. Bulletin of Canadian Petroleum Geology, 49(1), 37–85. https://doi.org/10.2113/49.1.37
    [Google Scholar]
  72. Price, R. A. (1990). Cordilleran tectonics and the evolution of the Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology, 38(1), 176–177.
    [Google Scholar]
  73. Prokoph, A., Shields, G. A., & Veizer, J. (2008). Compilation and time‐series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth‐Science Reviews, 87(3–4), 113–133. https://doi.org/10.1016/j.earscirev.2007.12.003
    [Google Scholar]
  74. Root, K. G. (1987). Geology of the Delphine Creek area, southeastern British Columbia: implications for the Proterozoic and Paleozoic development of the Cordilleran Divergent Margin. (Unpublished doctoral thesis), Calgary, AB: University of Calgary. https://doi.org/10.11575/PRISM/19492
    [Google Scholar]
  75. Ross, G. M., Broome, J., & Miles, W. (1994).Potential fields and basement structure—Western Canada Sedimentary Basin. In geological atlas of the Western Canada Sedimentary Basin.Canadian society of petroleum geologists and Alberta research council, special report, 4.
  76. Ross, G. M., & Eaton, D. W. (1999). Basement reactivation in the Alberta Basin: Observational constraints and mechanical rationale. Bulletin of Canadian Petroleum Geology, 47(4), 391–411. https://doi.org/10.2113/49.3.429
    [Google Scholar]
  77. Ross, G., & Stephenson, R. A. (1989).Crystalline basement: the foundations of Western Canada Sedimentary Basin. Western Canada Sedimentary Basin: A Case History, 1989. 33–45.
  78. Saller, A. H., & Yaremko, K. (1994). Dolomitization and porosity development in the middle and upper Wabamun Group, southeast Peace River arch, Alberta. Canada. AAPG Bulletin, 78(9), 1406–1430. https://doi.org/10.1306/A25FECBB‐171B‐11D7‐8645000102C1865D
    [Google Scholar]
  79. Schultz, R., Corlett, H., Haug, K., Kocon, K., Maccormack, K., Stern, V., & Shipman, T. (2016). Linking fossil reefs with earthquakes: Geologic insight to where induced seismicity occurs in Alberta. Geophysical Research Letters, 43(6), 2534–2542. https://doi.org/10.1002/2015GL067514
    [Google Scholar]
  80. Shawa, M. S. (1969). Sedimentary history of the Gilwood Sandstone (Devonian) Utikuma Lake Area, Alberta, Canada. Bulletin of Canadian Petroleum Geology, 17(4), 392–409.
    [Google Scholar]
  81. Sibley, D. F., & Gregg, J. M. (1987). Classification of dolomite rock textures. Journal of Sedimentary Research, 57(6), 967–975. https://doi.org/10.1306/212F8CBA‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  82. Spencer, R. J. (1987). Origin of CaCl brines in Devonian formations, Western Canada Sedimentary Basin. Applied Geochemistry, 2(4), 373–384. https://doi.org/10.1016/0883‐2927(87)90022‐9
    [Google Scholar]
  83. Spötl, C., Longstaffe, F. J., Ramseyer, K., & Rüdinger, B. (1999). Authigenic albite in carbonate rocks–a tracer for deep‐burial brine migration?Sedimentology, 46(4), 649–666. https://doi.org/10.1046/j.1365‐3091.1999.00237.x
    [Google Scholar]
  84. Stearns, N. D., Stearns, H. T., & Waring, G. A. (1935).Thermal springs in the United States.United States Geological Survey, Water Supply Paper, 679‐B,59–191. https://doi.org/10.3133/wsp679B
  85. Sun, S. Q. (1994). A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research, 64(2a), 396–404. https://doi.org/10.1306/D4267DB1‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  86. Switzer, S. B., Holland, W. G., Christie, D. S., Graf, G. C., Hedinger, A. S., McAuley, R. J., …Shetsen, I. (1994). Devonian Woodbend‐Winterburn strata of the Western Canada sedimentary basin. Geological Atlas of the Western Canada Sedimentary Basin: Canadian Society of Petroleum Geologists and Alberta Research Council, 165‐202.
  87. Taylor, S. R., & McLennan, S. M. (1985).The continental crust: its composition and evolution (book). United States.
  88. Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., & Wood, R. A. (2016). Effective use of cerium anomalies as a redox proxy in carbonate‐dominated marine settings. Chemical Geology, 438, 146–162. https://doi.org/10.1016/j.chemgeo.2016.06.027
    [Google Scholar]
  89. Viau, C. (1987).The swan Hills formation and the Beaverhill Lake Group at swan Hills field and adjacent areas, central Alberta, Canada. Devonian Lithofacies and Reservoir Styles in Alberta: 13th CSPG Core Conference and Display, 1987. 201–239.
  90. Walls, R., & Burrowes, G. (1985). The role of cementation in the diagenetic history of Devonian reefs, Western Canada. SEPM Special Publication ‐ Carbonate Cements, 36, 185–220.
    [Google Scholar]
  91. Warren, J. (2000). Dolomite: Occurrence, evolution and economically important associations. Earth‐Science Reviews, 52(1–3), 1–81. https://doi.org/10.1016/S0012‐8252(00)00022‐2
    [Google Scholar]
  92. Webb, G. E., & Kamber, B. S. (2000). Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica Et Cosmochimica Acta, 64(9), 1557–1565. https://doi.org/10.1016/S0016‐7037(99)00400‐7
    [Google Scholar]
  93. Webb, G. E., Nothdurft, L. D., Kamber, B. S., Kloprogge, J. T., & Zhao, J. X. (2009). Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5), 1433–1463. https://doi.org/10.1111/j.1365‐3091.2008.01041.x
    [Google Scholar]
  94. Wendte, J. C. (1994). Cooking Lake platform evolution and its control on Late Devonian Leduc reef inception and localization, Redwater, Alberta. Bulletin of Canadian Petroleum Geology, 42(4), 499–528. https://doi.org/10.2110/scn.92.28.0041
    [Google Scholar]
  95. Wendte, J., Stoakes, F. A., & Campbell, C. V. (1992).Cyclicity of Devonian strata in the Western Canada Sedimentary Basin. In J.Wendte (Ed.), Devonian‐Early Mississippian Carbonates of the Western Canada Sedimentary Basin: A sequence stratigraphic framework (pp. 25–40). Broken Arrow, OK: Society of Economic Paleontologists and Mineralogists, Short Course no. 28.
    [Google Scholar]
  96. Wendte, J., & Uyeno, T. (2005). Sequence stratigraphy and evolution of Middle to Upper Devonian Beaverhill Lake strata, south‐central Alberta. Bulletin of Canadian Petroleum Geology, 53(3), 250–354. https://doi.org/10.2113/53.3.250
    [Google Scholar]
  97. Whitaker, F. F., & Xiao, Y. (2010). Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection. AAPG Bulletin, 94(6), 889–917. https://doi.org/10.1306/12090909075
    [Google Scholar]
  98. White, D. E. (1957). Thermal waters of volcanic origin. Geological Society of America Bulletin, 68(12), 1637–1658. https://doi.org/10.1130/0016‐7606(1957)68[1637:TWOVO]2.0.CO;2
    [Google Scholar]
  99. Wright, G. N., McMechan, M. E., Potter, D. E. G., Mossop, G. D., & Shetsen, I. (1994). Structure and architecture of the Western Canada sedimentary basin. Geological Atlas of the Western Canada Sedimentary Basin, 4, 25–40.
    [Google Scholar]
  100. Zhang, H., Eaton, D. W., Li, G., Liu, Y., & Harrington, R. M. (2016). Discriminating induced seismicity from natural earthquakes using moment tensors and source spectra. Journal of Geophysical Research: Solid Earth, 121(2), 972–993. https://doi.org/10.1002/2015JB012603
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12489
Loading
/content/journals/10.1111/bre.12489
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): aquifers , basin fluids , carbonates , dolomitization , faults and seawater
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error