1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

As a traditional method for palaeoseismic studies, trenching can be combined with dating techniques to identify palaeoseismic events and the earthquake recurrence interval. However, when using trenches to study palaeoearthquakes, factors such as the active tectonic background of the earthquake‐caused structure, the lithology on both sides of the fault, the geomorphology location and type and the samples and methods for dating will affect the location of the trench. Thus, trenches should be carefully selected and used to identify the impact of ancient earthquakes. The results have substantial uncertainties and limitations. In recent years, scholars have made considerable progress in using other methods to reveal the palaeoseismic information of faults. Moreover, the history of fault activity may have been recorded in the lacustrine sediment adjacent to the fault. Hasuhai Lake is adjacent to the middle segment of the Daqingshan piedmont fault in Inner Mongolia. Since the Holocene, the region has experienced a temperate continental semi‐arid climate with little interference, and Hasuhai Lake and peripheral waters present weak hydrodynamic conditions that provide an ideal location for the study of palaeoseismic records in lacustrine sediments. Sediment samples and samples for dating were collected from three trenches excavated on the periphery of the Hasuhai Lake. Their variations in grain size and magnetic susceptibility revealed that wind and flowing water jointly produced the sedimentary conditions of Hasuhai sediments. The 14 dating results and variations in the grain size distribution, grain size components and magnetic susceptibility of sediments caused by seismic events obtained in this study were compared with those caused by a series of palaeoseismic events at the middle segment of the Daqingshan piedmont fault reported by previous studies using trenches, knickpoints and palaeosol records. The results identified seven palaeoseismic events recorded near Hasuhai Lake since 12,000 years. The combined use of lacustrine sediment variation characteristics and dating techniques is an effective method for studying palaeoseismic events.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12490
2021-01-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Avşar, U., Hubert‐Ferrari, A., De Batist, M., Lepoint, G., Schmidt, S., & Fagel, N. (2014). Seismically‐triggered organic‐rich layers in recent sediments from Göllüköy lake (North Anatolian Fault, Turkey). Quaternary Science Reviews, 103, 67–80. https://doi.org/10.1016/j.quascirev.2014.08.020
    [Google Scholar]
  2. Babonneau, N., Cattaneo, A., Ratzov, G., Déverchère, J., Yelles‐Chaouche, A., Lateb, T., & Bachir, R. S. (2017). Turbidite chronostratigraphy off Algiers, central Algerian margin: A key for reconstructing Holocene paleo‐earthquake cycles. Marine Geology, 384, 63–80. https://doi.org/10.1016/j.margeo.2016.10.017
    [Google Scholar]
  3. Beck, C. (2009). Late quaternary lacustrine paleo‐seismic archives in North‐Western Alps: Examples of earthquake‐origin assessment of sedimentary disturbances. Earth‐Science Reviews, 96, 327–344. https://doi.org/10.1016/j.earscirev.2009.07.005
    [Google Scholar]
  4. Bertrand, S., Charlet, F., Chapron, E., Fagel, N., & De Batist, M. (2008). Reconstruction of the Holocene seismotectonic activity of the Southern Andes from seismites recorded in Lago Icalma, Chile, 39°S. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 301–322. https://doi.org/10.1016/j.palaeo.2007.10.013
    [Google Scholar]
  5. Campos, C., Beck, C., Crouzet, C., Carrillo, E., Van Welden, A., & Tripsanas, E. (2013). Late quaternary paleoseismic sedimentary archive from deep central Gulf of Corinth: Time distribution of inferred earthquake‐induced layers. Annals of Geophysics, 56(6), S0670. https://doi.org/10.4401/ag‐6226
    [Google Scholar]
  6. Chapron, E., Ariztegui, D., Mulsow, S., Villarosa, G., Pino, M., Outes, V., … Crivelli, E. (2006). Impact of the 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quaternary International, 158(1), 58–71. https://doi.org/10.1016/j.quaint.2006.05.017
    [Google Scholar]
  7. Chen, F. H., Fan, Y. X., Madsen, D. B., Chun, X., Zhao, H., & Yang, L. P. (2008). Preliminary study on the formation mechanism of the "Jilantai‐Hetao" megalake and the lake evolutionary historyin Hetao region. Quaternary Sciences, 28, 866–873.
    [Google Scholar]
  8. Crone, A. J. (1987). Introduction to directions in paleoseismology. U S Geological Survey Open File Report, 87‐683, 1–6.
  9. Deng, Q. D., Cheng, S. P., Min, W., Yang, G. Z., & Ren, D. W. (1999). Discussion on cenozoic tectonics and dynamics of ordos block. Journal of Geomechanics, 5(3), 13–21.
    [Google Scholar]
  10. Deng, Q. D., Zhang, P. Z., Ran, Y. K., Yang, X. P., Min, W., & Chu, Q. Z. (2007). Map of active tectonics of China. Beijing: Seismology Press.
    [Google Scholar]
  11. Dietze, E., Hartmann, K., Diekmann, B., Ijmker, J., Lehmkuhl, F., Opitz, S., … Borchers, A. (2012). An end‐member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology, 243–244, 169–180. https://doi.org/10.1016/j.sedgeo.2011.09.014
    [Google Scholar]
  12. Feng, S. Y., Liu, B. J., & Ji, J. F. (2015). The survey on fine lithospheric structure beneath Hohhot‐Baotou basin by deep seismic reflection profile. Chinese Journal of Geophysics, 58, 1158–1168. https://doi.org/10.6038/cjg20150406
    [Google Scholar]
  13. Feng, X. Y. (1997). Paleao‐earthquakes of Xinjiang. Urumqi: Science & Technology and Health Publishing House.
    [Google Scholar]
  14. Folk, R. L., & Ward, W. C. (1957). Brazos river bar [Texas]; A study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1), 3–26. https://doi.org/10.1306/74d70646‐2b21‐11d7‐8648000102c1865d
    [Google Scholar]
  15. García‐Tortosa, F. J., Alfaro, P., Gibert, L., & Scott, G. (2011). Seismically induced slump on an extremely gentle slope (< 1) of the Pleistocene Tecopa paleolake (California). Geology, 39, 1055–1058. https://doi.org/10.1130/G32218.1
    [Google Scholar]
  16. Han, W., Ma, W., Tao, S., Yao, J., & Liu, X. (2018). Hydrocarbon generation potential evaluation of upper paleozoic limestone in ordos basin. Earth Science, 43, 599–609. https://doi.org/10.3799/dqkx.2017.529
    [Google Scholar]
  17. He, C., Rao, G., Yang, R., Hu, J., Yao, Q., & Yang, C. J. (2019). Divide migration in response to asymmetric uplift: Insights from the Wula Shan horst, North China. Geomorphology, 339, 44–57. https://doi.org/10.1016/j.geomorph.2019.04.024
    [Google Scholar]
  18. He, H. C., Ding, H. Y., Zhang, Z. K., Shi, X. D., Li, S. H., & Mao, L. J. (2005). Grain‐size characteristic and their environmental significance of Hongze lake sediments. Scientia Geographica Sinica, 25(5), 80–86.
    [Google Scholar]
  19. He, H., Wei, Z., & Densmore, A. (2016). Quantitative morphology of bedrock fault surfaces and identification of paleo‐earthquakes. Tectonophysics, 693, 22–31. https://doi.org/10.1016/j.tecto.2016.09.032
    [Google Scholar]
  20. He, Z., & Ma, B. (2015). Holocene paleoearthquakes of the Daqingshan fault detected from knickpoint identification and alluvial soil profile. Journal of Asian Earth Sciences, 98, 261–271. https://doi.org/10.1016/j.jseaes.2014.11.025
    [Google Scholar]
  21. He, Z., Ma, B., Long, J., Wang, J., & Zhang, H. (2018). New progress in paleoearthquake studies of the east sertengshan piedmont fault, Inner Mongolia, China. Journal of Earth Science, 29, 441–451. https://doi.org/10.1007/s12583‐017‐0937‐z
    [Google Scholar]
  22. He, Z., Ma, B., Long, J., Zhang, H., Liang, K., & Jiang, D. (2017). Recent ground fissures in the Hetao basin, Inner Mongolia, China. Geomorphology, 295, 102–114. https://doi.org/10.1016/j.geomorph.2017.07.008
    [Google Scholar]
  23. He, Z., Ma, B. Q., & Lu, H. F. (2007). Active fault segmentation and the identification of potential seismic zones along the Daqingshan piedmont fault. Seismology and Geology, 29, 765–775.
    [Google Scholar]
  24. Howarth, J. D., Fitzsimons, S. J., Norris, R. J., & Jacobsen, G. E. (2014). Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine fault, New Zealand. Earth and Planetary Science Letters, 403, 340–351. https://doi.org/10.1016/j.epsl.2014.07.008
    [Google Scholar]
  25. Jiang, H., Mao, X., Xu, H., Yang, H., Ma, X., Zhong, N., & Li, Y. (2014). Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, East Tibet. Geomorphology, 204, 518–531. https://doi.org/10.1016/j.geomorph.2013.08.032
    [Google Scholar]
  26. Jiang, H., Wang, P., Thompson, J., Ding, Z., & Lu, Y. (2009). Last glacial climate instability documented by coarse‐grained sediments within the loess sequence, at Fanjiaping, Lanzhou. China. Quaternary Research, 72(1), 91–102. https://doi.org/10.1016/j.yqres.2009.04.005
    [Google Scholar]
  27. Jiang, H., Zhong, N., Li, Y., Ma, X., Xu, H., Shi, W., … Nie, G. (2017). A continuous 13.3‐ka record of seismogenic dust events in lacustrine sediments in the eastern Tibetan Plateau. Scientific Reports, 7, 15686. https://doi.org/10.1038/s41598‐017‐16027‐8
    [Google Scholar]
  28. Jiang, W., Xiao, Z., Wan, H., & Gong, F. (2001). The segmentation character of seismic surface ruptures on the piedmont active fault of Mt. Daqingshan, Inner Mongolia. Seismology and Geology, 23(1), 24–34.
    [Google Scholar]
  29. Karlin, R. E., & Abella, S. E. (1992). Paleoearthquakes in the puget sound region recorded in sediments from Lake Washington, USA. Science, 258, 1617–1620. https://doi.org/10.1126/science.258.5088.1617
    [Google Scholar]
  30. Kremer, K., Hilbe, M., Simpson, G., Decrouy, L., Wildi, W., & Girardclos, S. (2015). Reconstructing 4000 years of mass movement and tsunami history in a deep Peri‐Alpine lake (Lake Geneva, France‐Switzerland). Sedimentology, 62, 1305–1327. https://doi.org/10.1111/sed.12190
    [Google Scholar]
  31. Kremer, K., Wirth, S. B., Reusch, A., Fäh, D., Bellwald, B., Anselmetti, F. S., … Strasser, M. (2017). Lake‐sediment based paleoseismology: Limitations and perspectives from the Swiss Alps. Quaternary Science Reviews, 168, 1–18. https://doi.org/10.1016/j.quascirev.2017.04.026
    [Google Scholar]
  32. Krinitzsky, E. L., & Slemmons, D. B. (1990). Neotectonics in earthquake evaluation. Boulder, CO: Geological Society of America.
    [Google Scholar]
  33. Leroy, S. A., Boyraz, S., & Gürbüz, A. (2009). High‐resolution palynological analysis in Lake Sapanca as a tool to detect recent earthquakes on the North Anatolian fault. Quaternary Science Reviews, 28, 2616–2632. https://doi.org/10.1016/j.quascirev.2009.05.018
    [Google Scholar]
  34. Li, H., Wang, Z., Fu, X., Hou, L., Si, J., Qiu, Z., … Wu, F. (2008). The surface rupture zone distribution of the Wenchuan earthquake (Ms8. 0) happened on May 12th, 2008. Geology in China, 35, 803–813.
    [Google Scholar]
  35. Li, K., Wu, W. M., Yang, F., Nie, Z. S., Guo, W. S., & Ma, B. Q. (1994). A study on segmentation of Daqingshan piedmont active fault. Seismogelogical subcommission of Chinese seismological society. Research on active faults in China. Beijing: Seismological Press.
    [Google Scholar]
  36. Li, L. L., & Li, D. W. (2018). New methods for paleoseismology: The development of lacustrine paleo‐seismic study. Progress in Geophysics, 33, 2241–2250.
    [Google Scholar]
  37. Li, W., Huang, R., Pei, X., Zhang, X., & Zhang, Y. (2015). Study on geological disasters caused by Haiyuan M8.5 earthquake in 1920) based on Google Earth. Journal of Catastrophology, 30(2), 26–31.
    [Google Scholar]
  38. Li, W., Li, Z., Wang, Z., Ma, Z., Wang, Z., & Liang, L. (2019). Climatic environment changes during the last interglacial‐glacial cycle in Zhifu loess section: Revealed by grain‐size end‐member algorithm. Marine Geology and Quaternary Geology, 41(5), 177–187.
    [Google Scholar]
  39. Li, Y. B. (2013). Structural assemblages of several basins around the ordos block and their response to major earthquake (Thesis for doctorial degree). Beijing: Institute of Geology, China Earthquake Administration.
  40. Li, Y. C., Xu, Q. H., & Yang, X. L. (2004). Distribution and source of pollens and spores in surface sediments of Daihai lake, Inner Mongolia. Journal of Palaeography, 6, 316–328.
    [Google Scholar]
  41. Liang, K., Xie, J., & Li, F. (1997). The character of tectonic stress field, structural movement and seismicity in Daqing mountain area. Bulletin of the Institute of Crustal Dynamics, 87–96.
    [Google Scholar]
  42. Lienkaemper, J. J., & Ramsey, C. B. (2009). OxCal: Versatile tool for developing paleoearthquake chronologies‐A primer. Seismological Research Letters, 80, 431–434. https://doi.org/10.1785/gssrl.80.3.431
    [Google Scholar]
  43. Liu, Q. S., & Deng, C. L. (2009). Magnetic susceptibility and its environmental significances. Chinese Journal of Geophysics, 52, 1041–1048. https://doi.org/10.3969/j.issn.0001‐5733.2009.04.021
    [Google Scholar]
  44. Lu, H., & An, Z. (1999). Comparison of grain‐size distribution of red clay and loess‐paleosol deposits in Chinese loess platean. Acta Sedimentologica Sinica, 17(2), 61–67.
    [Google Scholar]
  45. Lu, Y., Dong, Y., Feng, X. J., Li, Y., & Peng, J. (2014). Characteristics of geological relics due to 1556 Huaxian great earthquake in Guanzhong area of Shaanxi province, China. Journal of Engineering Geology, 22, 300–308.
    [Google Scholar]
  46. McCalpin, J. (1996). Paleoseismology. San Diego: Academic Press.
    [Google Scholar]
  47. McCalpin, J. P. (2009). Paleoseismology (2nd ed.). New York, NY: Academic Press.
    [Google Scholar]
  48. McHugh, C., Seeber, L., Cormier, M., Dutton, J., Cagatay, N., Polonia, A., … Gorur, N. (2006). Submarine earthquake geology along the North Anatolia fault in the Marmara Sea, Turkey: A model for transform basin sedimentation. Earth and Planetary Science Letters, 248, 661–684. https://doi.org/10.1016/j.epsl.2006.05.038
    [Google Scholar]
  49. Middleton, T. A., Walker, R. T., Parsons, B., Lei, Q., Zhou, Y., & Ren, Z. (2016). A major, intraplate, normal‐faulting earthquake: The 1739 Yinchuan event in Northern China. Journal of Geophysical Research: Solid Earth, 121, 293–320. https://doi.org/10.1002/2015jb012355
    [Google Scholar]
  50. Middleton, T. A., Walker, R. T., Rood, D. H., Rhodes, E. J., Parsons, B., Lei, Q., … Zhou, Y. (2016). The tectonics of the Western Ordos Plateau, Ningxia, China: Slip rates on the Luoshan and East Helanshan faults. Tectonics, 35, 2754–2777. https://doi.org/10.1002/2016tc004230
    [Google Scholar]
  51. Miousse, L., Bhiry, N., & Lavoie, M. (2003). Isolation and water‐level fluctuations of Lake Kachishayoot, Northern Québec, Canada. Quaternary Research, 60(2), 149–161. https://doi.org/10.1016/s0033‐5894(03)00094‐2
    [Google Scholar]
  52. Moernaut, J., Van Daele, M., Heirman, K., Fontijn, K., Strasser, M., Pino, M., … De Batist, M. (2014). Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in South Central Chile. Journal of Geophysical Research: Solid Earth, 119, 1607–1633. https://doi.org/10.1002/2013JB010738
    [Google Scholar]
  53. Nie, Z. S. (2013). Preliminary investigation on the historical M 8 earthquake occurred in 7 BC at Baotou, Inner Mongolia. Acta Seismologica Sinica, 35, 584–603.
    [Google Scholar]
  54. Nie, Z. S., Jiang, W. L., & Wu, W. M. (1996). Study on Holocene paleoearthquakes in large trenches on the western segment of Daqingshan piedmont fault zone, Nei Mongo. Research on active faults. Beijing: Seismological Press.
    [Google Scholar]
  55. Nie, Z., Wu, W., & Ma, B. (2010). Surface rupture of the A. D. 849 earthquake occurred to the east of Baotou city, China, and discussion on its parameters. Acta Seismologica Sinica, 32(1), 94–107. https://doi.org/10.3969/j.issn.0253‐3782.2010.01.011
    [Google Scholar]
  56. Paterson, G. A., & Heslop, D. (2015). New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems, 16, 4494–4506. https://doi.org/10.1002/2015gc006070
    [Google Scholar]
  57. Ramsey, C. B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360. https://doi.org/10.1017/s0033822200033865
    [Google Scholar]
  58. Ran, Y. K., Wang, H., Yang, H. L., & Xu, L. X. (2014). Key techniques and several cases anylysis in paleoseismic studies in mainland China(4)‐sampling and event analysis of paleoseismic dating methods. Seismology and Geology, 34, 939–955.
    [Google Scholar]
  59. Ran, Y. K., Zhang, P. Z., & Chen, L. C. (2003). Research on the completeness of paleoseismic activity history since late Quaternary along the Daqingshan piedmont fault in the Hettao Deoression zone, North China. Earth Scicence Frontiers, 10, 207–216.
    [Google Scholar]
  60. Ran, Y., Zhang, P., Hu, B., & Guo, W. (2002). Paleoseismic activity on the Hohhot segment of Daqingshan piedmont fault in the late Quaternary history. Earthquake Research in China, 1(1), 15–27.
    [Google Scholar]
  61. Sahu, B. K. (1964). Depositional mechanisms from the size analysis of clastic sediments. SEPM Journal of Sedimentary Research, 34(1), 73–83. https://doi.org/10.1306/74d70fce‐2b21‐11d7‐8648000102c1865d
    [Google Scholar]
  62. Salvador, S., & Chan, P. (2004).Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. Paper presented at the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL.
  63. Schlagenhauf, A., Gaudemer, Y., Benedetti, L., Manighetti, I., Palumbo, L., Schimmelpfennig, I., … Pou, K. (2010). Using in situ Chlorine‐36 cosmonuclide to recover past earthquake histories on limestone normal fault scarps: A reappraisal of methodology and interpretations. Geophysical Journal International, 182(1), 36–72. https://doi.org/10.1111/j.1365‐246X.2010.04622.x
    [Google Scholar]
  64. Sheng, L. L., He, J., Lu, C. W., & Sun, Y. (2010). Distribution characteristics of nitrogen and organic matter in sediments of the Hasuhai lake. Acta Sedimentologica Sinica, 28(1), 158–165.
    [Google Scholar]
  65. Shiki, T., Kumon, F., Inouchi, Y., Kontani, Y., Sakamoto, T., Tateishi, M., … Fukuyama, K. (2000). Sedimentary features of the seismo‐turbidites, Lake Biwa. Japan. Sedimentary Geology, 135(1–4), 37–50. https://doi.org/10.1016/S0037‐0738(00)00061‐0
    [Google Scholar]
  66. Shu, Q., Li, C. L., Zhao, Z. J., Chen, H., Zhang, M. H., & Li, J. J. (2009). The pecords of mass susceptibility and grain size for climate changes in Subei basin during the last deglaciation. Acta Sedmentologica Sinica, 27(1), 111–117. https://doi.org/10.14027/j.cnki.cjxb.2009.01.008
    [Google Scholar]
  67. Sieh, K. E. (1978). Prehistoric large earthquakes produced by slip on the San Andreas fault at Pallett Creek, California. Journal of Geophysical Research, 83, 3907–3939. https://doi.org/10.1029/jb083ib08p03907
    [Google Scholar]
  68. Sieh, K., Stuiver, M., & Brillinger, D. (1989). A more precise chronology of earthquakes produced by the San Andreas fault in Southern California. Journal of Geophysical Research, 94, 603–623. https://doi.org/10.1029/jb094ib01p00603
    [Google Scholar]
  69. Smith, S. B., Karlin, R. E., Kent, G. M., Seitz, G. G., & Driscoll, N. W. (2013). Holocene subaqueous paleoseismology of Lake Tahoe. Geological Society of America Bulletin, 125, 691–708. https://doi.org/10.1130/b30629.1
    [Google Scholar]
  70. Strasser, M., Anselmetti, F. S., Fäh, D., Giardini, D., & Schnellmann, M. (2006). Magnitudes and source areas of large prehistoric Northern Alpine earthquakes revealed by slope failures in lakes. Geology, 34, 1005–1008. https://doi.org/10.1130/G22784A.1
    [Google Scholar]
  71. Strupler, M., Danciu, L., Hilbe, M., Kremer, K., Anselmetti, F. S., Strasser, M., & Wiemer, S. (2018). A subaqueous hazard map for earthquake‐triggered landslides in Lake Zurich. Switzerland. Natural Hazards, 90(1), 51–78. https://doi.org/10.1007/s11069‐017‐3032‐y
    [Google Scholar]
  72. Sun, C., Wan, T., Xie, X., Shen, X., & Liang, K. (2016). Knickpoint series of gullies along the Luoyunshan Piedmont and its relation with fault activity since late Pleistocene. Geomorphology, 268, 266–274. https://doi.org/10.1016/j.geomorph.2016.06.026
    [Google Scholar]
  73. Sun, Q. L., Zhou, J., & Xiao, J. L. (2001). Grain‐size characteristics of Lake Daihai sediments and its paleaoenvironment significance. Marine Geology and Quaternary Geology, 21(1), 93–95.
    [Google Scholar]
  74. The Research Group on Active Fault System Around Ordos Massif (1988). Active fault system around Ordos Massif. Beijing: Seismological Press.
    [Google Scholar]
  75. Thompson, R., & Oldfield, F. (1986). Environmental magntics. London, UK: George Allen & Unwin.
    [Google Scholar]
  76. Van Daele, M., Moernaut, J., Doom, L., Boes, E., Fontijn, K., Heirman, K., … De Batist, M. (2015). A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology, 62, 1466–1496. https://doi.org/10.1111/sed.12193
    [Google Scholar]
  77. Wang, F., Song, C., & Sun, X. (1997). Palynological record of paleovegetation change during holocene at North Tumote plain in Inner Mongolia, China. Acta Geographica Sinica, 64, 430–438. https://doi.org/10.11821/xb199705006
    [Google Scholar]
  78. Wang, J. Z., Wu, J. L., Zeng, H. A., & Ma, L. (2015). Changes of water resources of the main lakes in Inner Mongolia. Arid Zone Research, 32(1), 7–14.
    [Google Scholar]
  79. Wei, Z., He, H., & Shi, F. (2013). Weathering history of an exposed bedrock fault surface interpreted from its topography. Journal of Structural Geology, 56, 34–44. https://doi.org/10.1016/j.jsg.2013.08.008
    [Google Scholar]
  80. Weltje, G. J. (1997). End‐member modeling of compositional data: Numerical‐statistical algorithms for solving the explicit mixing problem. Mathematical Geology, 29, 503–549. https://doi.org/10.1007/bf02775085
    [Google Scholar]
  81. Xie, Y., Wang, W., & Wang, P. (2000). Characteristics of grain size for palaeoflood slackwater deposits. Journal of Hydorlogic, 4, 18–20.
    [Google Scholar]
  82. Xu, H. T. (2010). One way to expose paleoseismology trench. North China Earthquake Sciences, 28(3), 21–23. https://doi.org/10.1088/2058‐7058/23/06/30
    [Google Scholar]
  83. Xu, Q., Ji, J., Zhao, W., & Yu, X. (2017). Uplift‐exhumation history of Daqing Mountain, Inner Mongolia since late Mesozoic. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(1), 57–65. https://doi.org/10.13209/j.0479‐8023.2016.096
    [Google Scholar]
  84. Xu, X. W., Qiang, X. K., Fu, C. F., Zhao, H., Chen, T., & Sun, Y. F. (2012). Characteristics of frequency‐dependent magnetic susceptibility in Bartington MS2 and Kappabridge MFK1‐FA, and its application in loess‐paleosol, red clay and lacustrine sediments. Chinese Journal of Geophysics, 55(1), 197–206. https://doi.org/10.6038/j.issn.0001‐5733.2012.01.019
    [Google Scholar]
  85. Xu, Y. R., He, H. L., Li, W. Q., Zhang, W. H., & Tian, Q. J. (2018). New evidences for amendment of macro‐epicenter location of 1303AD Hongtong earthquake. Seismology and Geology, 40, 945–966. https://doi.org/10.3969/j.issn.0253‐4967.2018.05.001
    [Google Scholar]
  86. Yang, X. Q., & Li, H. M. (2002). The correlation between the content of the different grain size and magnetic susceptibility in lacustrine sediments, Nihewan basin. Acta Sedimentologica Sinica, 20, 675–679. https://doi.org/10.14027/j.crki.cjxb.2002.04.024
    [Google Scholar]
  87. Yeats, R. S., & Prentice, C. S. (1996). Introduction to special section: Paleoseismology. Journal of Geophysical Research: Solid Earth, 101, 5847–5853. https://doi.org/10.1029/95JB03134
    [Google Scholar]
  88. Yin, Y., Fang, N., & Wang, Q. (2002). Magnetic susceptibility of lacustrine sediments and its environmental significance: Evidence from Napahai lake, Northwestern Yunnan, China. Scientia Geographica Sinica, 22, 413–419.
    [Google Scholar]
  89. Yin, Z. Q., Qin, X. G., Wu, J. S., & Ning, B. (2009). The multimodal grain‐size distribution characteristics of loess, desert, lake and river sediments in some areas of Northern China. Acta Sedmentologica Sinica, 27, 343–351.
    [Google Scholar]
  90. Zhang, X., Ji, Y., Yang, Z., Wang, Z., Liu, D., & Jia, P. (2015). End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments. Science China Earth Sciences, 59, 258–267. https://doi.org/10.1007/s11430‐015‐5165‐8
    [Google Scholar]
  91. Zhang, X. D., Xu, S. M., Zhai, S. K., & Zhang, H. J. (2006). The inversion of climate information from the sediment of inner shelf of East China Sea using end member model. Marine Geology and Quaternary Geology, 26, 25–62.
    [Google Scholar]
  92. Zhang, X., Zhou, A., Wang, X., Song, M., Zhao, Y., Xie, H., … Chen, F. (2018). Unmixing grain‐size distributions in lake sediments: A new method of endmember modeling using hierarchical clustering. Quaternary Research, 89, 365–373. https://doi.org/10.1017/qua.2017.78
    [Google Scholar]
  93. Zhong, N., Jiang, H. C., Liang, L. J., Xu, H. Y., & Peng, X. P. (2017). Paleoearhquake researchs via soft sediment deformation of load, ball‐and‐pillow strcuture: A review. Geological Review, 63, 719–738.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12490
Loading
/content/journals/10.1111/bre.12490
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error