1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Common basin models assume that the post‐rift tectonic evolution of most basins is usually associated with tectonic quiescence. However, tectonic inversion during the post‐rift phase has been proposed for several sedimentary basins worldwide, but how and why it happens is still a matter of debate, especially in intracontinental settings where the lithosphere is old and thick. Here, we use geological and geophysical data from the Rio do Peixe Basin in NE Brazil to show evidence that intracontinental sedimentary basins can be tectonically inverted by far‐field compressive stresses acting on pre‐existing weakness zones of lithospheric‐scale where stresses can concentrate and inversion can occur. Geomorphological and field data combined with seismic reflection, gravimetric and borehole data show that: (a) inversion occurred along two main Precambrian lithospheric‐scale shear zones, the Patos (E‐W trending) and Portalegre (NE‐SW trending), which had already been reactivated as basin‐bounding faults during the earlier rift stage; (b) post‐rift reactivation affected (mostly) the original master normal faults with the largest rift displacements, and locally produced new reverse faults; (c) during contraction, deformation was partitioned between fault reactivation and buckling of the incompetent sediment pushed against the hard basement; (d) all these signs of inversion have been observed in the field and can be demonstrated on seismic reflection profiles; and (e) combined gravimetric and seismic data show that the main structures of the basin were followed by an inversion. These data are consistent with the operation of WSW‐ENE horizontal maximum compressive stress as a result of combined pushes of the Mid‐Atlantic Ridge (towards the W) and the Andes (towards the E), responsible for the post‐rift oblique inversion of normal faults inherited from the rift phase and formed with vertical maximum compressive stress.

,

Conceptual tectonic inversion model in the RPB.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12491
2021-01-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Alves, F. C., Rossetti, D. F., Valeriano, M. M., & Andrades Filho, C. O. (2019). Neotectonics in the South American passive margin: Evidence of Late Quaternary uplifting in the northern Paraiba Basin (NE Brazil). Geomorphology, 325, 1–16. https://doi.org/10.1016/j.geomorph.2018.09.028
    [Google Scholar]
  2. Artyushkov, E. V. (1987). The forces driving plate motions and compression of the crust in fold belts. In K.Fuchs, & C.Froidevaux (Eds.), Composition, Structure and Dynamics of the Lithosphere‐Asthenosphere System. Geodynamics Series 16, 175–188. https://doi.org/10.1029/GD016p0175
  3. Assine, M. L. (2007). Bacia do Araripe. Boletim De Geociências Da Petrobras, 15, 371–389.
    [Google Scholar]
  4. Assumpção, M., Dias, F. L., Zevallos, I., & Naliboff, J. B. (2016). Intraplate stress field in South America from earthquake focal mechanisms. Journal of South American Earth Sciences, 71, 278–295. https://doi.org/10.1016/j.jsames.2016.07.005
    [Google Scholar]
  5. Bascuñán, S., Arriagada, C., Le Roux, J., & Deckart, K. (2016). Unraveling the Peruvian Phase of the Central Andes: Stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30–23°S), northern Chile. Basin Research, 28, 365–392. https://doi.org/10.1111/bre.12114
    [Google Scholar]
  6. Bezerra, F. H. R., Brito Neves, B. B., Corrêa, A. C. B., Barreto, A. M. F., & Suguio, K. (2008). Late Pleistocene tectonic‐geomorphological development within a passive margin – The Cariatá trough, northeastern Brazil. Geomorphology, 97, 555–582. https://doi.org/10.1016/j.geomorph.2007.09.008
    [Google Scholar]
  7. Bezerra, F. H. R., de Castro, D. L., Maia, R. P., Sousa, M. O. L., Moura‐Lima, E. M., Rossetti, D. F., … Nogueira, F. C. C. (2020). Postrift stress field inversion in the Potiguar Basin, Brazil – Implications for petroleum systems and evolution of the equatorial margin of South America. Marine and Petroleum Geology, 111, 88–104. https://doi.org/10.1016/j.marpetgeo.2019.08.001
    [Google Scholar]
  8. Bonini, M., Sani, F., & Antonielli, B. (2012). Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models. Tectonophysics, 522–523, 55–88. https://doi.org/10.1016/j.tecto.2011.11.014
    [Google Scholar]
  9. Brito Neves, B. B., Santos, E. J., & Van Schmus, W. R. (2000). Tectonic history of the Borborema Province, Northeast Brazil. U. G.In Cordani, A.Thomaz Filho, & D. A.Campos (Eds.), Tectonic Evolution of South America. Rio de Janeiro, 31STIGC, 151–182.
  10. Brun, J. P., & Nalpas, T. (1996). Graben inversion in nature and experiments. Tectonics, 15, 677–687. https://doi.org/10.1029/95TC03853
    [Google Scholar]
  11. Buchanan, P. G., & McClay, K. R. (1991). Sandbox experiments of inverted listric and planar faults systems. Tectonophysics, 188, 97–115. https://doi.org/10.1016/0040‐1951(91)90317‐L
    [Google Scholar]
  12. Buiter, S. J. H., & Pfiffner, O. A. (2003). Numerical models of the inversion of half‐graben basins. Tectonics, 22, 1057. https://doi.org/10.1029/2002TC001417
    [Google Scholar]
  13. Buiter, S. J. H., Pfiffner, O. A., & Beaumont, C. (2009). Inversion of extensional sedimentary basins: A numerical evaluation of the localisation of shortening. Earth and Planetary Science Letters, 288, 492–504. https://doi.org/10.1016/j.epsl.2009.10.011
    [Google Scholar]
  14. Carvalho, I. S., Mendes, J. C., & Costa, T. (2013). The role of fracturing and mineralogical alteration of basement gneiss in the oil exhsudation in the Sousa Basin (Lower Cretaceous), Northeastern Brazil. Journal of South American Earth Sciences, 47, 47–54. https://doi.org/10.1016/j.jsames.2013.06.001
    [Google Scholar]
  15. Cobbold, P. R., Meisling, K. E., & Mount, V. S. (2001). Reactivation of an obliquely rifted margin, Campos and Santos Basins, southeastern Brazil. American Association of Petroleum Geologists Bulletin, 85, 1925–1944. https://doi.org/10.1306/8626D0B3‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  16. Cobbold, P. R., Rossello, E. A., Roperch, P., Arriagada, C., Gómez, L. A., & Lima, C. (2007). Distribution, timing, and causes of Andean deformation across South America. In A. C.Ries, R. W. H.Butler, & R. H.Graham (Eds.), Deformation of the Continental Crust. Geological Society, London, Special Publications 272, 321–343. https://doi.org/10.1144/GSL.SP.2007.272.01.17
  17. Coblentz, D. D., & Richardson, R. M. (1996). Analysis of the South American intraplate stress field. Journal of Geophysical Research, 101, 8643–8657. https://doi.org/10.1029/96JB00090
    [Google Scholar]
  18. Córboda, V. C., Antunes, A. F., Jardim de Sá, E. F., Silva, A. N., Sousa, D. C., & Lins, F. A. P. L. (2008). Análise estratigráfica e estrutural da Bacia Rio do Peixe, Nordeste do Brasil: Integração de dados a partir do levantamento sísmico pioneiro 0295_rio_do_peixe_2d. Boletim De Geosciências Da Petrobrás, 16(1), 53–68.
    [Google Scholar]
  19. de Castro, D. L., Bezerra, F. H. R., & Castelo Branco, R. M. G. (2008). Geophysical evidence of crustal‐heterogeneity control of fault growth in the Neocomian Iguatu basin, NE Brazil. Journal of South American Earth Sciences, 26, 271–285. https://doi.org/10.1016/j.jsames.2008.07.002
    [Google Scholar]
  20. de Castro, D. L., Bezerra, F. H. R., Fuck, R. A., & Vidotti, R. M. (2016). Geophysical evidence of pre‐sag rifting and post‐rifting fault reactivation in the Parnaíba basin, Brazil. Solid Earth, 7, 529–548. https://doi.org/10.5194/se‐7‐529‐2016
    [Google Scholar]
  21. de Castro, D. L., Oliveira, D. C., & Castelo Branco, R. M. G. (2007). On the tectonics of the Neocomian Rio do Peixe Rift Basin, NE Brazil: Lessons from gravity, magnetic and radiometric data. Journal of South American Earth Sciences, 24, 184–202. https://doi.org/10.1016/j.jsames.2007.04.001
    [Google Scholar]
  22. Destro, N. (1995). Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe‐Alagoas Basin, NE Brazil. Journal of Structural Geology, 17, 615–619. https://doi.org/10.1016/0191‐8141(94)00088‐H
    [Google Scholar]
  23. El Hassan, W. M., Farwa, A. G., & Awad, M. Z. (2017). Inversion tectonics in Central Rift System: Evidence from the Heglig Field. Marine and Petroleum Geology, 80, 293–306. https://doi.org/10.1016/j.marpetgeo.2016.12.007
    [Google Scholar]
  24. Françolin, J. B. L., Cobbold, P. R., & Szatmari, P. (1994). Faulting in the Early Cretaceous Rio do Peixe basin (NE Brazil) and its significance for the opening of the Atlantic. Journal of Structural Geology, 16, 647–661. https://doi.org/10.1016/0191‐8141(94)90116‐3
    [Google Scholar]
  25. Frizon de Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., & de Clarens, P. (2015). Style of rifting and the stages of Pangea breakup. Tectonic, 34, 1009–1029. https://doi.org/10.1002/2014TC003760
    [Google Scholar]
  26. Garcia, X., Julià, J., Nemocón, A. M., & Neukirch, M. (2019). Lithospheric thinning under the Araripe Basin (NE Brazil) from a long‐period magnetotelluric survey: Constraints for tectonic inversion. Gondwana Research, 68, 174–184. https://doi.org/10.1016/j.gr.2018.11.013
    [Google Scholar]
  27. Guiraud, R., & Bosworth, W. (1997). Senonian basin inversion and rejuvenation of rifting in Africa and Arabia: Synthesis and implications to plate‐scale tectonics. Tectonophysics, 282, 39–82. https://doi.org/10.1016/S0040‐1951(97)00212‐6
    [Google Scholar]
  28. Hill, K. C., Hill, K. A., Cooper, G. T., O’Sullivan, A. J., O’sullivan, P. B., & Richardson, M. J. (1995). Inversion around the Bass Basin, SE Australia. In J. G.Buchanan, & P. G.Buchanan (Eds.), Basin Inversion. Geological Society, London, Special Publications 88, 525–547. https://doi.org/10.1144/GSL.SP.1995.088.01.27
  29. Hudec, M., & Jackson, M. P. A. (2002). Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the Inner Kwanza Basin, Angola. Geological Society of America Bulletin, 115, 639–640. https://doi.org/10.1130/0016-7606(2002)114%3C1222:SSIAST%3E2.0.CO;2
    [Google Scholar]
  30. Jackson, C.‐A.‐L., Chua, S.‐T., Bell, R. E., & Magee, C. (2013). Structural style and early stage growth of inversion structures: 3D seismic insights from the Egersund Basin, offshore Norway. Journal of Structural Geology, 45, 167–185. https://doi.org/10.1016/j.jsg.2012.09.005
    [Google Scholar]
  31. Jackson, C.‐A.‐L., & Larsen, E. (2008). Temporal constraints on basin inversion provided by 3D seismic and well data: A case study from the South Viking Graben, offshore Norway. Basin Research, 20, 397–417. https://doi.org/10.1111/j.1365‐2117.2008.00359.x
    [Google Scholar]
  32. Kley, J. (2018). Timing and spatial patterns of Cretaceous and Cenozoic inversion in the Southern Permian Basin. In B.Kilhams, P. A.Kukla, S.Mazur, T.McKie, H. F.Mijnlieff, & K.Van Ojik (Eds.), Mesozoic Resource Potential in the Southern Permian Basin. Geological Society, London, Special Publications 469, 19–31. https://doi.org/10.1144/SP469.12
  33. Kuchle, J., Scherer, C. M. S., Born, C. C., Alvarenga, R. S., & Adegas, F. (2011). A contribution to regional stratigraphic correlations of the Afro‐Brazilian depression e The Dom João Stage (Brotas Group and equivalent units e Late Jurassic) in Northeastern Brazilian sedimentary basins. Journal of South American Earth Sciences, 31, 358–371. https://doi.org/10.1016/j.jsames.2011.02.007
    [Google Scholar]
  34. Lima, M. R., & Coelho, M. P. C. A. (1987). Estudo palinológico da sondagem estratigráfica de Lagoa do Forno, Bacia do Rio do Peixe, Cretáceo do Nordeste do Brasil. Boletim do Instituto de Geociências‐USP. Série Científica, 18, 67–83. https://doi.org/10.11606/issn.2316‐8986.v18i0p67‐83
    [Google Scholar]
  35. Lima Neto, H. C., Ferreira, J. M., Bezerra, F. H. R., Assumpção, M., do Nascimento, A. F., Sousa, M. O. L., & Menezes, E. A. S. (2014). Earthquake sequences in the southern block of the Pernambuco Lineament, NE Brazil: Stress field and seismotectonic implications. Tectonophysics, 633, 211–220. https://doi.org/10.1016/j.tecto.2014.07.010
    [Google Scholar]
  36. Lowell, J. D. (1995). Mechanics of basin inversion from worldwide examples. In J. G.Buchanan, & P. G.Buchanan (Eds.), Basin Inversion, Geological Society Special Publication 88, 39–57. https://doi.org/10.1144/GSL.SP.1995.088.01.04
  37. Mabesoone, J. M., & Campanha, V. A. (1973/1974). Caracterização estratigráfica dos grupos Rio do Peixe e Iguatu. Estudos Sedimentológicos, 3(4), 21–41.
    [Google Scholar]
  38. Magnavita, L. P., Davison, I., & Kusznir, N. J. (1994). Rifting, erosion, and uplift history of the Recôncavo‐Tucano‐Jatobá Rift, northeast Brazil. Tectonics, 13(367–388), 1994. https://doi.org/10.1029/93TC02941
    [Google Scholar]
  39. Marques, F. O., Nikolaeva, K., Assumpção, M., Gerya, T. V., Bezerra, F. H. R., do Nascimento, A. F., & Ferreira, J. M. (2013). Testing the influence of far‐field topographic forcing on subduction initiation at a passive margin. Tectonophysics, 608, 517–524. https://doi.org/10.1016/j.tecto.2013.08.035
    [Google Scholar]
  40. Marques, F. O., & Nogueira, C. R. (2008). Normal fault inversion by orthogonal compression: Sandbox experiments with weak faults. Journal of Structural Geology, 30, 761–766. https://doi.org/10.1016/j.jsg.2008.02.015
    [Google Scholar]
  41. Marques, F. O., Nogueira, F. C. C., Bezerra, F. H. R., & de Castro, D. L. (2014). The Araripe Basin in NE Brazil: An intracontinental graben inverted to a high‐standing horst. Tectonophysics, 630, 251–264. https://doi.org/10.1016/j.tecto.2014.05.029
    [Google Scholar]
  42. Matos, R. M. D. (1992). The northeastern Brazilian Rift System. Tectonics, 11(4), 766–791. https://doi.org/10.1029/91TC03092
    [Google Scholar]
  43. McKenzie, D. P. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  44. Medeiros, V. C., Amaral, C. A., Rocha, D. E. G. A., & Santos, R. B. (2005). Programa Geologia do Brasil ‐ PGB. Sousa. Folha SB.24‐Z‐A. Estados da Paraíba, Rio Grande do Norte e Ceará. Mapa Geológico. Recife: CPRM, 2005, 1 mapa, color., 66cm x108cm. Escala 1:250.000. Geologia e Recursos Minerais da Folha Sousa ‐ SB.24‐Z‐A Escala 1:250.000: Nota explicativa. Sistema de Informações Geográficas ‐ SIG. Brasília: CPRM ‐ Serviço Geológico do Brasil. 1 CD ROM 1 mapa geológico. Programa de Geologia do Brasil ‐ PGB. Levantamentos Geológicos Básicos do Brasil, p. 325.
  45. Nogueira, F. C. C., Bezerra, F. H. R., & Fuck, R. A. (2010). Quaternary fault kinematics and chronology in intraplate northeastern Brazil. Journal of Geodynamics, 49(2), 79–91. https://doi.org/10.1016/j.jog.2009.11.002
    [Google Scholar]
  46. Nogueira, F. C. C., Marques, F. O., Bezerra, F. H. R., de Castro, D. L., & Fuck, R. A. (2015). Cretaceous intracontinental rifting and post‐rift inversion in NE Brazil: Insights from the Rio do Peixe Basin. Tectonophysics, 644–645, 92–107. https://doi.org/10.1016/j.tecto.2014.12.016
    [Google Scholar]
  47. Omosanya, K. O. (2020). Cenozoic tectonic inversion in the Naglfar Dome, Norwegian North Sea. Marine and Petroleum Geology, 118, 104461. https://doi.org/10.1016/j.marpetgeo.2020.104461
    [Google Scholar]
  48. Peace, A., Phethean, J., Franke, D., Foulger, G. R., Schiffer, C., Welford, J. K., … Doré, A. (2019). A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism. Earth‐Science Reviews, https://doi.org/10.1016/j.earscirev.2019.102902
    [Google Scholar]
  49. Reilly, C., Nicol, A., & Walsh, J. (2016). Importance of pre‐existing fault size for the evolution of an inverted fault system. In C.Childs, R. E.Holdsworth, C.‐A.‐L.Jackson, T.Manzocchi, J. J.Walsh, & G.Yielding (Eds.), The Geometry and Growth of Normal Faults. Geological Society, London, Special Publications 439, 447–463. https://doi.org/10.1144/SP439.2
  50. Rodríguez‐Salgado, P., Childs, C., Shannon, P. M., & Walsh, J. J. (2019). Structural evolution and the partitioning of deformation during basin growth and inversion: A case study from the Mizen Basin Celtic Sea, offshore Ireland. Basin Research, 1–24. https://doi.org/10.1111/bre.12402
    [Google Scholar]
  51. Roesner, H. E., Lana, C. C., Le Herissé, A., & Melo, J. H. G. (2011). Bacia do Rio do Peixe (PB). Novos resultados biocronoestratigráficos e paleoambientais. In I. S.Carvalho, N. K.Srivastava, O.StrohschoenJr, & C. C.Lana (Eds.), Paleontologia: Cenários de Vida, 3. Rio de Janeiro. Interciência 135–141.
  52. Royden, L., & Keen, C. E. (1980). Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Planetary Science Letters, 51, 343–361. https://doi.org/10.1016/0012‐821X(80)90216‐2
    [Google Scholar]
  53. Sarhan, M. A., & Collier, R. E. L. (2018). Distinguishing rift‐related from inversion‐related anticlines: Observations from the Abu Gharadig and Gindi Basins, Western Desert, Egypt. Journal of African Earth Sciences, 145, 234–245. https://doi.org/10.1016/j.jafrearsci.2018.06.004
    [Google Scholar]
  54. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. American Association of Petroleum Geologists Bulletin, 79, 1661–1678. https://doi.org/10.1306/7834DE4A‐1721‐11D7‐8645000102C1865D
    [Google Scholar]
  55. Schlische, R. W., Withjack, M. O., & Olsen, P. E. (2003). Relative Timing of CAMP, Rifting, Continental Breakup, and Basin Inversion: Tectonic Significance. In W. E.Hames, J. G.Mchone, P. R.Renne, & C.Ruppel (Eds.), The Central Atlantic Magmatic Province, Insights from Fragments of Pangea. American Geophysical Union, Geophysical Monograph 136, 33–59. https://doi.org/10.1029/136GM03
  56. Sénant, J., & Popoff, M. (1991). Early Cretaceous extension in northeast Brazil related to the South Atlantic opening. Tectonophysics, 198, 35–46. https://doi.org/10.1016/0040‐1951(91)90129‐G
    [Google Scholar]
  57. Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7, 751–754. https://doi.org/10.1016/0191‐8141(85)90150‐6
    [Google Scholar]
  58. Sibson, R. H. (1990). Conditions for fault‐valve behaviour. In R. J.Knipe, & E. H.Rutter (Eds.), Deformation Mechanisms, Rheology and Tectonics. Geological Society Special Publication 54, 15–28. https://doi.org/10.1144/GSL.SP.1990.054.01.02
  59. Sibson, R. H. (1995). Selective fault reactivation during basin inversion: potential for fluid redistribution through fault‐valve action. In J. G.Buchanan, & P. G.Buchanan (Eds.), Basin Inversion. Geological Society Special Publication 54, 15–28. https://doi.org/10.1144/GSL.SP.1995.088.01.02
  60. Silva, J. G. F., Córdoba, V. C., & Caldas, L. H. C. (2014). Proposta de novas unidades litoestratigráficas para o Devoniano da Bacia do Rio do Peixe, Nordeste do Brasil. Brazilian Journal of Geology, 44(4), 561–578. https://doi.org/10.5327/Z23174889201400040004
    [Google Scholar]
  61. Sinclair, I. K. (1995). Transpressional inversion due to episodic rotation of extensional stresses in Jeanne d’Arc basin, offshore Newfoundland. In J. G.Buchanan, & P. G.Buchanan (Eds.), Basin Inversion. Geological Society Special Publication 88, 249–271. https://doi.org/10.1144/GSL.SP.1995.088.01.15
  62. Tuitt, A., Underhill, J. R., Ritchie, J. D., Johnson, H., & Hitchen, K. (2010). Timing, controls and consequences of compression in the Rockall–Faroe area of the NE Atlantic Margin. In B. A.Vinning, & S. C.Pickering (Eds.), Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference, 963–977. https://doi.org/10.1144/0070963
  63. Turner, J. P., & Williams, G. A. (2004). Sedimentary basin inversion and intra‐plate shortening. Earth‐science Reviews, 65, 277–304. https://doi.org/10.1016/j.earscirev.2003.10.002
    [Google Scholar]
  64. Vasconcelos, D. L., Bezerra, F. H. R., Medeiros, W. E., de Castro, D. L., Clausen, O. R., Vital, H., & Oliveira, R. G. (2019). Basement fabric controls rift nucleation and postrift basin inversion in the continental margin of NE Brazil. Tectonophysics, 751, 23–40. https://doi.org/10.1016/j.tecto.2018.12.019
    [Google Scholar]
  65. Whitney, B. B., Hengesh, J. V., & Gillam, D. (2016). Styles of neotectonic fault reactivation within a formerly extended continental margin, North West Shelf, Australia. Tectonophysics, 686, 1–18. https://doi.org/10.1016/j.tecto.2016.06.008
    [Google Scholar]
  66. Williams, G. D., Powell, C. M., & Cooper, M. A. (1989). Geometry and kinematics of inversion tectonics. In M. A.Cooper, & G. A.Williams (Eds.), Inversion Tectonics. Geological Society, London, Special Publication 44, 201–222. https://doi.org/10.1144/GSL.SP.1989.044.01.02
  67. Withjack, M. O., Baum, M. S., & Schlische, R. S. (2010). Influence of preexisting fault fabric on inversion‐related deformation: A case study of the inverted Fundy rift basin, southeastern Canada. Tectonics, 29(6), 1–22. https://doi.org/10.1029/2010TC002744
    [Google Scholar]
  68. Ziegler, P. A., Cloetingh, S., & van Wess, J.‐D. (1995). Dynamics of intra‐plate compressional deformation: The Alpine foreland and other examples. Tectonophysics, 252, 7–59. https://doi.org/10.1016/0040‐1951(95)00102‐6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12491
Loading
/content/journals/10.1111/bre.12491
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error