1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

A synthesis has been undertaken based on regionally compiled data from the post early Eocene foreland basin succession of Svalbard. The aim has been to generate an updated depositional model and link this to controlling factors. The more than kilometer thick progradational succession includes the offshore shales of the Gilsonryggen Member of the Frysjaodden Formation, the shallow marine sandstones of the Battfjellet Formation and the predominantly heterolithic Aspelintoppen Formation, together recording the progressive eastwards infill of the foredeep flanking the West Spitsbergen fold‐and‐thrust belt. Here we present a summary of the paleo‐environmental depositional systems across the basin, their facies and regional distribution and link these together in an updated depositional model. The basin‐margin system prograded with an ascending shelf‐edge trajectory in the order of 1°. The basin fill was bipartite, with offset stacked shelf and shelf‐edge deltas, slope clinothems and basin floor fans in the western and deepest part and a simpler architecture of stacked shelf‐deltas in the shallower eastern part. We suggest a foredeep setting governed by flexural loading, likely influenced by buckling, and potentially developing into a wedge top basin in the mature stage of basin filling. High‐subsidence rates probably counteracted eustatic falls with the result that relative sea‐level falls were uncommon. Distance to the source terrain was small and sedimentation rates was temporarily high. Time‐equivalent deposits can be found outbound of Stappen High in the Vestbakken Volcanic Province and the Sørvestsnaget Basin 300 km further south on the Barents Shelf margin. We cannot see any direct evidence of coupling between these more southerly systems and the studied one; southerly diversion of the sediment‐routing, if any, may have taken place beyond the limit of the preserved deposits.

,

The Svalbard Eocene‐Oligocene (?) foreland basin succession. Upper left: facies‐scale depositional elements; upper right: mountainside‐scale of depositional geometries; lower: basin‐scale reconstruction with linkage of depositional systems.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12492
2021-01-22
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12492.html?itemId=/content/journals/10.1111/bre.12492&mimeType=html&fmt=ahah

References

  1. Aadland, T., & Helland‐Hansen, W. (2016). Global compilation of coastline change at river mouths. In EGU General Assembly Conference Abstracts, 18, p. 3915.
  2. Aamelfot, T. (2019). Sedimentology of the Battfjellet Formation, Liljevalchfjellet, Svalbard (p. 102). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  3. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment (p. 327). Hoboken, NJ: John Wiley & Sons.
    [Google Scholar]
  4. Atkinson, D. J. (1963). Tertiary rocks of Spitsbergen. American Association of Petroleum Geologists Bulletin, 47, 302–323.
    [Google Scholar]
  5. Beaumont, C., Keen, E., & Boutilier, R. (1982). A comparison of foreland and rift margin sedimentary basins. Philosophical Transactions of the Royal Society of London, A, 305, 295–317.
    [Google Scholar]
  6. Bera, M., Sarkar, A., Chakraborty, P., Loyal, R., & Sanyal, P. (2008). Marine to continental transition in Himalayan foreland. Geological Society of America Bulletin, 120, 1214–1232. https://doi.org/10.1130/B26265.1
    [Google Scholar]
  7. Bergh, S. G., Braathen, A., & Andresen, A. (1997). Interaction of basement‐involved and thin‐skinned tectonism in the Tertiary fold‐thrust belt of central Spitsbergen, Svalbard. American Association of Petroleum Geologists Bulletin, 81, 637–661.
    [Google Scholar]
  8. Bergh, S. G., & Grogan, P. (2003). Tertiary structure of the Sørkapp‐Hornsund Region, South Spitsbergen, and implications for the offshore southern extension of the fold‐thrust Belt. Norwegian Journal of Geology, 83, 43–60.
    [Google Scholar]
  9. Birkenmajer, K., & Narebski, W. (1963). Dolerite drift blocks in marine Tertiary of Sørkapp Land and some remarks on the geology of the eastern part of this area. Norsk Polarinstitutt Årbok, 1962, 68–79.
    [Google Scholar]
  10. Blinova, M., Faleide, J. I., Gabrielsen, R. H., & Mjelde, R. (2013). Analysis of structural trends of sub‐sea‐floor strata in the Isfjorden area of the West Spitsbergen Fold‐and‐Thrust Belt based on multichannel seismic data. Journal of the Geological Society, 170, 657–668. https://doi.org/10.1144/jgs2012‐109
    [Google Scholar]
  11. Blinova, M., Thorsen, R., Mjelde, R., & Faleide, J. I. (2009). Structure and evolution of the Bellsund Graben between Forlandsundet and Bellsund (Spitsbergen) based on marine seismic data. Norwegian Journal of Geology, 89, 215–228.
    [Google Scholar]
  12. Braathen, A., & Bergh, S. G. (1995). Kinematics of Tertiary deformation in the basement‐involved fold‐thrust belt, western Nordenskiold Land, Svalbard: Tectonic implications based on fault slip data analysis. Tectonophysics, 249, 1–29.
    [Google Scholar]
  13. Braathen, A., Bergh, S. G., & Maher, J. H. D. (1999). Application of a critical wedge taper model to the Tertiary transpressional fold‐thrust belt on Spitsbergen, Svalbard. Geological Society of America Bulletin, 111, 1468–1485.
    [Google Scholar]
  14. Broze, E. (2017). The occurrence of flow transformations within sandy submarine fans: A case study from the Eocene on Spitsbergen (p. 147). MSc thesis. Tromsø, Norway: University of Tromsø.
    [Google Scholar]
  15. Bruhn, R., & Steel, R. (2003). High‐resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral‐bulge‐controlled depositional architecture. Journal of Sedimentary Research, 73, 745–755. https://doi.org/10.1306/012303730745
    [Google Scholar]
  16. Castle, J. W. (2001). Foreland‐basin sequence response to collisional tectonism. Geological Society of America Bulletin, 113, 801–812. https://doi.org/10.1130/0016‐7606(2001)113<0801:FBSRTC>2.0.CO;2
    [Google Scholar]
  17. Charles, A. J., Condon, D. J., Harding, I. C., Pälike, H., Marshall, J. E. A., Cui, Y., … Croudace, I. W. (2011). Constraints on the numerical age of the Paleocene‐Eocene boundary. Geochemistry, Geophysics, Geosystems, 12, 1–19. https://doi.org/10.1029/2010GC003426
    [Google Scholar]
  18. Clark, B. E., & Steel, R. J. (2006). Eocene turbidite‐population statistics from shelf edge to basin floor, Spitsbergen, Svalbard. Journal of Sedimentary Research, 76, 903–918. https://doi.org/10.2110/jsr.2006.078
    [Google Scholar]
  19. Clifton, A. (2012). The Eocene flora of Svalbard and its climatic significance (p. 401). PhD thesis. Leeds, UK: University of Leeds.
    [Google Scholar]
  20. Crabaugh, J. P., & Steel, R. J. (2004). Basin‐floor fans of the Central Tertiary Basin, Spitsbergen; relationship of basin‐floor sand‐bodies to prograding clinoforms in a structurally active basin. In S. A.Lomas, & P.Joseph (Eds.), Confined turbidite systems (Vol. 222, pp. 187–208). London: Geological Society, Special Publications.
    [Google Scholar]
  21. Dalland, A. (1977). Erratic clasts in the Lower Tertiary deposits of Svalbard—Evidence of transport by winter ice. Norsk Polarinstitutt Årbok, 1976, 151–165.
    [Google Scholar]
  22. Dallmann, W. K. (1999). Lithostratigraphic Lexicon of Svalbard (p. 318). Tromsø, Norway: Committee on the Stratigraphy of Svalbard/Norsk Polarinstitutt.
    [Google Scholar]
  23. Dallmann, W. K., & Elvevold, S. (2015). Bedrock geology. In W. K.Dallmann (Ed.), Geoscience atlas of Svalbard, Tromsø, Norway: Report Series. Norwegian Polar Institute.
    [Google Scholar]
  24. De Urreiztieta, M., Gapais, D., Le Corre, C., Cobbold, P., & Rossello, E. (1996). Cenozoic dextral transpression and basin development at the southern edge of the Puna Plateau, northwestern Argentina. Tectonophysics, 254, 17–39. https://doi.org/10.1016/0040‐1951(95)00071‐2
    [Google Scholar]
  25. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  26. Deibert, J. E., Benda, T., Løseth, T., Schellpeper, M., & Steel, R. J. (2003). Eocene clinoform growth in front of a storm‐wave‐dominated shelf, Central Basin, Spitsbergen: No significant sand delivery to deepwater areas. Journal of Sedimentary Research, 73, 546–558. https://doi.org/10.1306/011703730546
    [Google Scholar]
  27. Dimakis, P., Braathen, B. I., Faleide, J. I., Elverhøi, A., & Gudlaugsson, S. T. (1998). Cenozoic erosion and the preglacial uplift of the Svalbard‐Barents Sea region. Tectonophysics, 300, 311–327. https://doi.org/10.1016/S0040‐1951(98)00245‐5
    [Google Scholar]
  28. Doré, A. G., Lundin, E. R., Gibbons, A., Sømme, T. O., & Tørudbakken, B. O. (2015). Transform margins of the Arctic: A synthesis and re‐evaluation. In M.Nemcok, S.Rybar, S. T.Sinha, S. A.Hermeston, & L.Ledvenyiova (Eds.), Transform margins: Development, controls and petroleum systems (Vol. 431, pp. 63–94). London: Geological Society, Special Publication.
    [Google Scholar]
  29. Dörr, N., Clift, P. D., Lisker, F., & Spiegel, C. (2013). Why is Svalbard an island? Evidence for two‐stage uplift, magmatic underplating, and mantle thermal anomalies. Tectonics, 32, 473–486. https://doi.org/10.1002/tect.20039
    [Google Scholar]
  30. Dörr, N., Lisker, F., Jochmann, M., Rainer, T., Schlegel, A., Schubert, K., & Spiegel, C. (2019). Subsidence, rapid inversion, and slow erosion of the Central Tertiary Basin of Svalbard: Evidence from the thermal evolution and basin modeling. In K.Piepjohn, J. V.Strauss, L.Reinhardt, & W. C.McClelland (Eds.), Circum‐arctic structural events: Tectonic evolution of the arctic margins and trans‐arctic links with adjacent orogens (Series paper: 541, pp. 169–189). Boulder, CO: Geological Society of America.
    [Google Scholar]
  31. Eichhubl, P., Greene, H. G., & Maher, N. (2002). Physiography of an active transpressive margin basin: High‐resolution bathymetry of the Santa Barbara basin, Southern California continental borderland. Marine Geology, 184, 95–120. https://doi.org/10.1016/S0025‐3227(01)00280‐8
    [Google Scholar]
  32. Eldholm, O., Faleide, J. I., & Myhre, A. M. (1987). Continent‐ocean transition at the western Barents Sea/Svalbard continental margin. Geology, 15, 1118–1122. https://doi.org/10.1130/0091‐7613(1987)15<1118:CTATWB>2.0.CO;2
    [Google Scholar]
  33. Eldholm, O., Sundvor, E., Myhre, A. M., & Faleide, J. L. (1984). Cenozoic evolution of the continental margin of Norway and western Svalbard. In A. M.Spencer (Ed.), Petroleum geology of the north European margin (pp. 3–18). London: Graham & Trotman.
    [Google Scholar]
  34. Escalona, A., & Mann, P. (2006). Sequence‐stratigraphic analysis of Eocene clastic foreland basin deposits in central Lake Maracaibo using high‐resolution well correlation and 3‐D seismic data. American Association of Petroleum Geologists Bulletin, 90, 581–623. https://doi.org/10.1306/10130505037
    [Google Scholar]
  35. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., … Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31, 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  36. Faleide, J. I., Vågenes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the southwestern Barents Sea. Geological Society, London, Petroleum Geology Conference Series, 4, 933–950. https://doi.org/10.1144/0040933
    [Google Scholar]
  37. Flemings, P. B., & Jordan, T. E. (1989). A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research ‐ Solid Earth, 94, 3851–3866. https://doi.org/10.1029/JB094iB04p03851
    [Google Scholar]
  38. Forman, S. L., Lubinski, D. J., Miller, G. H., Snyder, J., Matishov, G. G., Korsun, S., & Myslivets, V. (1995). Postglacial emergence and distribution of Late Weichselian ice‐sheet loads in the northern Barents and Kara Seas, Russia. Geology, 23, 113–116. https://doi.org/10.1130/0091‐7613(1995)023<0113:PEADOL>2.3.CO;2
    [Google Scholar]
  39. Gabrielsen, R. H., Faerseth, R. B., Jensen, L. N., Kalheim, J. E., & Riis, F. (1990). Structural elements of the Norwegian continental shelf. Pt. 1. The Barents Sea region. Norwegian Petroleum Directorate Bulletin, 6, 33.
  40. Gaina, C., Gernigon, L., & Ball, P. (2009). Palaeocene‐Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. Journal of the Geological Society, 166, 601–616. https://doi.org/10.1144/0016‐76492008‐112
    [Google Scholar]
  41. Gjelberg, H. K. (2010). Facies Analysis and Sandbody Geometry of the Paleogene Battfjellet Formation, Central Western Nordenskiöld Land, Spitsbergen (p. 174), MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  42. Golovneva, L. (2010). Variability in epidermal characters of Ginkgo tzagajanica Samylina (Ginkgoales) from the Paleocene of the Tsagayan Formation (Amur region) and the taxonomy of Tertiary species of Ginkgo. Paleontological Journal, 44, 584–594. https://doi.org/10.1134/S003103011005014X
    [Google Scholar]
  43. Greenwood, D. R., Basinger, J. F., & Smith, R. Y. (2010). How wet was the Arctic Eocene rain forest? Estimates of precipitation from Paleogene Arctic macrofloras. Geology, 38, 15–18. https://doi.org/10.1130/G30218.1
    [Google Scholar]
  44. Grundvåg, S.‐A., Helland‐Hansen, W., Johannessen, E. P., Olsen, A. H., & Stene, S. A. K. (2014). The depositional architecture and facies variability of shelf deltas in the Eocene Battfjellet Formation, Nathorst Land, Spitsbergen. Sedimentology, 61, 2172–2204. https://doi.org/10.1111/sed.12131
    [Google Scholar]
  45. Grundvåg, S.‐A., Johannessen, E. P., Helland‐Hansen, W., & Plink‐Björklund, P. (2014). Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology, 61, 535–569. https://doi.org/10.1111/sed.12067
    [Google Scholar]
  46. Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 294‐B.
    [Google Scholar]
  47. Hadler‐Jacobsen, F., Johannessen, E., Ashton, N., Henriksen, S., Johnson, S., & Kristensen, J. (2005). Submarine fan morphology and lithology distribution: A predictable function of sediment delivery, gross shelf‐to‐basin relief, slope gradient and basin topography. Geological Society, London, Petroleum Geology Conference Series, 6, 1121–1145. https://doi.org/10.1144/0061121
    [Google Scholar]
  48. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007
    [Google Scholar]
  49. Harding, I. C., Charles, A. J., Marshall, J. E. A., Pälike, H., Roberts, A. P., Wilson, P. A., … Akbari, S. (2011). Sea‐level and salinity fluctuations during the Paleocene‐Eocene thermal maximum in Arctic Spitsbergen. Earth and Planetary Science Letters, 303, 97–107. https://doi.org/10.1016/j.epsl.2010.12.043
    [Google Scholar]
  50. Harland, W. B., Anderson, L. M., Manasrah, D., & Butterfield, N. J. (1997). The Geology of Svalbard (Vol. 17). London: Geological Society of London, Memoir.
    [Google Scholar]
  51. Helland‐Hansen, W. (1985). Sedimentology of the Battfjellet Formation (Palaeogene) in Nordenskiold Land, Spitsbergen (p. 322), Cand.scient. thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  52. Helland‐Hansen, W. (1990). Sedimentation in Paleogene foreland basin, Spitsbergen. American Association of Petroleum Geologists Bulletin, 74, 260–272.
    [Google Scholar]
  53. Helland‐Hansen, W. (1992). Geometry and facies of Tertiary clinothems, Spitsbergen. Sedimentology, 39, 1013–1029. https://doi.org/10.1111/j.1365‐3091.1992.tb01994.x
    [Google Scholar]
  54. Helland‐Hansen, W. (2010). Facies and stacking patterns of shelf‐deltas within the Palaeogene Battfjellet Formation, Nordenskiöld Land, Svalbard: Implications for subsurface reservoir prediction. Sedimentology, 57, 190–208.
    [Google Scholar]
  55. Helland‐Hansen, W., Grundvåg, S. A., & Aadland, T. (2017). Assessment of duration of basin filling without chronostratigraphic data: A case study from the Cenozoic foreland basin of Spitsbergen. International Meeting of Sedimentology 2017, Toulouse (abstract).
  56. Helland‐Hansen, W., Helle, H. B., & Sunde, K. (1994). Seismic modeling of Tertiary sandstone clinothems, Spitsbergen. Basin Research, 6(4), 181–191. https://doi.org/10.1111/j.1365‐2117.1994.tb00084.x
    [Google Scholar]
  57. Hodgson, D. M., Flint, S. S., Hodgetts, D., Drinkwater, N. J., Johannessen, E. P., & Luthi, S. M. (2006). Stratigraphic evolution of fine‐grained submarine fan systems, Tanqua depocenter, Karoo Basin, South Africa. Journal of Sedimentary Research, 76, 20–40. https://doi.org/10.2110/jsr.2006.03
    [Google Scholar]
  58. Hoy, R. G., & Ridgway, K. D. (2003). Sedimentology and sequence stratigraphy of fan‐delta and river‐delta deposystems, Pennsylvanian Minturn Formation, Colorado. American Association of Petroleum Geologists Bulletin, 87, 1169–1191. https://doi.org/10.1306/03110300127
    [Google Scholar]
  59. Ingersoll, R. V. (1988). Tectonics of sedimentary basins. Geological Society of America Bulletin, 100, 1704–1719. https://doi.org/10.1130/0016‐7606(1988)100<1704:TOSB>2.3.CO;2
    [Google Scholar]
  60. Jochmann, M. M., Augland, L. E., Lenz, O., Bieg, G., Haugen, T., Grundvåg, S. A., … Hjálmarsdóttir, H. R. (2019). Sylfjellet: A new outcrop of the Paleogene Van Mijenfjorden Group in Svalbard. Arktos, 1–22. https://doi.org/10.1007/s41063‐019‐00072‐w
    [Google Scholar]
  61. Johannessen, E. P., Henningsen, T., Bakke, N. E., Johansen, T. A., Ruud, B. E., Riste, P., … Woldengen, M. S. (2011). Palaeogene clinoform succession on Svalbard expressed in outcrops, seismic data, logs and cores. First Break, 29(2), 35–44. https://doi.org/10.3997/1365‐2397.2011004
    [Google Scholar]
  62. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 17, 521–550. https://doi.org/10.1111/j.1365‐2117.2005.00278.x
    [Google Scholar]
  63. Johansen, S., Granberg, E., Mellere, D., Arntsen, B., & Olsen, T. (2007). Decoupling of seismic reflectors and stratigraphic timelines: A modeling study of Tertiary strata from Svalbard. Geophysics, 72(5), SM273–SM280. https://doi.org/10.1190/1.2759479
    [Google Scholar]
  64. Jones, M. T., Augland, L. E., Shephard, G. E., Burgess, S. D., Eliassen, G. T., Jochmann, M. M., … Svensen, H. H. (2017). Constraining shifts in North Atlantic plate motions during the Palaeocene by U‐Pb dating of Svalbard tephra layers. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598‐017‐06170‐7
    [Google Scholar]
  65. Jørgensen, K. W. (2015). Sedimentology of inter‐channel deposits of the Aspelintoppen Formation, Brogniartfjella, Svalbard (p. 72). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  66. Kellogg, H. E. (1975). Tertiary stratigraphy and tectonism in Svalbard and continental drift. American Association of Petroleum Geologists Bulletin, 59, 465–485.
    [Google Scholar]
  67. Kleinspehn, K. L., & Teyssier, C. (2016). Oblique rifting and the Late Eocene‐Oligocene demise of Laurasia with inception of Molloy Ridge: Deformation of Forlandsundet Basin, Svalbard. Tectonophysics, 693, 363–377. https://doi.org/10.1016/j.tecto.2016.05.010
    [Google Scholar]
  68. Knies, J., Matthiessen, J., Vogt, C., Laberg, J. S., Hjelstuen, B. O., Smelror, M., … Vorren, T. O. (2009). The Plio‐Pleistocene glaciation of the Barents Sea‐Svalbard region: A new model based on revised chronostratigraphy. Quaternary Science Reviews, 28, 812–829. https://doi.org/10.1016/j.quascirev.2008.12.002
    [Google Scholar]
  69. Kongsgården, A. G. (2016). Sedimentology of channel‐deposits of the Aspelintoppen Formation, Brogniartfjella, Svalbard (p. 98). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  70. Kristensen, T. B., Rotevatn, A., Marvik, M., Henstra, G. A., Gawthorpe, R. L., & Ravnås, R. (2018). Structural evolution of sheared margin basins: The role of strain partitioning. Sørvestsnaget Basin, Norwegian Barents Sea. Basin Research, 30, 279–301. https://doi.org/10.1111/bre.12253
    [Google Scholar]
  71. Kvaček, Z. (1994). Connecting links between the Arctic Palaeogene and European Tertiary floras. In M. C.Boulter, & H. C.Fisher (Eds.), Cenozoic plants and climates of the Arctic, NATO ASI Series, I (Vol. 27, pp. 251–266). Berlin, Heidelberg, Germany: Springer.
    [Google Scholar]
  72. Landvik, J. Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Salvigsen, O., … Vorren, T. O. (1998). The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quaternary Science Reviews, 17, 43–75. https://doi.org/10.1016/S0277‐3791(97)00066‐8
    [Google Scholar]
  73. Lasabuda, A. P. E., Laberg, J. S., Knutsen, S.‐M., & Safronova, P. (2018). Cenozoic tectonostratigraphy and pre‐glacial erosion: A mass‐balance study of the northwestern Barents Sea margin. Journal of Geodynamics, 119, 149–166.
    [Google Scholar]
  74. Leever, K. A., Gabrielsen, R. H., Faleide, J. I., & Braathen, A. (2011). A transpressional origin for the West Spitsbergen fold‐and‐thrust belt: Insight from analog modeling. Tectonics, 30(2), 1–24. https://doi.org/10.1029/2010TC002753
    [Google Scholar]
  75. Løseth, T. M., Steel, R. J., Crabaugh, J. P., & Schellpeper, M. (2006). Interplay between shoreline migration paths, architecture and pinchout distance for siliciclastic shoreline tongues: Evidence from the rock record. Sedimentology, 53, 735–767. https://doi.org/10.1111/j.1365‐3091.2006.00791.x
    [Google Scholar]
  76. Lundin, E., & Doré, A. (2002). Mid‐Cenozoic post‐breakup deformation in the ‘passive’margins bordering the Norwegian‐Greenland Sea. Marine and Petroleum Geology, 19, 79–93. https://doi.org/10.1016/S0264‐8172(01)00046‐0
    [Google Scholar]
  77. Macdonald, H. A., Peakall, J., Wignall, P. B., & Best, J. (2011). Sedimentation in deep‐sea lobe‐elements: Implications for the origin of thickening‐upward sequences. Journal of Geological Society, 168, 319–332. https://doi.org/10.1144/0016‐76492010‐036
    [Google Scholar]
  78. Major, H., & Nagy, J. (1972). Geology of the Adventdalen map area: With a geological map, Svalbard C9G 1: 100 000. Norsk Polarinstitutt Skrifter, 138, 1–58.
    [Google Scholar]
  79. Mansurbeg, H., Morad, S., Plink‐Bjorklund, P., El‐Ghali, M. A. K., Caja, M. A., & Marfil, R. (2012). Diagenetic alterations related to falling stage and lowstand systems tracts of shelf, slope and basin floor sandstones (Eocene Central Basin, Spitsbergen). International Association of Sedimentologists Special Publication, 45, 353–378.
    [Google Scholar]
  80. Manum, S. B., & Throndsen, T. (1978). Rank of coal and dispersed organic matter and its geological bearing in the Spitsbergen Tertiary. Norsk Polarinstitutt Årbok, 1977, 159–177.
    [Google Scholar]
  81. Manum, S. B., & Throndsen, T. (1986). Age of Tertiary formations on Spitsbergen. Polar Research, 4, 103–131. https://doi.org/10.1111/j.1751‐8369.1986.tb00526.x
    [Google Scholar]
  82. Marshall, C., Uguna, J., Large, D. J., Meredith, W., Jochmann, M., Friis, B., … Orheim, A. (2015). Geochemistry and petrology of palaeocene coals from Spitzbergen—Part 2: Maturity variations and implications for local and regional burial models. International Journal of Coal Geology, 143, 1–10. https://doi.org/10.1016/j.coal.2015.03.013
    [Google Scholar]
  83. Mellere, D., Breda, A., & Steel, R. J. (2003). Fluvially incised shelf‐edge deltas and linkage to upper‐slope channels (Central Tertiary Basin, Spitsbergen). In N. C. R. H. H.Roberts, R. H.Fillon, & J. B.Anderson (Eds.), Shelf‐Margin Deltas and Linked downslope Petroleum Systems, (pp. 231–266, CD‐ROM). Gulf Coast Section SEPM 23rd Annual Research Conference Proceedings.
  84. Mellere, D., Plink‐Bjorklund, P., & Steel, R. (2002). Anatomy of shelf deltas at the edge of a prograding Eocene shelf margin, Spitsbergen. Sedimentology, 49, 1181–1206. https://doi.org/10.1046/j.1365‐3091.2002.00484.x
    [Google Scholar]
  85. Meng, Q.‐R., Wang, E., & Hu, J.‐M. (2005). Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block. Geological Society of America Bulletin, 117, 396–410. https://doi.org/10.1130/B25407.1
    [Google Scholar]
  86. Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., … Pekar, S. F. (2005). The Phanerozoic record of global sea‐level change. Science, 310, 1293–1298. https://doi.org/10.1126/science.1116412
    [Google Scholar]
  87. Müller, R. D., & Spielhagen, R. F. (1990). Evolution of the Central Tertiary Basin of Spitsbergen: Towards a synthesis of sediment and plate tectonic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 80(2), 153–172. https://doi.org/10.1016/0031‐0182(90)90127‐S
    [Google Scholar]
  88. Mutti, E., Davoli, G., Tinterri, R., & Zavala, C. (1996). The importance of ancient fluvio‐deltaic systems dominated by catastrophic flooding in tectonically active basins. Memorie Di Scienze Geologiche, 48, 233–291.
    [Google Scholar]
  89. Mutti, E., Tinterri, R., Benevelli, G., Di Biase, D., & Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20, 733–755. https://doi.org/10.1016/j.marpetgeo.2003.09.001
    [Google Scholar]
  90. Nathorst, A. G. (1910). Beiträge zur Geologie der Bären‐Insel, Spitzbergens und des König‐Karl‐Landes. Bulletin of the Geological Institution of the University of Uppsala, 10, 261–415.
    [Google Scholar]
  91. Naurstad, O. A. (2014). Sedimentology of the Aspelintoppen Formation (Eocene‐Oligocene), Brogniartfjella, Svalbard (p. 124), MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  92. Nilsen, T. H., & Sylvester, A. G. (1999). Strike‐slip basins: Part 1. The Leading Edge, 18, 1146–1152. https://doi.org/10.1190/1.1438170
    [Google Scholar]
  93. Nysæther, E. (1966). Petrografisk undersøkelse av sedimentære bergarter fra tidsperioden kritt‐tertiær i Nathorst Land (p. 168). Cand. Real. Thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  94. Olsen, A. (2008). Sedimentology and paleogeography of the Battfjellet Fm. Southern Van Mijenfjorden, Svalbard (p. 91). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  95. Osen, T. G. (2012). Facies, Sandbody Geometry and Palaeogeography of the Battfjellet Formation, Urdkolldalen area, Nordenskiold Land, Svalbard (p. 90). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  96. Petersen, T. G., Thomsen, T., Olaussen, S., & Stemmerik, L. (2016). Provenance shifts in an evolving Eurekan foreland basin: The Tertiary Central Basin, Spitsbergen. Journal of the Geological Society, 173, 634–648. https://doi.org/10.1144/jgs2015‐076
    [Google Scholar]
  97. Petter, A. L., & Steel, R. J. (2006). Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen. American Association of Petroleum Geologists Bulletin, 90, 1451–1472. https://doi.org/10.1306/04240605144
    [Google Scholar]
  98. Piepjohn, K., von Gosen, W., & Tessensohn, F. (2016). The Eurekan deformation in the Arctic: An outline. Journal of the Geological Society, 173, 1007–1024. https://doi.org/10.1144/jgs2016‐081
    [Google Scholar]
  99. Plink‐Björklund, P. (2005). Stacked fluvial and tide‐dominated estuarine deposits in high‐frequency (fourth‐order) sequences of the Eocene Central Basin, Spitsbergen. Sedimentology, 52, 391–428. https://doi.org/10.1111/j.1365‐3091.2005.00703.x
    [Google Scholar]
  100. Plink‐Bjorklund, P., Mellere, D., & Steel, R. J. (2001). Turbidite variability and architecture of sand‐prone, deep‐water slopes: Eocene clinoforms in the Central Basin, Spitsbergen. Journal of Sedimentary Research, 71, 895–912. https://doi.org/10.1306/030501710895
    [Google Scholar]
  101. Plink‐Björklund, P., & Steel, R. J. (2002). Sea‐level fall below the shelf edge, without basin‐floor fans. Geology, 30(2), 115–118. https://doi.org/10.1130/0091‐7613(2002)030<0115:SLFBTS>2.0.CO;2
    [Google Scholar]
  102. Plink‐Björklund, P., & Steel, R. (2005). Deltas on falling‐stage and lowstand shelf margins, the Eocene Central Basin of Spitsbergen: Importance of sediment supply. SEPM Special Publication, 83, 179–206.
    [Google Scholar]
  103. Plink‐Björklund, P., & Steel, R. (2006). Incised valleys on an Eocene coastal plain and shelf, Spitsbergen—Part of a linked shelf–slope system. SEPM Special Publication, 85, 281–307.
    [Google Scholar]
  104. Ponten, A., & Plink‐Björklund, P. (2009). Process regime changes across a regressive to transgressive turnaround in a shelf‐slope basin, Eocene Central Basin of Spitsbergen. Journal of Sedimentary Research, 79, 2–23. https://doi.org/10.2110/jsr.2009.005
    [Google Scholar]
  105. Poole, L. K. (2018). Sedimentology of the Paleogene succession at Calypsostranda, Svalbard (p. 159). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  106. Porębski, S. J., & Steel, R. J. (2003). Shelf‐margin deltas: Their stratigraphic significance and relation to deepwater sands. Earth‐Science Reviews, 62(3–4), 283–326. https://doi.org/10.1016/S0012‐8252(02)00161‐7
    [Google Scholar]
  107. Posamentier, H., & Allen, G. (1993). Siliciclastic sequence stratigraphic patterns in foreland, ramp‐type basins. Geology, 21, 455–458. https://doi.org/10.1130/0091‐7613(1993)021<0455:SSSPIF>2.3.CO;2
    [Google Scholar]
  108. Potter, P., & Pettijohn, F. (1963). Paleocurrents and basin analysis (p. 296). New York: Academic Press Inc.
    [Google Scholar]
  109. Prélat, A., Hodgson, D., & Flint, S. (2009). Evolution, architecture and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154. https://doi.org/10.1111/j.1365‐3091.2009.01073.x
    [Google Scholar]
  110. Rasmussen, E., Skott, P. H., & Larsen, K.‐B. (1995). Hydrocarbon potential of the Bjørnøya West Province, western Barents Sea Margin. Norwegian Petroleum Society Special Publication, 4, 277–286.
    [Google Scholar]
  111. Ryseth, A., Augustson, J. H., Charnock, M., Haugerud, O., Knutsen, S.‐M., Midbøe, P. S., … Sundsbø, G. (2003). Cenozoic stratigraphy and evolution of the Sørvestsnaget Basin, southwestern Barents Sea. Norwegian Journal of Geology, 83, 107–130.
    [Google Scholar]
  112. Safronova, P. A., Henriksen, S., Andreassen, K., Laberg, J. S., & Vorren, T. O. (2014). Evolution of shelf‐margin clinoforms and deep‐water fans during the middle Eocene in the Sorvestsnaget Basin, southwest Barents Sea. American Association of Petroleum Geologists Bulletin, 98, 515–544.
    [Google Scholar]
  113. Sanderson, D. J., & Marchini, W. (1984). Transpression. Journal of Structural Geology, 6, 449–458. https://doi.org/10.1016/0191‐8141(84)90058‐0
    [Google Scholar]
  114. Schlegel, A., Lisker, F., Dörr, N., Jochmann, M., Schubert, K., & Spiegel, C. (2013). Petrography and geochemistry of siliciclastic rocks from the Central Tertiary Basin of Svalbard – Implications for provenance, tectonic setting and climate. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften, 164, 173–186. https://doi.org/10.1127/1860‐1804/2013/0012
    [Google Scholar]
  115. Skarpeid, S. S. (2010). Facies Architecture and Paleogeography of the Battfjellet Formation, Rypefjellet, Spitsbergen (p. 113), MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  116. Skjærpe, K. T. (2017). Sedimentological facies analyses of Clinothem 8C (Eocene), Battfjellet Formation, Brogniartfjella, Svalbard (p. 109), MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  117. Smelror, M., Petrov, O., Larssen, G. B., & Werner, S. (2009). Atlas: Geological history of the Barents Sea (p. 135). Trondheim, Norway: Norges Geologiske Undersøkelse.
    [Google Scholar]
  118. Steel, R. J. (1977). Observations on some Cretaceous and Tertiary sandstone bodies in Nordenskiӧld Land. Svalbard, Norsk Polarinstitutt Årbok, 1976, 43–68.
    [Google Scholar]
  119. Steel, R. J., Crabaugh, J. P., Schellpeper, M., Mellere, D., Plink‐Bjorklund, P., Deibert, J., & Løseth, T. M. (2000). Deltas versus rivers on the shelf edge: their relative contributions to the growth of shelf margins and basin‐floor fans (Barremian and Eocene, Spitsbergen). In P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, M. J., … Lawrence (Eds.), Deep‐water reservoirs of the world (pp. 981–1009). Gulf Coast Section SEPM 20th Annual Research Conference Proceedings.
  120. Steel, R., Dalland, A., Kalgraff, K., & Larsen, V. (1981). The Central Tertiary Basin of Spitsbergen: Sedimentary development of a Sheared‐Margin Basin. In J. W.Kerr, & A. J.Ferguson (Eds.), Geology of the North Atlantic Borderland (Vol. 7, pp. 647–664). Calgary, Canada: Canadian Society of Petroleum Geologists Memoir.
    [Google Scholar]
  121. Steel, R., Gjelberg, J., Helland‐Hansen, W., Kleinspehn, K., Nøttvedt, A., & Rye‐Larsen, M. (1985). The Tertiary strike‐slip basins and orogenic belt of Spitsbergen. SEPM Special Publication, 37, 339–359.
    [Google Scholar]
  122. Steel, R. J., & Olsen, T. (2002). Clinoforms, Clinoform Trajectories and Deepwater Sands. In J. M.Armentrout, & N. C.Rosen (Eds.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories (pp. 367–381, CD‐ROM). Gulf Coast Section SEPM 22th Annual Research Conference Proceedings.
  123. Stene, S. A. K. (2008). Facies and architecture of the Battfjellet Formation, northern Nathorst Land, Spitsbergen (p. 103). MSc thesis. Bergen, Norway: University of Bergen.
    [Google Scholar]
  124. Swift, D. J. P., & Thorne, J. A. (1991). Sedimentation on continental margins, I: a general model for shelf sedimentation. In D. J. P.Swift, G. F.Oertel, R. W.Tillman, & J. A.Thorne (Eds.) Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy, Int. Assoc. Sedimentol. Spec. Publ., 14, 3–31.
  125. Tegner, C., Storey, M., Holm, P. M., Thorarinsson, S., Zhao, X., Lo, C.‐H., & Knudsen, M. F. (2011). Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40 Ar–39 Ar age of Kap Washington Group volcanics, North Greenland. Earth and Planetary Science Letter, 303, 203–214. https://doi.org/10.1016/j.epsl.2010.12.047
    [Google Scholar]
  126. Uhl, D., Traiser, C., Griesser, U., & Denk, T. (2007). Fossil leaves as palaeoclimate proxies in the Palaeogene of Spitsbergen (Svalbard). Acta Palaeobotanica Krakow, 47, 89.
    [Google Scholar]
  127. Uroza, C. A., & Steel, R. J. (2008). A highstand shelf‐margin delta system from the Eocene of West Spitsbergen, Norway. Sedimentary Geology, 203, 229–245. https://doi.org/10.1016/j.sedgeo.2007.12.003
    [Google Scholar]
  128. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high resolution correlation of time and facies. American Association of Petroleum Geologists, Methods in Exploration Series, 7, 55.
    [Google Scholar]
  129. Willis, A. (2000). Tectonic control of nested sequence architecture in the Sego Sandstone, Neslen Formation and upper Castlegate Sandstone (Upper Cretaceous), Sevier foreland basin, Utah, USA. Sedimentary Geology, 136, 277–317. https://doi.org/10.1016/S0037‐0738(00)00087‐7
    [Google Scholar]
  130. Zhang, G.‐B., & Bott, M. H. (2000). Modelling the evolution of asymmetrical basins bounded by high‐angle reverse faults with application to foreland basins. Tectonophysics, 322, 203–218. https://doi.org/10.1016/S0040‐1951(00)00104‐9
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12492
Loading
/content/journals/10.1111/bre.12492
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Central Basin; Eocene; foreland basin; Paleogene; Spitsbergen; Svalbard

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error