1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Selective chronology of foreland platform and basin development in the Ottawa Embayment, western Quebec Basin and northern Appalachian Basin (New York, Vermont).

, Abstract

The Middle to Upper Ordovician foreland succession of the Ottawa Embayment in central Canada is divided into nine transgressive‐regressive sequences that defines net deepening of a platform succession over ~15 m.y. from peritidal to outer ramp settings, then a return to peritidal conditions over ~3 m.y. related to basin filling by orogen‐derived siliciclastics. With a backdrop of net eustatic rise through the Middle to Late Ordovician, there are several different expressions of structural influence on sequence development in the embayment. During the Middle Ordovician (Darriwilian), foreland‐basin initiation was marked by regional onlap with abundant synsedimentary deformation across a faulted trailing‐margin platform interior; subsequent craton‐interior uplift resulted in voluminous influx of siliciclastics contemporary with local structurally influenced local channelization; then, a formation of a platform‐interior shale basin defines continued intrabasin tectonism. During the Late Ordovician (Sandbian, early Katian), structural influence was superimposed on sea‐level rise as indicated by renewed local development of a platform‐interior shale basin; differential subsidence and thickness variation of platform carbonate successions; abrupt deepening across shallow‐water shoal facies; and, micrograben development coincident with foreland‐platform drowning. These stratigraphic patterns are far‐field expressions of distal orogen development amplified in the platform interior through basement reactivation along an inherited buried Precambrian fault system. Comparison of Upper Ordovician (Sandbian‐lower Katian) sequence stratigraphy in the Ottawa Embayment with eustatic frameworks defined for the Appalachian Basin reveals greater regional variation associated with Sandbian sequences compared to regional commonality in base level through the early Katian.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12495
2021-01-22
2024-04-25
Loading full text...

Full text loading...

References

  1. Barnes, C. R. (1967). Stratigraphy and sedimentary environments of some Wilderness (Ordovician) limestones, Ottawa Valley, Ontario. Canadian Journal of Earth Sciences, 4, 209–244. https://doi.org/10.1139/e67‐011
    [Google Scholar]
  2. Barnes, C. R. (1984). Early Ordovician eustatic events in Canada. In D. L.Brunton (Ed.), Aspects of the Ordovician system: Paleontological contributions (Vol. 295, pp. 51–63). University of Oslo.
    [Google Scholar]
  3. Berezinski, D., Taylor, J. F., & Repetski, J. E. (2012).Sequential development of platform to off‐platform facies of the great American carbonate bank in the central Appalachians. In J. R.Derby, R. D.Fritz, S. A.Longacre, W. A.Morgan, & C. A.Sternbach (Eds.), Great American carbonate bank (Vol. 98, pp. 383–420). AAPG Memoir.
    [Google Scholar]
  4. Bergström, S. M., Schmitz, B., Saltzman, M. R., & Huff, W. D. (2010). The upper Ordovician Guttenberg 32 δ13C excursion (GICE) in North America and Baltoscandia: Occurrence, chronostratigraphic significance, and paleoenvironmental relationships. In The Ordovician earth system. Special Paper 466 (pp. 37–67). Boulder, CO: Geological Society of America.
    [Google Scholar]
  5. Brett, C. E., Allison, P. A., Tsujita, C. J., Soldani, D., & Moffat, H. A. (2006). Sedimentology, taphonomy, and paleoecology of metre‐scale cycles from the Upper Ordovician of Ontario. Palaios, 21, 530–547.
    [Google Scholar]
  6. Brett, C. E., Aucoin, C. D., Dattilo, B. F., Freeman, R. L., Hartshorn, K. R., McLaughlin, P. I., & Schwalbach, C. E. (2020). Revised sequence stratigraphy of the upper Katian Stage (Cincinnatian) strata in the Cincinnati Arch reference area: Geological and paleontological implications. Palaeogeography, Palaeoclimatology, Palaeoeclogy, 540, 109483. https://doi.org/10.1016/j.palaeo.2019.109483
    [Google Scholar]
  7. Brett, C. E., & Baird, G. C. (2002). Revised stratigraphy of the Trenton Group in its type area, central New York State: Sedimentology and tectonics of a Middle Ordovician shelf‐to‐basin succession. Physics and Chemistry of the Earth, 27, 231–263. https://doi.org/10.1016/S1474‐7065(01)00007‐9
    [Google Scholar]
  8. Brett, C. E., McLaughlin, P. I., Cornell, S. R., & Baird, G. C. (2004). Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York–Ontario) and Lexington Platform (Kentucky–Ohio): Implications for eustasy and local tectonism in eastern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 295–329. https://doi.org/10.1016/j.palaeo.2004.02.038
    [Google Scholar]
  9. Cameron, B., & Mangion, S. (1977). Depositional environments and revised stratigraphy along the Black River‐Trenton boundary in New York and Ontario. American Journal of Science, 277, 486–502. https://doi.org/10.2475/ajs.277.4.486
    [Google Scholar]
  10. Carlson, M. P. (1999). Transcontinental Arch – A pattern formed by rejuvenation of local features across central North America. Tectonophysics, 305, 225–233. https://doi.org/10.1016/S0040‐1951(99)00005‐0
    [Google Scholar]
  11. Catuneanu, O. (2019). Model‐independent sequence stratigraphy. Earth‐Science Reviews, 188, 312–388. https://doi.org/10.1016/j.earscirev.2018.09.017
    [Google Scholar]
  12. Catuneanu, O., Galloway, W. E., Kendall, C. G., St, C., Miall, A. D., Posamentier, H. W., … Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44, 173–245. https://doi.org/10.1127/0078‐0421/2011/0011
    [Google Scholar]
  13. Colombié, C., Lécuyer, C., & Strasser, A. (2011). Carbon‐ and oxygen‐isotope records of palaeoenvironmental and carbonate production changes in shallow‐marine carbonates (Kimmeridgian, Swiss Jura). Geological Magazine, 148, 133–153.
    [Google Scholar]
  14. Crevello, P. D. (1991). High‐frequency carbonate cycles and stacking patterns: Interplay of orbital forcing and subsidence on Lower Jurassic rift platforms, High Atlas, Morocco. Kansas Geological Survey Bulletin, 233, 207–230.
    [Google Scholar]
  15. Dapples, E. C. (1955). General lithofacies relationship of the St. Peter Sandstone and Simpson Group. Bulletin of the American Association of Petroleum Geologists, 39, 444–467.
    [Google Scholar]
  16. Dix, G. R., & Al Rodhan, Z. (2006). A new geological framework for the Middle Ordovician Carillon formation (uppermost Beekmantown Group, Ottawa Embayment): Onset of Taconic foreland deposition and tectonism within the Laurentian platform interior. Canadian Journal of Earth Sciences, 43, 1367–1387. https://doi.org/10.1139/e06‐030
    [Google Scholar]
  17. Dix, G. R., & Jolicoeur, C. (2011). Tectonostratigraphic framework of Upper Ordovician source rocks, Ottawa Embayment (eastern Ontario). Bulletin of Canadian Petroleum Geology, 59, 7–26. https://doi.org/10.2113/gscpgbull.59.1.7
    [Google Scholar]
  18. Dix, G. R., Nehza, O., & Okon, I. (2013). Tectonostratigraphy of the Chazyan (Late Middle‐Early Late Ordovician) mixed siliciclastic‐carbonate platform, Quebec Embayment. Journal of Sedimentary Research, 83, 451–474. https://doi.org/10.2110/jsr.2013.39
    [Google Scholar]
  19. Dott, R. H.Jr., Byers, C. W., Fielder, G. W., Stenzel, S. R., & Winfree, K. E. (1986). Aeolian to marine transition in Cambro‐Ordovician cratonic sheet sandstones of the northern Mississippi Valley, USA. Sedimentology, 33, 345–367.
    [Google Scholar]
  20. Embry, A. F. (1993). Transgressive‐regressive (T – R) sequence analysis of the Jurassic succession of the Sverdrup Basin, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences, 30, 301–320. https://doi.org/10.1139/e93‐024
    [Google Scholar]
  21. Ettensohn, F. R. (2008). The Appalachian foreland basin in eastern United States. In A. D.Miall (Ed.), The sedimentary basins of the United States and Canada (pp. 105–162). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  22. Ettensohn, F. R., & Lierman, R. T. (2015).Using black shales to constain possible tectonic and structural influence on foreland‐basin evolution and cratonic yoking: Late Taconian Orogeny, Late Ordovician Appalachian Basin, eastern USA. In G. M.Gibson, F.Roure, & G.Manatschal (Eds.), Sedimentary basins and crustal processes at continental margins (Vol. 413, pp. 119–141). London: Geological Society, London, Special Publications.
    [Google Scholar]
  23. Finney, S. C., Ethington, R. L., & Repetski, J. R. (2007). The Boundary between the Sauk and Tippecanoe Sloss Sequences of North America. Acta Paleontologica Sinica, 46, 128–134.
    [Google Scholar]
  24. Fritz, R. D., Morgan, W. A., Longacre, S., Derby, J. R., & Sternbach, C. A. (2012). Introduction. In J. R.Derby, R. D.Fritz, S. A.Longacre, W. A.Morgan, & C. A.Sternbach (Eds.), The great American carbonate bank (Vol. 98, pp. 1–3). AAPG Memoir.
    [Google Scholar]
  25. Frasier, M. L., & Bottjer, D. J. (2004). The non‐actualistic early Triassic gastropod fauna: A case study of the Lower Triassic Sinbad Limestone Member. Palaios, 19, 259–275.
    [Google Scholar]
  26. Gbadeyan, R., & Dix, G. R. (2013). The role of regional and local structure in a Late Ordovician (Edenian) foreland platform‐to‐basin succession inboard of the Taconic Orogen, Central Canada. Geosciences, 3, 216–239. https://doi.org/10.3390/geosciences3020216
    [Google Scholar]
  27. Goodbred, S. L.Jr., & Saito, Y. (2012). Tide‐dominated deltas. In R. A.Davies, & R. W.Dalrymple (Eds.), Principles of tidal sedimentology (pp. 129–149). Dordrecht, the Netherlands: Springer.
    [Google Scholar]
  28. Handford, C. R., & Loucks, R. G. (1993).Carbonate depositional sequences and systems tracts‐Responses of carbonate platforms to relative sea‐level changes. In R. G.Loucks, & J. F.Sarg (Eds.), Carbonate sequence stratigraphy (Vol. 57, pp. 3–41). AAPG Memoir.
    [Google Scholar]
  29. Haq, B. U., & Shutter, S. R. (2008). A chronology of Paleozoic sea‐level changes. Science, 322, 64–68. https://doi.org/10.1126/science.1161648
    [Google Scholar]
  30. Hofmann, H. J. (1979). Chazy (Middle Ordovician) trace fossils in the Ottawa–St. Lawrence Lowland. Geological Survey of Canada Bulletin, 321, 27–59.
    [Google Scholar]
  31. Hofmann, H. J., & Bolton, T. E. (1998). Middle Ordovician (Whiterockian) trilobite Bathyurus angelini Billings 1859 from the Carillon Formation (uppermost Beekmantown Group) at Kahnawake, Quebec and correlative trilobites from eastern Canada. Canadian Journal of Earth Sciences, 35(1), 76–87.
    [Google Scholar]
  32. Holland, S. M., & Patzkowsky, M. E. (1996). Sequence stratigraphy and long‐term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States. In B. J.Witzke, G. A.Ludvigsen, & J. E.DayPaleozoic sequence stratigraphy; views from the North American Craton (Vol. 306, pp. 117–130). Boulder, CO: Geological Society of America. Special Paper.
    [Google Scholar]
  33. Holland, S. M., & Patzkowsky, M. E. (2008).Sequence Stratigraphy of the Middle and Upper Ordovician of the Eastern United States.Retrieved fromhttps://strata.uga.edu/ordoss/Correlation2008d.pdf
  34. Hubbard, S. M., Gingras, M. K., & Pemberton, G. (2004). Palaeoenvironmental implications of trace fossils in estuarinedeposits of the Cretaceous Bluesky Formation, Cadotte region, Alberta, Canada. Fossils and Strata, 51, 68–87.
    [Google Scholar]
  35. Jacobi, R. D., & Mitchell, C. E. (2002). Geodynamical interpretation of a major unconformity in the Taconic Foredeep: Slide scar or onlap unconformity. Physics and Chemistry of the Earth, 27, 169–201. https://doi.org/10.1016/S1474‐7065(01)00006‐7
    [Google Scholar]
  36. Joy, M. P., Mitchell, C. E., & Adhya, S. (2000). Evidence of a tectonically driven sequence succession in the Middle Ordovician Taconic foredeep. Geology, 28, 727–730. https://doi.org/10.1130/0091‐7613(2000)28<727:EOATDS>2.0.CO;2
    [Google Scholar]
  37. Kay, G. M. (1942). Ottawa‐Bonnechere graben and Lake Ontario homocline. Geological Society of America Bulletin, 53, 585–646.
    [Google Scholar]
  38. Kidwell, S. M. (1993). Taphonomic expressions of sedimentary hiatuses: Fields observations on bioclastic concentratins and sequence anatomy in low, modern and high subsidence settings. Geologiches Rundshau, 82, 189–202.
    [Google Scholar]
  39. Kiernan, J. P. (1999). Lithostratigraphy, sedimentology and diagenesis of the Upper Ordovician Hull beds and Verulam formation, Upper Ottawa Group, Eastern Ontario. M.Sc. thesis, Ottawa: Carleton University. Unpublished.
    [Google Scholar]
  40. Kiipli, E., Kiipli, T., Kallaste, T., & Pajusaar, S. (2017). Trace elements indicating humid climatic events in the Ordovician‐early Siliurian. Chemie Der Erde, 77, 625–631.
    [Google Scholar]
  41. Landing, E., & Westrop, S. R. (2006). Early Ordovician faunas, stratigraphy, and sea level history of the middle Beekmantown Group, northeastern New York. Journal of Paleontology, 80, 958–980.
    [Google Scholar]
  42. Lavoie, D. (2008). Appalachian foreland basin of Canada. In A. D.Miall (Ed.), Sedimentary basins of the world: United States and Canada (pp. 65–103). Amsterdam, the Netherlands: Elsevier, Chapter 3.
    [Google Scholar]
  43. Lavoie, D., Desrochers, A., Dix, G. R., Knight, I., & Salad Hersi, O. (2012). The great American carbonate bank in Eastern Canada: An overview. In J. R.Derby, R. D.Fritz, S. A.Longacre, W. A.Morgan, & C. A.Sternbach (Eds.), Great American carbonate bank (Vol. 98, pp. 499–523). AAPG Memoir.
    [Google Scholar]
  44. Leslie, S. A., & Bergström, S. M. (1995). Timing of the Trenton transgression and revision of the North American late Middle Ordovician stage classification based on K‐bentonite correlation. In J. D.Cooper, M. L.Droser, S. C.Finney, & S. E. P. M.Pacific Section (Eds.), Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (pp. 49–54).
    [Google Scholar]
  45. Macdonald, F. A., Karabinos, P. M., Crowley, J. L., Hodgin, E. B., Crockford, P. W., & Delano, J. W. (2017). Bridging the gap between the foreland and hinterland II: Geochronology and tectonic setting of Ordovician magmatism and basinformation on the Laurentian margin of New England and Newfoundland. American Journal of Science, 317, 555–596.
    [Google Scholar]
  46. McCausland, P. J. A., Van der Voo, R., & Hall, C. M. (2007). Circum‐Iapetus paleogeography of the Precambrian‐Cambrian transition with a new paleomagnetic constraint from Laurentia. Precambrian Research, 156, 125–152. https://doi.org/10.1016/j.precamres.2007.03.004
    [Google Scholar]
  47. Mitchell, C. E., Adhya, S., Bergström, S. M., Joy, M. P., & Delano, J. W. (2004). Discovery of the Ordovician Millbrig K‐bentonite bed in the Trenton Group of New York State: Implications for regional correlation and sequence stratigraphy in eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 331–346.
    [Google Scholar]
  48. Ogg, J. G., Ogg, G., & Gradstein, F. M. (2016). The concise geologic time scale (1st ed., p. 240). Elsevier.
    [Google Scholar]
  49. Oruche, N. E., Dix, G. R., & Gazdewich, S. (2019). δ13C stratigraphy of a Turinian‐Chatfieldian (Upper Ordovician) foreland succession, Ottawa Embayment (central Canada): Resolving local and inter‐regional isotope excursions in a tectonically active basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 528, 186–203. https://doi.org/10.1016/j.palaeo.2019.05.013
    [Google Scholar]
  50. Oruche, N. E., Dix, G. R., & Kamo, S. L. (2018). Lithostratigraphy of the upper Turinian – lower Chatfieldian (Upper Ordovician) foreland succession, and a U‐Pb ID–TIMS date for the Millbrig volcanic ash bed in the Ottawa Embayment. Canadian Journal of Earth Sciences, 55(9), 1079–1102. https://doi.org/10.1139/cjes‐2018‐0006
    [Google Scholar]
  51. Paton, T. R., & Brett, C. E. (2019). Revised stratigraphy of the middle Simcoe Group (Ordovician, upper Sandbian‐Katian) in its type area: An integrated approach. Canadian Journal of Earth Sciences, 56(12), 1–15.
    [Google Scholar]
  52. Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.‐B., Dumas, C., Alvarez‐Solas, J., & Vandenbroucke, T. R. A. (2016). Glacial onset predated by Late Ordovician cooling. Paleoceanography, 31, 800–821.
    [Google Scholar]
  53. Rider, M., & Kennedy, M. (2011). The geological interpretation of well logs (3rd ed., p. 432). Glasgow, New York: Rider‐French.
    [Google Scholar]
  54. Rimando, R. E., & Benn, K. (2005). Evolution of faulting and paleo‐stress field within the Ottawa graben, Canada. Journal of Geodynamics, 39, 337–360. https://doi.org/10.1016/j.jog.2005.01.003
    [Google Scholar]
  55. Salad Hersi, O., & Dix, G. R. (1997). Hog’s Back Formation: A new (Middle Ordovician) stratigraphic unit, Ottawa Embayment, eastern Ontario, Canada. Canadian Journal of Earth Sciences, 34, 588–597. https://doi.org/10.1139/e17‐047
    [Google Scholar]
  56. Salad Hersi, O., & Dix, G. R. (1999). Blackriveran (lower Mohawkian, Upper Ordovician) lithostratigraphy, rhythmicity, and paleogeography: Ottawa Embayment, eastern Ontario, Canada. Canadian Journal of Earth Sciences, 36, 2033–2050. https://doi.org/10.1139/e99‐087
    [Google Scholar]
  57. Sanford, B. V. (1993). St. Lawrence Platform ‐ Geology.In D. F.Stott, & J. D.Aitken (Eds.), Sedimentary cover of the craton in Canada (pp. 725–786). Geology of Canada Series. No. 5. Geological Survey of Canada.
    [Google Scholar]
  58. Sell, B. K., Samson, S. D., Mitchell, C. E., McLaughlin, P. I., Koenig, A. E., & Leslie, S. A. (2015). Stratigraphic correlations using trace elements in apatite from Late Ordovician (Sandbian‐Katian) K‐bentonites of eastern North America. Geological Society of America Bulletin, 127, 1259–1274. https://doi.org/10.1130/B31194.1
    [Google Scholar]
  59. Sharma, S., & Dix, G. R. (2004). Magnesian calcite and chamositic ooids forming shoals peripheral to Late Ordovician (Ashgillian) muddy siliciclastic shores: Southern Ontario. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 347–366.
    [Google Scholar]
  60. Sharma, S., Dix, G. R., & Riva, J. F. V. (2003). Late Ordovician platform foundering, its paleoceanography and burial, as preserved in separate (eastern Michigan Basin, Ottawa Embayment) basins, southern Ontario. Canadian Journal of Earth Sciences, 40, 135–148. https://doi.org/10.1139/e02‐099
    [Google Scholar]
  61. Shchepetkina, A., Gingras, M. K., Mangano, M. G., & Buatois, L. A. (2019). Fluvial‐tidal transition zone: Terminology, sedimentological and ichnological characteristics, and significance. Earth‐Science Reviews, 192, 214–235.
    [Google Scholar]
  62. Tobin, K. J., Steinhauff, D. M., & Walker, K. R. (1999). Ordovician meteoric carbon and oxygen isotope values: Implications for latitudinal variations of ancient stable isotopic values. Palaeogeography, Palaeoclimatology, Palaeoecology, 150, 331–342.
    [Google Scholar]
  63. Webby, B. D., Cooper, R. A., Bergström, S. M., & Paris, F. (2004). Stratigraphic framework and time slices. In D. B.Webby, F.Paris, M. L.Droser, & I. G.Percival (Eds.), The great Ordovician biodiversification event (pp. 41–47). New York: Columbia University Press.
    [Google Scholar]
  64. Zecchin, M., Catuneanu, O., & Caffau, M. (2019). Wave‐ravinement surfaces: Classification and key characteristics. Earth‐Science Reviews, 188, 210–239. https://doi.org/10.1016/j.earscirev.2018.11.011
    [Google Scholar]
  65. Zhang, S. (2011). Timing and extent of maximum transgression across Laurentia during Late Ordovician: New evidence from Slave Craton, Canadian Shield. Palaeogeography, Palaeoclimatology, Palaeoecology, 306, 196–204. https://doi.org/10.1016/j.palaeo.2011.04.019
    [Google Scholar]
  66. Zhang, S., Tarrant, G. A., & Barnes, C. R. (2011). Upper Ordovician conodont biostratigraphy and the age of the Collingwood Member, southern Ontario, Canada. Canadian Journal of Earth Sciences, 48, 1497–1522.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12495
Loading
/content/journals/10.1111/bre.12495
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error